OBJECTIVE: In an attempt to understand this relationship, this study aimed to carry out an investigation on online intervention features for effective management of Facebook addiction in higher education.
METHODS: This study was conducted quantitatively using surveys and partial least square-structural equational modeling. The study involved 200 postgraduates in a Facebook support group for postgraduates. The Bergen Facebook Addiction test was used to assess postgraduates' Facebook addiction level, whereas online intervention features were used to assess postgraduates' perceptions of online intervention features for Facebook addiction, which are as follows: (1) self-monitoring features, (2) manual control features, (3) notification features, (4) automatic control features, and (5) reward features.
RESULTS: The study discovered six Facebook addiction factors (relapse, conflict, salience, tolerance, withdrawal, and mood modification) and five intervention features (notification, auto-control, reward, manual control, and self-monitoring) that could be used in the management of Facebook addiction in postgraduate education. The study also revealed that relapse is the most important factor and mood modification is the least important factor. Furthermore, findings indicated that notification was the most important intervention feature, whereas self-monitoring was the least important feature.
CONCLUSIONS: The study's findings (addiction factors and intervention features) could assist future developers and educators in the development of online intervention tools for Facebook addiction management in postgraduate education.
METHODS: A search of four databases was conducted: Web of Science, PubMed, Dimensions, and Scopus for research papers dated between January 2016 and September 2021. The search keywords are 'data mining', 'machine learning' in combination with 'suicidal behaviour', 'suicide', 'suicide attempt', 'suicidal ideation', 'suicide plan' and 'self-harm'. The studies that used machine learning techniques were synthesized according to the countries of the articles, sample description, sample size, classification tasks, number of features used to develop the models, types of machine learning techniques, and evaluation of performance metrics.
RESULTS: Thirty-five empirical articles met the criteria to be included in the current review. We provide a general overview of machine learning techniques, examine the feature categories, describe methodological challenges, and suggest areas for improvement and research directions. Ensemble prediction models have been shown to be more accurate and useful than single prediction models.
CONCLUSIONS: Machine learning has great potential for improving estimates of future suicidal behaviour and monitoring changes in risk over time. Further research can address important challenges and potential opportunities that may contribute to significant advances in suicide prediction.