Displaying publications 21 - 40 of 79 in total

Abstract:
Sort:
  1. Tilwani RK, Vessillier S, Pingguan-Murphy B, Lee DA, Bader DL, Chowdhury TT
    Inflamm Res, 2017 Jan;66(1):49-58.
    PMID: 27658702 DOI: 10.1007/s00011-016-0991-5
    OBJECTIVE AND DESIGN: Oxygen tension and biomechanical signals are factors that regulate inflammatory mechanisms in chondrocytes. We examined whether low oxygen tension influenced the cells response to TNFα and dynamic compression.

    MATERIALS AND METHODS: Chondrocyte/agarose constructs were treated with varying concentrations of TNFα (0.1-100 ng/ml) and cultured at 5 and 21 % oxygen tension for 48 h. In separate experiments, constructs were subjected to dynamic compression (15 %) and treated with TNFα (10 ng/ml) and/or L-NIO (1 mM) at 5 and 21 % oxygen tension using an ex vivo bioreactor for 48 h. Markers for catabolic activity (NO, PGE2) and tissue remodelling (GAG, MMPs) were quantified by biochemical assay. ADAMTS-5 and MMP-13 expression were examined by real-time qPCR. 2-way ANOVA and a post hoc Bonferroni-corrected t test were used to analyse data.

    RESULTS: TNFα dose-dependently increased NO, PGE2 and MMP activity (all p 

  2. Choi JR, Yong KW, Tang R, Gong Y, Wen T, Yang H, et al.
    Adv Healthc Mater, 2017 Jan;6(1).
    PMID: 27860384 DOI: 10.1002/adhm.201600920
    Paper-based devices have been broadly used for the point-of-care detection of dengue viral nucleic acids due to their simplicity, cost-effectiveness, and readily observable colorimetric readout. However, their moderate sensitivity and functionality have limited their applications. Despite the above-mentioned advantages, paper substrates are lacking in their ability to control fluid flow, in contrast to the flow control enabled by polymer substrates (e.g., agarose) with readily tunable pore size and porosity. Herein, taking the benefits from both materials, the authors propose a strategy to create a hybrid substrate by incorporating agarose into the test strip to achieve flow control for optimal biomolecule interactions. As compared to the unmodified test strip, this strategy allows sensitive detection of targets with an approximately tenfold signal improvement. Additionally, the authors showcase the potential of functionality improvement by creating multiple test zones for semi-quantification of targets, suggesting that the number of visible test zones is directly proportional to the target concentration. The authors further demonstrate the potential of their proposed strategy for clinical assessment by applying it to their prototype sample-to-result test strip to sensitively and semi-quantitatively detect dengue viral RNA from the clinical blood samples. This proposed strategy holds significant promise for detecting various targets for diverse future applications.
  3. Nam HY, Balaji Raghavendran HR, Pingguan-Murphy B, Abbas AA, Merican AM, Kamarul T
    PLoS One, 2017;12(6):e0178117.
    PMID: 28654695 DOI: 10.1371/journal.pone.0178117
    The role for mechanical stimulation in the control of cell fate has been previously proposed, suggesting that there may be a role of mechanical conditioning in directing mesenchymal stromal cells (MSCs) towards specific lineage for tissue engineering applications. Although previous studies have reported that calcium signalling is involved in regulating many cellular processes in many cell types, its role in managing cellular responses to tensile loading (mechanotransduction) of MSCs has not been fully elucidated. In order to establish this, we disrupted calcium signalling by blocking stretch-activated calcium channel (SACC) in human MSCs (hMSCs) in vitro. Passaged-2 hMSCs were exposed to cyclic tensile loading (1 Hz + 8% for 6, 24, 48, and 72 hours) in the presence of the SACC blocker, gadolinium. Analyses include image observations of immunochemistry and immunofluorescence staining from extracellular matrix (ECM) production, and measuring related tenogenic and apoptosis gene marker expression. Uniaxial tensile loading increased the expression of tenogenic markers and ECM production. However, exposure to strain in the presence of 20 μM gadolinium reduced the induction of almost all tenogenic markers and ECM staining, suggesting that SACC acts as a mechanosensor in strain-induced hMSC tenogenic differentiation process. Although cell death was observed in prolonged stretching, it did not appear to be apoptosis mediated. In conclusion, the knowledge gained in this study by elucidating the role of calcium in MSC mechanotransduction processes, and that in prolonged stretching results in non-apoptosis mediated cell death may be potential useful for regenerative medicine applications.
  4. Ewa-Choy YW, Pingguan-Murphy B, Abdul-Ghani NA, Jahendran J, Chua KH
    Biomater Res, 2017;21:19.
    PMID: 29075508 DOI: 10.1186/s40824-017-0105-7
    BACKGROUND: The three-dimensional (3D) system is one of the important factors to engineer a biocompatible and functional scaffold for the applications of cell-based therapies for cartilage repair. The 3D alginate hydrogels system has previously been shown to potentially promote chondrogenesis. The chondrocytic differentiation of co-cultured adipose-derived stem cells (ADSCs) and nasal chondrocytes (NCs) within alginate constructs are hypothesized to be influenced by concentration of alginate hydrogel. In this study, we evaluated the effects of alginate concentration on chondrogenic differentiation of ADSCs and NCs co-cultured in a biological approach.

    METHOD: The co-cultured cells of 2:1 ADSCs-to-NCs ratio were encapsulated in alginate constructs in one of three concentrations (1.0%, 1.2% and 1.5%) and cultured under serum free conditions for 7 days. Cell viability, cell proliferation, immunohistochemical, gycosaminogylycans (GAG) synthesis, and gene expression were examined.

    RESULTS: Overall, the 1.2% alginate concentration group was relatively effective in chondrocytic differentiation in comparable to other groups. The cell morphology, cell viability, and cell proliferation revealed initial chondrogenic differentiation by the formation of cell clusters as well as the high permeability for exchange of solutes. The formation of newly synthesis cartilage-specific extracellular matrix in 1.2% group was demonstrated by positive immunohistochemical staining of collagen type II. The co-cultured cells in 1.2% group highly expressed COL II, ACP and SOX-9, compared to 1.0% and 1.5% groups, denote the retention of cartilaginous-specific phenotype by suppressing the undifferentiation stem cell markers of SOX-2 and OCT-4. The study showed 1.2% group was less likely to differentiate towards osteogenesis by downregulating hyperthrophy chondrocytic gene of COL X and osseous marker genes of OSC and OSP.

    CONCLUSION: This study suggests that variations in the alginate concentration of co-cultured ADSCs and NCs influenced the chondrogenesis. The remarkable biological performance on chondrogenic differentiation in regulating the concentration of alginate 3D culture provides new insights into the cell cross-talk and demonstrates the effectiveness in regenerative therapies of cartilage defects in tissue engineering.

  5. Yong KW, Li Y, Liu F, Bin Gao, Lu TJ, Wan Abas WA, et al.
    Sci Rep, 2016 10 05;6:33067.
    PMID: 27703175 DOI: 10.1038/srep33067
    Human mesenchymal stem cells (hMSCs) hold great promise in cardiac fibrosis therapy, due to their potential ability of inhibiting cardiac myofibroblast differentiation (a hallmark of cardiac fibrosis). However, the mechanism involved in their effects remains elusive. To explore this, it is necessary to develop an in vitro cardiac fibrosis model that incorporates pore size and native tissue-mimicking matrix stiffness, which may regulate cardiac myofibroblast differentiation. In the present study, collagen coated polyacrylamide hydrogel substrates were fabricated, in which the pore size was adjusted without altering the matrix stiffness. Stiffness is shown to regulate cardiac myofibroblast differentiation independently of pore size. Substrate at a stiffness of 30 kPa, which mimics the stiffness of native fibrotic cardiac tissue, was found to induce cardiac myofibroblast differentiation to create in vitro cardiac fibrosis model. Conditioned medium of hMSCs was applied to the model to determine its role and inhibitory mechanism on cardiac myofibroblast differentiation. It was found that hMSCs secrete hepatocyte growth factor (HGF) to inhibit cardiac myofibroblast differentiation via downregulation of angiotensin II type 1 receptor (AT1R) and upregulation of Smad7. These findings would aid in establishment of the therapeutic use of hMSCs in cardiac fibrosis therapy in future.
  6. Wan Safwani WK, Wong CW, Yong KW, Choi JR, Mat Adenan NA, Omar SZ, et al.
    Cytotechnology, 2016 Oct;68(5):1859-72.
    PMID: 26728363 DOI: 10.1007/s10616-015-9939-9
    The need to have a better and safer culture condition for expansion of human mesenchymal stem cells (MSCs) is crucial particularly to prevent infection and immune rejection. This is normally associated with the use of animal-based serum in the culture media for cell expansion. The aim of this study is to investigate alternative culture conditions which may provide better and safer environment for cell growth. In the present study, human adipose-derived stem cells (ASCs) at passage 3 were subjected to treatment in 4 conditions: (1) 21 % O2 with fetal bovine serum (FBS), (2) 21 % O2 without FBS, (3) 2 % O2 with FBS and (4) 2 % O2 without FBS followed by subsequent analysis of their phenotype, viability and functionality. We observed that ASCs cultured in all conditions present no significant phenotypic changes. It was found that ASCs cultured in 2 % O2 without serum showed an increase in viability and growth to a certain extent when compared to those cultured in 21 % O2 without serum. However, ASCs cultured in 2 % O2 without serum displayed a relatively low adipogenic and osteogenic potential. On the other hand, interestingly, there was a positive enhancement in chondrogenic differentiation of ASCs cultured in 21 % O2 without serum. Our findings suggest that different culture conditions may be suitable for different indications. In summary, ASCs cultured in serum-free condition can still survive, proliferate and undergo subsequent adipogenic, osteogenic and chondrogenic differentiation. Therefore, FBS is feasible to be excluded for culture of ASCs, which avoids clinical complications.
  7. Gao B, Wang L, Han S, Pingguan-Murphy B, Zhang X, Xu F
    Crit Rev Biotechnol, 2016 Aug;36(4):619-29.
    PMID: 25669871 DOI: 10.3109/07388551.2014.1002381
    Diabetes now is the most common chronic disease in the world inducing heavy burden for the people's health. Based on this, diabetes research such as islet function has become a hot topic in medical institutes of the world. Today, in medical institutes, the conventional experiment platform in vitro is monolayer cell culture. However, with the development of micro- and nano-technologies, several microengineering methods have been developed to fabricate three-dimensional (3D) islet models in vitro which can better mimic the islet of pancreases in vivo. These in vitro islet models have shown better cell function than monolayer cells, indicating their great potential as better experimental platforms to elucidate islet behaviors under both physiological and pathological conditions, such as the molecular mechanisms of diabetes and clinical islet transplantation. In this review, we present the state-of-the-art advances in the microengineering methods for fabricating microscale islet models in vitro. We hope this will help researchers to better understand the progress in the engineering 3D islet models and their biomedical applications such as drug screening and islet transplantation.
  8. Choi JR, Liu Z, Hu J, Tang R, Gong Y, Feng S, et al.
    Anal Chem, 2016 06 21;88(12):6254-64.
    PMID: 27012657 DOI: 10.1021/acs.analchem.6b00195
    In nucleic acid testing (NAT), gold nanoparticle (AuNP)-based lateral flow assays (LFAs) have received significant attention due to their cost-effectiveness, rapidity, and the ability to produce a simple colorimetric readout. However, the poor sensitivity of AuNP-based LFAs limits its widespread applications. Even though various efforts have been made to improve the assay sensitivity, most methods are inappropriate for integration into LFA for sample-to-answer NAT at the point-of-care (POC), usually due to the complicated fabrication processes or incompatible chemicals used. To address this, we propose a novel strategy of integrating a simple fluidic control strategy into LFA. The strategy involves incorporating a piece of paper-based shunt and a polydimethylsiloxane (PDMS) barrier to the strip to achieve optimum fluidic delays for LFA signal enhancement, resulting in 10-fold signal enhancement over unmodified LFA. The phenomena of fluidic delay were also evaluated by mathematical simulation, through which we found the movement of fluid throughout the shunt and the tortuosity effects in the presence of PDMS barrier, which significantly affect the detection sensitivity. To demonstrate the potential of integrating this strategy into a LFA with sample-in-answer-out capability, we further applied this strategy into our prototype sample-to-answer LFA to sensitively detect the Hepatitis B virus (HBV) in clinical blood samples. The proposed strategy offers great potential for highly sensitive detection of various targets for wide application in the near future.
  9. Wang L, Li Y, Huang G, Zhang X, Pingguan-Murphy B, Gao B, et al.
    Crit Rev Biotechnol, 2016 Jun;36(3):553-65.
    PMID: 25641330 DOI: 10.3109/07388551.2014.993588
    Natural cellular microenvironment consists of spatiotemporal gradients of multiple physical (e.g. extracellular matrix stiffness, porosity and stress/strain) and chemical cues (e.g. morphogens), which play important roles in regulating cell behaviors including spreading, proliferation, migration, differentiation and apoptosis, especially for pathological processes such as tumor formation and progression. Therefore, it is essential to engineer cellular gradient microenvironment incorporating various gradients for the fabrication of normal and pathological tissue models in vitro. In this article, we firstly review the development of engineering cellular physical and chemical gradients with cytocompatible hydrogels in both two-dimension and three-dimension formats. We then present current advances in the application of engineered gradient microenvironments for the fabrication of disease models in vitro. Finally, concluding remarks and future perspectives for engineering cellular gradients are given.
  10. Choi JR, Hu J, Feng S, Wan Abas WA, Pingguan-Murphy B, Xu F
    Biosens Bioelectron, 2016 May 15;79:98-107.
    PMID: 26700582 DOI: 10.1016/j.bios.2015.12.005
    Lateral flow assays (LFAs) have currently attracted broad interest for point-of-care (POC) diagnostics, but their application has been restricted by poor quantification and limited sensitivity. While the former has been currently solved to some extent by the development of handheld or smartphone-based readers, the latter has not been addressed fully, particularly the potential influences of environmental conditions (e.g., temperature and relative humidity (RH)), which have not yet received serious attention. The present study reports the use of a portable temperature-humidity control device to provide an optimum environmental requirement for sensitivity improvement in LFAs, followed by quantification by using a smartphone. We found that a RH beyond 60% with temperatures of 55-60°C and 37-40°C produced optimum nucleic acid hybridization and antigen-antibody interaction in LFAs, respectively representing a 10-fold and 3-fold signal enhancement over ambient conditions (25°C, 60% RH). We envision that in the future the portable device could be coupled with a fully integrated paper-based sample-to-answer biosensor for sensitive detection of various target analytes in POC settings.
  11. Tang R, Yang H, Choi JR, Gong Y, Hu J, Feng S, et al.
    Talanta, 2016 May 15;152:269-76.
    PMID: 26992520 DOI: 10.1016/j.talanta.2016.02.017
    Lateral flow assays (LFAs) hold great promise for point-of-care testing, especially in resource-poor settings. However, the poor sensitivity of LFAs limits their widespread applications. To address this, we developed a novel device by integrating dialysis-based concentration method into LFAs. The device successfully achieved 10-fold signal enhancement in Human Immunodeficiency Virus (HIV) nucleic acid detection with a detection limit of 0.1nM and 4-fold signal enhancement in myoglobin (MYO) detection with a detection limit of 1.56ng/mL in less than 25min. This simple, low-cost and portable integrated device holds great potential for highly sensitive detection of various target analytes for medical diagnostics, food safety analysis and environmental monitoring.
  12. Choi JR, Hu J, Gong Y, Feng S, Wan Abas WA, Pingguan-Murphy B, et al.
    Analyst, 2016 05 10;141(10):2930-9.
    PMID: 27010033 DOI: 10.1039/c5an02532j
    Lateral flow assays (LFAs) have been extensively explored in nucleic acid testing (NAT) for medical diagnostics, food safety analysis and environmental monitoring. However, the amount of target nucleic acid in a raw sample is usually too low to be directly detected by LFAs, necessitating the process of amplification. Even though cost-effective paper-based amplification techniques have been introduced, they have always been separately performed from LFAs, hence increasing the risk of reagent loss and cross-contaminations. To date, integrating paper-based nucleic acid amplification into colorimetric LFA in a simple, portable and cost-effective manner has not been introduced. Herein, we developed an integrated LFA with the aid of a specially designed handheld battery-powered system for effective amplification and detection of targets in resource-poor settings. Interestingly, using the integrated paper-based loop-mediated isothermal amplification (LAMP)-LFA, we successfully performed highly sensitive and specific target detection, achieving a detection limit of as low as 3 × 10(3) copies of target DNA, which is comparable to the conventional tube-based LAMP-LFA in an unintegrated format. The device may serve in conjunction with a simple paper-based sample preparation to create a fully integrated paper-based sample-to-answer diagnostic device for point-of-care testing (POCT) in the near future.
  13. Tang RH, Yang H, Choi JR, Gong Y, Feng SS, Pingguan-Murphy B, et al.
    Crit Rev Biotechnol, 2016 Apr 14.
    PMID: 27075621 DOI: 10.3109/07388551.2016.1164664
    In recent years, paper-based point-of-care testing (POCT) has been widely used in medical diagnostics, food safety and environmental monitoring. However, a high-cost, time-consuming and equipment-dependent sample pretreatment technique is generally required for raw sample processing, which are impractical for low-resource and disease-endemic areas. Therefore, there is an escalating demand for a cost-effective, simple and portable pretreatment technique, to be coupled with the commonly used paper-based assay (e.g. lateral flow assay) in POCT. In this review, we focus on the importance of using paper as a platform for sample pretreatment. We firstly discuss the beneficial use of paper for sample pretreatment, including sample collection and storage, separation, extraction, and concentration. We highlight the working principle and fabrication of each sample pretreatment device, the existing challenges and the future perspectives for developing paper-based sample pretreatment technique.
  14. Tan AW, Liau LL, Chua KH, Ahmad R, Akbar SA, Pingguan-Murphy B
    Sci Rep, 2016 Feb 17;6:21828.
    PMID: 26883761 DOI: 10.1038/srep21828
    One of the major challenges in bone grafting is the lack of sufficient bone vascularization. A rapid and stable bone vascularization at an early stage of implantation is essential for optimal functioning of the bone graft. To address this, the ability of in situ TiO2 nanofibrous surfaces fabricated via thermal oxidation method to enhance the angiogenic potential of human umbilical vein endothelial cells (HUVECs) was investigated. The cellular responses of HUVECs on TiO2 nanofibrous surfaces were studied through cell adhesion, cell proliferation, capillary-like tube formation, growth factors secretion (VEGF and BFGF), and angiogenic-endogenic-associated gene (VEGF, VEGFR2, BFGF, PGF, HGF, Ang-1, VWF, PECAM-1 and ENOS) expression analysis after 2 weeks of cell seeding. Our results show that TiO2 nanofibrous surfaces significantly enhanced adhesion, proliferation, formation of capillary-like tube networks and growth factors secretion of HUVECs, as well as leading to higher expression level of all angiogenic-endogenic-associated genes, in comparison to unmodified control surfaces. These beneficial effects suggest the potential use of such surface nanostructures to be utilized as an advantageous interface for bone grafts as they can promote angiogenesis, which improves bone vascularization.
  15. Choi JR, Hu J, Tang R, Gong Y, Feng S, Ren H, et al.
    Lab Chip, 2016 Feb 7;16(3):611-21.
    PMID: 26759062 DOI: 10.1039/c5lc01388g
    With advances in point-of-care testing (POCT), lateral flow assays (LFAs) have been explored for nucleic acid detection. However, biological samples generally contain complex compositions and low amounts of target nucleic acids, and currently require laborious off-chip nucleic acid extraction and amplification processes (e.g., tube-based extraction and polymerase chain reaction (PCR)) prior to detection. To the best of our knowledge, even though the integration of DNA extraction and amplification into a paper-based biosensor has been reported, a combination of LFA with the aforementioned steps for simple colorimetric readout has not yet been demonstrated. Here, we demonstrate for the first time an integrated paper-based biosensor incorporating nucleic acid extraction, amplification and visual detection or quantification using a smartphone. A handheld battery-powered heating device was specially developed for nucleic acid amplification in POC settings, which is coupled with this simple assay for rapid target detection. The biosensor can successfully detect Escherichia coli (as a model analyte) in spiked drinking water, milk, blood, and spinach with a detection limit of as low as 10-1000 CFU mL(-1), and Streptococcus pneumonia in clinical blood samples, highlighting its potential use in medical diagnostics, food safety analysis and environmental monitoring. As compared to the lengthy conventional assay, which requires more than 5 hours for the entire sample-to-answer process, it takes about 1 hour for our integrated biosensor. The integrated biosensor holds great potential for detection of various target analytes for wide applications in the near future.
  16. Rozila I, Azari P, Munirah S, Wan Safwani WK, Gan SN, Nur Azurah AG, et al.
    J Biomed Mater Res A, 2016 Feb;104(2):377-87.
    PMID: 26414782 DOI: 10.1002/jbm.a.35573
    The osteogenic potential of human adipose-derived stem cells (HADSCs) co-cultured with human osteoblasts (HOBs) using selected HADSCs/HOBs ratios of 1:1, 2:1, and 1:2, respectively, is evaluated. The HADSCs/HOBs were seeded on electrospun three-dimensional poly[(R)-3-hydroxybutyric acid] (PHB) blended with bovine-derived hydroxyapatite (BHA). Monocultures of HADSCs and HOBs were used as control groups. The effects of PHB-BHA scaffold on cell proliferation and cell morphology were assessed by AlamarBlue assay and field emission scanning electron microscopy. Cell differentiation, cell mineralization, and osteogenic-related gene expression of co-culture HADSCs/HOBs were examined by alkaline phosphatase (ALP) assay, alizarin Red S assay, and quantitative real time PCR, respectively. The results showed that co-culture of HADSCs/HOBs, 1:1 grown into PHB-BHA promoted better cell adhesion, displayed a significant higher cell proliferation, higher production of ALP, extracellular mineralization and osteogenic-related gene expression of run-related transcription factor, bone sialoprotein, osteopontin, and osteocalcin compared to other co-culture groups. This result also suggests that the use of electrospun PHB-BHA in a co-culture HADSCs/HOBs system may serve as promising approach to facilitate osteogenic differentiation activity of HADSCs through direct cell-to-cell contact with HOBs.
  17. Zeimaran E, Pourshahrestani S, Djordjevic I, Pingguan-Murphy B, Kadri NA, Wren AW, et al.
    J Mater Sci Mater Med, 2016 Jan;27(1):18.
    PMID: 26676864 DOI: 10.1007/s10856-015-5620-2
    Bioactive glasses may function as antimicrobial delivery systems through the incorporation and subsequent release of therapeutic ions. The aim of this study was to evaluate the antimicrobial properties of a series of composite scaffolds composed of poly(octanediol citrate) with increased loads of a bioactive glass that releases zinc (Zn(2+)) and gallium (Ga(3+)) ions in a controlled manner. The antibacterial activity of these scaffolds was investigated against both Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria. The ability of the scaffolds to release ions and the subsequent ingress of these ions into hard tissue was evaluated using a bovine bone model. Scaffolds containing bioactive glass exhibited antibacterial activity and this increased in vitro with higher bioactive glass loads; viable cells decreased to about 20 % for the composite scaffold containing 30 % bioactive glass. The Ga(3+) release rate increased as a function of time and Zn(2+) was shown to incorporate into the surrounding bone.
  18. Moradi A, Ataollahi F, Sayar K, Pramanik S, Chong PP, Khalil AA, et al.
    J Biomed Mater Res A, 2016 Jan;104(1):245-56.
    PMID: 26362913 DOI: 10.1002/jbm.a.35561
    Extracellular matrices have drawn attention in tissue engineering as potential biomaterials for scaffold fabrication because of their bioactive components. Noninvasive techniques of scaffold fabrication and cross-linking treatments are believed to maintain the integrity of bioactive molecules while providing proper architectural and mechanical properties. Cartilage matrix derived scaffolds are designed to support the maintenance of chondrocytes and provide proper signals for differentiation of chondroinducible cells. Chondroinductive potential of bovine articular cartilage matrix derived porous scaffolds on human dermal fibroblasts and the effect of scaffold shrinkage on chondrogenesis were investigated. An increase in sulfated glycosaminoglycans production along with upregulation of chondrogenic genes confirmed that physically treated cartilage matrix derived scaffolds have chondrogenic potential on human dermal fibroblasts.
  19. Aminuddin NI, Ahmad R, Akbar SA, Pingguan-Murphy B
    Sci Technol Adv Mater, 2016;17(1):698-714.
    PMID: 27933112
    To understand how cells respond to the nanoscale extracellular environment in vivo, cells from various sources have been cultured on nanoscale patterns fabricated using bottom-up and top-down techniques. Human fetal osteoblasts (hFOBs) and stem cells are some of them and they are known to be overtly responsive to nanoscale topographies - allowing us to investigate the hows and whys of the response in vitro. Information gathered from these in vitro studies could be used to control the cells, i.e. make the stem cells differentiate or retain their characteristics without the use of medium supplements. In this review, hFOB and stem cell responses to nanotopographies are summarized and discussed to shed some light on the influence of patterns on the reactions. Although both types of cells are responsive to nanoscale topographies, the responses are found to be unique to topographical dimension, shape, orientation and the types of cells used. This implies that cellular responses are influenced by multitude of factors and that if done right, cheaper self-assembled nanotopographies can be tailored to control the cells. A new self-assembly, powder-based technique is also included to provide an insight into the future of nanofabrication.
  20. Choi JR, Tang R, Wang S, Wan Abas WA, Pingguan-Murphy B, Xu F
    Biosens Bioelectron, 2015 Dec 15;74:427-39.
    PMID: 26164488 DOI: 10.1016/j.bios.2015.06.065
    Nucleic acid testing (NAT), as a molecular diagnostic technique, including nucleic acid extraction, amplification and detection, plays a fundamental role in medical diagnosis for timely medical treatment. However, current NAT technologies require relatively high-end instrumentation, skilled personnel, and are time-consuming. These drawbacks mean conventional NAT becomes impractical in many resource-limited disease-endemic settings, leading to an urgent need to develop a fast and portable NAT diagnostic tool. Paper-based devices are typically robust, cost-effective and user-friendly, holding a great potential for NAT at the point of care. In view of the escalating demand for the low cost diagnostic devices, we highlight the beneficial use of paper as a platform for NAT, the current state of its development, and the existing challenges preventing its widespread use. We suggest a strategy involving integrating all three steps of NAT into one single paper-based sample-to-answer diagnostic device for rapid medical diagnostics in the near future.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links