Displaying publications 21 - 40 of 58 in total

Abstract:
Sort:
  1. Wong YH, Tan HY, Kasbollah A, Abdullah BJJ, Yeong CH
    Pharmaceutics, 2019 Nov 12;11(11).
    PMID: 31718079 DOI: 10.3390/pharmaceutics11110596
    INTRODUCTION: Transarterial radioembolization (TARE) has been proven as an effective treatment for unresectable liver tumor. In this study, neutron activated, 153Sm-labeled microspheres were developed as an alternative to 90Y-labeled microspheres for hepatic radioembolization. 153Sm has a theranostic advantage as it emits both therapeutic beta and diagnostic gamma radiations simultaneously, in comparison to the pure beta emitter, 90Y.

    METHODS: Negatively charged acrylic microspheres were labeled with 152Sm ions through electrostatic interactions. In another formulation, the Sm-labeled microsphere was treated with sodium carbonate solution to form the insoluble 152Sm carbonate (152SmC) salt within the porous structures of the microspheres. Both formulations were neutron-activated in a research reactor. Physicochemical characterization, gamma spectrometry, and radiolabel stability tests were carried out to study the performance and stability of the microspheres.

    RESULTS: The Sm- and SmC-labeled microspheres remained spherical and smooth, with a mean size of 35 µm before and after neutron activation. Fourier transform infrared (FTIR) spectroscopy indicated that the functional groups of the microspheres remained unaffected after neutron activation. The 153Sm- and 153SmC-labeled microspheres achieved activity of 2.53 ± 0.08 and 2.40 ± 0.13 GBq·g-1, respectively, immediate after 6 h neutron activation in the neutron flux of 2.0 × 1012 n·cm-2·s-1. Energy-dispersive X-ray (EDX) and gamma spectrometry showed that no elemental and radioactive impurities were present in the microspheres after neutron activation. The retention efficiency of 153Sm in the 153SmC-labeled microspheres was excellent (~99% in distilled water and saline; ~97% in human blood plasma), which was higher than the 153Sm-labeled microspheres (~95% and ~85%, respectively).

    CONCLUSION: 153SmC-labeled microspheres have demonstrated excellent properties for potential application as theranostic agents for hepatic radioembolization.

  2. Preeyaa SU, Murugesan A, Sopnajothi S, Yong YK, Tan HY, Larsson M, et al.
    Viral Immunol, 2020 11;33(9):610-615.
    PMID: 32996843 DOI: 10.1089/vim.2020.0149
    Peripheral follicular helper T (pTfh) cells represent specialized CD4+ T cells that help B cells to secrete antibodies. Dengue infection appears to cause immune activation in a wide array of immune cells. Herein, we investigated the signatures of immune activation of circulating Tfh cells and mucosal-associated invariant T (MAIT) cells in adult subjects with confirmed acute clinical dengue virus (DENV) infection by multiparametric flow cytometry. The acute DENV infection induced a significant expansion of highly activated pTfh cells and circulating MAIT cells during acute febrile infection. We found a higher frequency of activated PD-1+ Tfh cells and CD38+ pTfh cells in clinical DENV infection. We also found similar activated and expanding phenotypes of MAIT cells in the patients tested. The total counts of activated pTfh cells and circulating MAIT cells were higher in dengue patients relative to healthy controls. We concluded that pTfh cells and circulating MAIT cells represent activated phenotypes in acute DENV infection.
  3. Lim SM, Pang ZW, Tan HY, Shaikh M, Adinarayana G, Garg S
    Drug Dev Ind Pharm, 2015;41(11):1847-55.
    PMID: 25721984 DOI: 10.3109/03639045.2015.1014818
    Poor biopharmaceutical properties and toxicities associated with the intravenous formulation of docetaxel (DTX) necessitate the exploration of an alternate oral route of delivery.
  4. Chan EWL, Chin MY, Low YH, Tan HY, Ooi YS, Chong CW
    Microb Drug Resist, 2021 Aug;27(8):1018-1028.
    PMID: 33325795 DOI: 10.1089/mdr.2020.0311
    Aims: The fluid of Nepenthes gracilis harbors diverse bacterial taxa that could serve as a gene pool for the discovery of the new genre of antimicrobial agents against multidrug-resistant Klebsiella pneumoniae. The aim of this study was to explore the presence of antibacterial genes in the fluids of N. gracilis growing in the wild. Methods: Using functional metagenomic approach, fosmid clones were isolated and screened for antibacterial activity against three strains of K. pneumoniae. A clone that exhibited the most potent antibacterial activity was sent for sequencing to identify the genes responsible for the observed activity. The secondary metabolites secreted by the selected clone was sequentially extracted using hexane, chloroform, and ethyl acetate. The chemical profiles of a clone (C6) hexane extract were determined by gas chromatography/mass spectrometry (GC-MS). Results: Fosmid clone C6 from the fluid of pitcher plant that exhibited antibacterial activity against three strains of K. pneumoniae was isolated using functional metagenome approach. A majority of the open reading frames detected from C6 were affiliated with the largely understudied Acidocella genus. Among them, the gene that encodes for coproporphyrinogen III oxidase in the heme biosynthesis pathway could be involved in the observed antibacterial activity. Based on the GC-MS analysis, the identities of the putative bioactive compounds were 2,5-di-tert-butylphenol and 1-ethyl-2-methyl cyclododecane. Conclusions: The gene that encodes for coproporphyrinogen III oxidase in the heme biosynthesis pathway as well as the secondary metabolites, namely 2,5-di-tert-butylphenol and 1-ethyl-2-methyl cyclododecane could be the potential antibacterial molecules responsible for the antibacterial activity of C6.
  5. Cho KH, Tan SP, Tan HY, Liew SY, Nafiah MA
    Planta Med, 2023 Jan;89(1):79-85.
    PMID: 35288885 DOI: 10.1055/a-1797-0548
    A phytochemical study has been carried out on CH2Cl2 extract of Alphonsea cylindrica leaves, resulting in the isolation of three new morphinan alkaloids. They are kinomenine (1: ), N-methylkinomenine (2: ), and hydroxymethylkinomenine (3: ). The structures of these compounds were elucidated by extensive spectroscopic analysis (1D and 2D NMR, IR, UV, HRESIMS) and comparison with the data reported in literature for similar alkaloids. Kinomenine (1: ) and N-methylkinomenine (2: ) showed weak inhibition against S. aureus (MIC values of 1: and 2:  = 500 µg/mL; pIC50 values in 95% C. I. of: 1:  = 2.9 to 3.0; 2:  = 2.9 to 3.1), while kinomenine (1: ) also showed weak inhibition against E. coli (MIC values of 1:  = 500 µg/mL; pIC50 value in 95% C. I. of: 1:  = 2.9) by broth microdilution method. The results obtained can be used as future referencefor the discovery of morphinans and the potential of A. cylindrica as an antibacterial source.
  6. Vignesh R, Balakrishnan P, Tan HY, Yong YK, Velu V, Larsson M, et al.
    Pathogens, 2023 Jan 29;12(2).
    PMID: 36839482 DOI: 10.3390/pathogens12020210
    The lethal combination involving TB and HIV, known as "syndemic" diseases, synergistically act upon one another to magnify the disease burden. Individuals on anti-retroviral therapy (ART) are at risk of developing TB-associated immune reconstitution inflammatory syndrome (TB-IRIS). The underlying inflammatory complication includes the rapid restoration of immune responses following ART, eventually leading to exaggerated inflammatory responses to MTB antigens. TB-IRIS continues to be a cause of morbidity and mortality among HIV/TB coinfected patients initiating ART, and although a significant quantum of knowledge has been acquired on the pathogenesis of IRIS, the underlying pathomechanisms and identification of a sensitive and specific diagnostic marker still remain a grey area of investigation. Here, we reviewed the latest research developments into IRIS immunopathogenesis, and outlined the modalities to prevent and manage strategies for better clinical and diagnostic outcomes for IRIS.
  7. Tan HY, Wong YH, Kasbollah A, Md Shah MN, Perkins AC, Yeong CH
    Nucl Med Commun, 2023 Apr 01;44(4):227-243.
    PMID: 36808108 DOI: 10.1097/MNM.0000000000001665
    Personalised cancer treatment is of growing importance and can be achieved via targeted radionuclide therapy. Radionuclides with theranostic properties are proving to be clinically effective and are widely used because diagnostic imaging and therapy can be accomplished using a single formulation that avoids additional procedures and unnecessary radiation burden to the patient. For diagnostic imaging, single photon emission computed tomography (SPECT) or positron emission tomography (PET) is used to obtain functional information noninvasively by detecting the gamma (γ) rays emitted from the radionuclide. For therapeutics, high linear energy transfer (LET) radiations such as alpha (α), beta (β - ) or Auger electrons are used to kill cancerous cells in close proximity, whereas sparing the normal tissues surrounding the malignant tumour cells. One of the most important factors that lead to the sustainable development of nuclear medicine is the availability of functional radiopharmaceuticals. Nuclear research reactors play a vital role in the production of medical radionuclides for incorporation into clinical radiopharmaceuticals. The disruption of medical radionuclide supplies in recent years has highlighted the importance of ongoing research reactor operation. This article reviews the current status of operational nuclear research reactors in the Asia-Pacific region that have the potential for medical radionuclide production. It also discusses the different types of nuclear research reactors, their operating power, and the effects of thermal neutron flux in producing desirable radionuclides with high specific activity for clinical applications.
  8. Ivascu L, Pavel CD, Sarfraz M, Arulanandam BV, Tan HY
    Front Psychol, 2022;13:911907.
    PMID: 35783779 DOI: 10.3389/fpsyg.2022.911907
    Our minds are powerful, creative, forceful, and strong, controlling our thinking and behaviors. A series of high-profile accounting and financial scandals have been revealed in the past few decades, and the Enron case was the most representative of them all. Corporate decision-makers have traditionally enjoyed high remunerations, compensations, and social status. Hence, the underlying rationales and motivation drivers that motivate managers to conduct unethical behaviors have always been a heightened concern. This research aims to delineate the narratives of corporate governance misconducts and the underlying rationales of these unethical behaviors. This study incorporates independent variables of neuro-accounting, neuroeconomics, neuro-ethics, and human nature using a qualitative methodology. From this study, the social norm of fairness showed that the human nature of greed and selfishness would motivate corporate decision-makers to engage in any exchange that could benefit themselves, although it is unethical and illegal. Second, neuroeconomics revealed that scarcity of economic resources, level of risks and uncertainties, and expected rewards could be the factors that motivate managers to conduct unethical behaviors, especially when their remunerations are tightly linked to company performances. Third, neuro-ethics shows that managers who lack moral values, have unstable emotions, and possess negative moral intuitions or personal assumptions could be more likely to pursue their interests at the cost of others. Lastly, neuro-governance also proved that self-benefits and financial incentives will usually be the priority and would be a motivating factor for misconduct.
  9. Saeidi A, Ellegård R, Yong YK, Tan HY, Velu V, Ussher JE, et al.
    J Leukoc Biol, 2016 08;100(2):305-14.
    PMID: 27256572 DOI: 10.1189/jlb.4RU0216-084R
    MAIT cells represent an evolutionarily conserved, MR1-restricted, innate-like cell subset that express high levels of CD161; have a canonical semi-invariant TCR iVα7.2; and may have an important role in mucosal immunity against various bacterial and fungal pathogens. Mature MAIT cells are CD161(hi)PLZF(hi)IL-18Rα(+)iVα7.2(+)γδ-CD3(+)CD8(+) T cells and occur in the peripheral blood, liver, and mucosa of humans. MAIT cells are activated by a metabolic precursor of riboflavin synthesis presented by MR1 and, therefore, respond to many bacteria and some fungi. Despite their broad antibacterial properties, their functional role in persistent viral infections is poorly understood. Although there is an increasing line of evidence portraying the depletion of MAIT cells in HIV disease, the magnitude and the potential mechanisms underlying such depletion remain unclear. Recent studies suggest that MAIT cells are vulnerable to immune exhaustion as a consequence of HIV and hepatitis C virus infections and HIV/tuberculosis coinfections. HIV infection also appears to cause functional depletion of MAIT cells resulting from abnormal expression of T-bet and EOMES, and effective ART is unable to completely salvage functional MAIT cell loss. Depletion and exhaustion of peripheral MAIT cells may affect mucosal immunity and could increase susceptibility to opportunistic infections during HIV infection. Here, we review some of the important mechanisms associated with depletion and functional loss of MAIT cells and also suggest potential immunotherapeutic strategies to restore MAIT cell functions, including the use of IL-7 to restore effector functions in HIV disease.
  10. Hamid ZA, Tan HY, Chow PW, Harto KAW, Chan CY, Mohamed J
    Sultan Qaboos Univ Med J, 2018 May;18(2):e130-e136.
    PMID: 30210840 DOI: 10.18295/squmj.2018.18.02.002
    Objectives: The ex vivo maintenance of haematopoietic stem/progenitor cells (HSPCs) is crucial to ensure a sufficient supply of functional cells for research or therapeutic applications. However, when exposed to reactive oxygen species (ROS) in a normoxic microenvironment, HSPCs exhibit genomic instability which may diminish their quantity and quality. This study aimed to investigate the role of N-acetylcysteine (NAC) supplementation on the oxidative stress levels, genotoxicity and lineage commitment potential of murine haematopoietic stem/progenitor cells (HSPCs).

    Methods: This study was carried out at the Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia, between June 2016 and July 2017. Bone marrow cells were isolated from nine mice and cultured in a growth medium. Various concentrations of NAC between 0.125-2 μM were added to the culture for 48 hours; these cells were then compared to non-supplemented cells harvested from the remaining three mice as the control group. A trypan blue exclusion test was performed to determine cell viability, while intracellular ROS levels and genotoxicity were determined by hydroethidine staining and comet assay, respectively. The lineage commitment potential of erythroid, myeloid and pre-B-lymphoid progenitor cells was evaluated via colony-forming cell assay.

    Results: NAC supplementation at 0.25, 0.5 and 2 μM significantly increased cell viability (P <0.050), while intracellular ROS levels significantly decreased at 0.25 and 0.5 μM (P <0.050). Moreover, DNA damage was significantly reduced at all NAC concentrations (P <0.050). Finally, the potential lineage commitment of the cells was not significantly affected by NAC supplementation (P >0.050).

    Conclusion: The findings of this study indicate that NAC supplementation may potentially overcome the therapeutic limitations of ex vivo-maintained HSPCs.

  11. Wong YH, Tan HY, Kasbollah A, Abdullah BJJ, Acharya RU, Yeong CH
    World J Exp Med, 2020 Mar 30;10(2):10-25.
    PMID: 32266125 DOI: 10.5493/wjem.v10.i2.10
    BACKGROUND: Liver cancer is the 6th most common cancer in the world and the 4th most common death from cancer worldwide. Hepatic radioembolization is a minimally invasive treatment involving intraarterial administration of radioembolic microspheres.

    AIM: To develop a neutron-activated, biodegradable and theranostics samarium-153 acetylacetonate (153SmAcAc)-poly-L-lactic acid (PLLA) microsphere for intraarterial radioembolization of hepatic tumors.

    METHODS: Microspheres with different concentrations of 152SmAcAc (i.e., 100%, 150%, 175% and 200% w/w) were prepared by solvent evaporation method. The microspheres were then activated using a nuclear reactor in a neutron flux of 2 × 1012 n/cm2/s1, converting 152Sm to Samarium-153 (153Sm) via152Sm (n, γ) 153Sm reaction. The SmAcAc-PLLA microspheres before and after neutron activation were characterized using scanning electron microscope, energy dispersive X-ray spectroscopy, particle size analysis, Fourier transform infrared spectroscopy, thermo-gravimetric analysis and gamma spectroscopy. The in-vitro radiolabeling efficiency was also tested in both 0.9% sodium chloride solution and human blood plasma over a duration of 550 h.

    RESULTS: The SmAcAc-PLLA microspheres with different SmAcAc contents remained spherical before and after neutron activation. The mean diameter of the microspheres was about 35 µm. Specific activity achieved for 153SmAcAc-PLLA microspheres with 100%, 150%, 175% and 200% (w/w) SmAcAc after 3 h neutron activation were 1.7 ± 0.05, 2.5 ± 0.05, 2.7 ± 0.07, and 2.8 ± 0.09 GBq/g, respectively. The activity of per microspheres were determined as 48.36 ± 1.33, 74.10 ± 1.65, 97.87 ± 2.48, and 109.83 ± 3.71 Bq for 153SmAcAc-PLLA microspheres with 100%, 150%, 175% and 200% (w/w) SmAcAc. The energy dispersive X-ray and gamma spectrometry showed that no elemental and radioactive impurities present in the microspheres after neutron activation. Retention efficiency of 153Sm in the SmAcAc-PLLA microspheres was excellent (approximately 99%) in both 0.9% sodium chloride solution and human blood plasma over a duration of 550 h.

    CONCLUSION: The 153SmAcAc-PLLA microsphere is potentially useful for hepatic radioembolization due to their biodegradability, favorable physicochemical characteristics and excellent radiolabeling efficiency. The synthesis of the formulation does not involve ionizing radiation and hence reducing the complication and cost of production.

  12. Tan HY, Yong YK, Shankar EM, Paukovics G, Ellegård R, Larsson M, et al.
    J Immunol, 2016 05 15;196(10):4052-63.
    PMID: 27076678 DOI: 10.4049/jimmunol.1502203
    Tuberculosis-associated immune reconstitution inflammatory syndrome (TB-IRIS) complicates combination antiretroviral therapy (cART) in up to 25% of patients with HIV/TB coinfection. Monocytes and IL-18, a signature cytokine of inflammasome activation, are implicated in TB-IRIS pathogenesis. In this study, we investigated inflammasome activation both pre- and post-cART in TB-IRIS patients. HIV/TB patients exhibited higher proportions of monocytes expressing activated caspase-1 (casp1) pre-cART, compared with HIV patients without TB, and patients who developed TB-IRIS exhibited the greatest increase in casp1 expression. CD64(+) monocytes were a marker of increased casp1 expression. Furthermore, IL-1β, another marker of inflammasome activation, was also elevated during TB-IRIS. TB-IRIS patients also exhibited greater upregulation of NLRP3 and AIM2 inflammasome mRNA, compared with controls. Analysis of plasma mitochondrial DNA levels showed that TB-IRIS patients experienced greater cell death, especially pre-cART. Plasma NO levels were lower both pre- and post-cART in TB-IRIS patients, providing evidence of inadequate inflammasome regulation. Plasma IL-18 levels pre-cART correlated inversely with NO levels but positively with monocyte casp1 expression and mitochondrial DNA levels, and expression of IL-18Rα on CD4(+) T cells and NK cells was higher in TB-IRIS patients, providing evidence that IL-18 is a marker of inflammasome activation. We propose that inflammasome activation in monocytes/macrophages of HIV/TB patients increases with ineffective T cell-dependent activation of monocytes/macrophages, priming them for an excessive inflammatory response after cART is commenced, which is greatest in patients with TB-IRIS.
  13. Saminathan M, Gan HM, Abdullah N, Wong CMVL, Ramiah SK, Tan HY, et al.
    J Appl Microbiol, 2017 Apr 23.
    PMID: 28434189 DOI: 10.1111/jam.13477
    AIMS: To evaluate the effects of condensed tannins (CTs) fractions of differing molecular weights (MWs) from a Leucaena leucocephala hybrid-Rendang on the rumen protozoal community in vitro.

    METHODS AND RESULTS: The effects of unfractionated CTs (F0) and CT fractions of different MWs (F1 > F2 > F3 > F4 > F5) on protozoal population and community were evaluated in vitro using rumen microbes and ground guinea grass as the substrate. Higher-MW CT fractions F1 and F2 significantly (P 

  14. Ahmad F, Shankar EM, Yong YK, Tan HY, Ahrenstorf G, Jacobs R, et al.
    Front Immunol, 2017;8:338.
    PMID: 28396665 DOI: 10.3389/fimmu.2017.00338
    The CD1d-restricted invariant natural killer T (iNKT) cells are implicated in innate immune responses against human immunodeficiency virus (HIV). However, the determinants of cellular dysfunction across the iNKT cells subsets are seldom defined in HIV disease. Herein, we provide evidence for the involvement of the negative checkpoint regulator (NCR) 2B4 in iNKT cell alteration in a well-defined cohort of HIV-seropositive anti-retroviral therapy (ART) naïve, ART-treated, and elite controllers (ECs). We report on exaggerated 2B4 expression on iNKT cells of HIV-infected treatment-naïve individuals. In sharp contrast to CD4(-)iNKT cells, 2B4 expression was significantly higher on CD4(+) iNKT cell subset. Notably, an increased level of 2B4 on iNKT cells was strongly correlated with parameters associated with HIV disease progression. Further, iNKT cells from ART-naïve individuals were defective in their ability to produce intracellular IFN-γ. Together, our results suggest that the levels of 2B4 expression and the downstream co-inhibitory signaling events may contribute to impaired iNKT cell responses.
  15. Yong YK, Tan HY, Saeidi A, Rosmawati M, Atiya N, Ansari AW, et al.
    Innate Immun, 2017 07;23(5):459-467.
    PMID: 28606013 DOI: 10.1177/1753425917714854
    Hepatitis B virus (HBV) infection is a major cause of chronic liver disease that may progress to liver cirrhosis and hepatocellular carcinoma. Host immune responses represent the key determinants of HBV clearance or persistence. Here, we investigated the role of the early activation marker, CD69 and effector cytokines, granzyme B (GrB) and IFN-γ in the exhaustion of innate-like TCR Vα7.2+CD4+T cells, in 15 individuals with chronic HBV (CHB) infection where six were HBV DNA+ and nine were HBV DNA-. The percentage of cytokine-producing T cells and MAIT cells were significantly perturbed in HBV patients relative to healthy controls (HCs). The intracellular expression of GrB and IFN-γ was significantly reduced in MAIT cells derived from HBV-infected patients as compared to HCs, and the levels correlated with the percentage and levels [mean fluorescence intensity (MFI)] of CD69 expression. The total expression of CD69 (iMFI) was lower in CHB patients as compared to HCs. The frequency of CD69+ cells correlated with the levels of cytokine expression (MFI), particularly in CHB patients as compared to HCs. In summary, the polyfunctionality of peripheral T cells was significantly reduced among CHB patients, especially in the TCR Vα7.2+CD4+T cells, and the levels of cytokine expression correlated with functional cytokine levels.
  16. Yong YK, Tan HY, Jen SH, Shankar EM, Natkunam SK, Sathar J, et al.
    J Transl Med, 2017 05 31;15(1):121.
    PMID: 28569153 DOI: 10.1186/s12967-017-1226-4
    BACKGROUND: Currently, several assays can diagnose acute dengue infection. However, none of these assays can predict the severity of the disease. Biomarkers that predicts the likelihood that a dengue patient will develop a severe form of the disease could permit more efficient patient triage and allows better supportive care for the individual in need, especially during dengue outbreaks.

    METHODS: We measured 20 plasma markers i.e. IFN-γ, IL-10, granzyme-B, CX3CL1, IP-10, RANTES, CXCL8, CXCL6, VCAM, ICAM, VEGF, HGF, sCD25, IL-18, LBP, sCD14, sCD163, MIF, MCP-1 and MIP-1β in 141 dengue patients in over 230 specimens and correlate the levels of these plasma markers with the development of dengue without warning signs (DWS-), dengue with warning signs (DWS+) and severe dengue (SD).

    RESULTS: Our results show that the elevation of plasma levels of IL-18 at both febrile and defervescence phase was significantly associated with DWS+ and SD; whilst increase of sCD14 and LBP at febrile phase were associated with severity of dengue disease. By using receiver operating characteristic (ROC) analysis, the IL-18, LBP and sCD14 were significantly predicted the development of more severe form of dengue disease (DWS+/SD) (AUC = 0.768, P 

  17. Yong YK, Tan HY, Saeidi A, Wong WF, Vignesh R, Velu V, et al.
    Front Microbiol, 2019;10:2789.
    PMID: 31921004 DOI: 10.3389/fmicb.2019.02789
    Tuberculosis (TB) treatment monitoring is paramount to clinical decision-making and the host biomarkers appears to play a significant role. The currently available diagnostic technology for TB detection is inadequate. Although GeneXpert detects total DNA present in the sample regardless live or dead bacilli present in clinical samples, all the commercial tests available thus far have low sensitivity. Humoral responses against Mycobacterium tuberculosis (Mtb) antigens are generally low, which precludes the use of serological tests for TB diagnosis, prognosis, and treatment monitoring. Mtb-specific CD4+ T cells correlate with Mtb antigen/bacilli burden and hence might serve as good biomarkers for monitoring treatment progress. Omics-based techniques are capable of providing a more holistic picture for disease mechanisms and are more accurate in predicting TB disease outcomes. The current review aims to discuss some of the recent advances on TB biomarkers, particularly host biomarkers that have the potential to diagnose and differentiate active TB and LTBI as well as their use in disease prognosis and treatment monitoring.
  18. Ansari AW, Ahmad F, Shankar EM, Kong YY, Tan HY, Jacobs R, et al.
    PMID: 32398557 DOI: 10.1097/QAI.0000000000002399
    BACKGROUND: We have previously shown an association of elevated co-inhibitory molecule 2B4 expression with iNKT cells alterations in HIV disease. Herein we show a comparative analysis of 2B4 expression on iNKT cells of HIV long-term non-progressors (LTNPs) and progressors.

    METHODS: Anti-retroviral therapy (ART) naïve HIV-seropositive individuals (progressors, n=16) and long-term non-progressors (LTNPs, n=10) were recruited for this study. We employed multi-color flow cytometry on frozen peripheral blood mononuclear cells (PBMCs) to determine iNKT subset frequencies, the levels of co-inhibitory 2B4 expression, and intracellular IFN-γ production. CD1d tetramer was used to characterize iNKT cells.

    RESULTS: We report significantly lower level of 2B4 expression on bulk LTNPs iNKT cells as well as on their CD4 subsets compared to HIV progressors. Furthermore, the iNKT cells from LTNPs produced higher amount of IFN-γ than HIV progressors as detected by intracellular cytokine staining. Interestingly, the frequency of 2B4iNKT cells of progressors but not LTNPs significantly correlates with CD4 T cell count, HIV viral load and IFNγ production by iNKT cells.

    CONCLUSION: Our results suggest that in addition to suppressed HIV replication, diminished 2B4 expression and associated co-inhibitory signaling, and substantial production of IFN-γ could contribute to preserved iNKT cell phenotype in LTNPs.

  19. Tan HY, Wong YH, Kasbollah A, Md Shah MN, Abdullah BJJ, Perkins AC, et al.
    Nucl Med Commun, 2022 Apr 01;43(4):410-422.
    PMID: 35045548 DOI: 10.1097/MNM.0000000000001529
    PURPOSE: Hepatic radioembolization is an effective minimally invasive treatment for primary and metastatic liver cancers. Yttrium-90 [90Y]-labelled resin or glass beads are typically used as the radioembolic agent for this treatment; however, these are not readily available in many countries. In this study, novel samarium-153 oxide-loaded polystyrene ([153Sm]Sm2O3-PS) microspheres were developed as a potential alternative to 90Y microspheres for hepatic radioembolization.

    METHODS: The [152Sm]Sm2O3-PS microspheres were synthesized using solid-in-oil-in-water solvent evaporation. The microspheres underwent neutron activation using a 1 MW open-pool research reactor to produce radioactive [153Sm]Sm2O3-PS microspheres via 152Sm(n,γ)153Sm reaction. Physicochemical characterization, gamma spectroscopy and in-vitro radionuclide retention efficiency were carried out to evaluate the properties and stability of the microspheres before and after neutron activation.

    RESULTS: The [153Sm]Sm2O3-PS microspheres achieved specific activity of 5.04 ± 0.52 GBq·g-1 after a 6 h neutron activation. Scanning electron microscopy and particle size analysis showed that the microspheres remained spherical with an average diameter of ~33 μm before and after neutron activation. No long half-life radionuclide and elemental impurities were found in the samples. The radionuclide retention efficiencies of the [153Sm]Sm2O3-PS microspheres at 550 h were 99.64 ± 0.07 and 98.76 ± 1.10% when tested in saline solution and human blood plasma, respectively.

    CONCLUSIONS: A neutron-activated [153Sm]Sm2O3-PS microsphere formulation was successfully developed for potential application as a theranostic agent for liver radioembolization. The microspheres achieved suitable physical properties for radioembolization and demonstrated high radionuclide retention efficiency in saline solution and human blood plasma.

  20. Yong YK, Wong WF, Vignesh R, Chattopadhyay I, Velu V, Tan HY, et al.
    Front Immunol, 2022;13:889196.
    PMID: 35874775 DOI: 10.3389/fimmu.2022.889196
    The dynamics of host-virus interactions, and impairment of the host's immune surveillance by dengue virus (DENV) serotypes largely remain ambiguous. Several experimental and preclinical studies have demonstrated how the virus brings about severe disease by activating immune cells and other key elements of the inflammatory cascade. Plasmablasts are activated during primary and secondary infections, and play a determinative role in severe dengue. The cross-reactivity of DENV immune responses with other flaviviruses can have implications both for cross-protection and severity of disease. The consequences of a cross-reactivity between DENV and anti-SARS-CoV-2 responses are highly relevant in endemic areas. Here, we review the latest progress in the understanding of dengue immunopathogenesis and provide suggestions to the development of target strategies against dengue.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links