Displaying publications 21 - 40 of 88 in total

Abstract:
Sort:
  1. Hariono M, Abdullah N, Damodaran KV, Kamarulzaman EE, Mohamed N, Hassan SS, et al.
    Sci Rep, 2016 12 20;6:38692.
    PMID: 27995961 DOI: 10.1038/srep38692
    We report the computational and experimental efforts in the design and synthesis of novel neuraminidase (NA) inhibitors from ferulic acid and vanillin. Two proposed ferulic acid analogues, MY7 and MY8 were predicted to inhibit H1N1 NA using molecular docking. From these two analogues, we designed, synthesised and evaluated the biological activities of a series of ferulic acid and vanillin derivatives. The enzymatic H1N1 NA inhibition assay showed MY21 (a vanillin derivative) has the lowest IC50 of 50 μM. In contrast, the virus inhibition assay showed MY15, a ferulic acid derivative has the best activity with the EC50 of ~0.95 μM. Modelling studies further suggest that these predicted activities might be due to the interactions with conserved and essential residues of NA with ΔGbind values comparable to those of oseltamivir and zanamivir, the two commercial NA inhibitors.
  2. Sharma G, Vasanth Kumar S, Wahab HA
    J Biomol Struct Dyn, 2018 01;36(1):233-242.
    PMID: 28013578 DOI: 10.1080/07391102.2016.1274271
    A series of dimeric naphthoquinones containing natural 2-hydroxy-1-4-naphthoquinone moiety was designed, synthesized, and evaluated against neuraminidase of H5N1 virus. p-hydroxy derivatives showed higher inhibition when compared to p-halogenated compounds. Molecular docking studies conducted with H5N1 neuraminidase clearly demonstrated different binding modes of the most active compound onto the open and closed conformations of loop 150. The results thus provide not only evidences of a novel scaffold evaluated as inhibitor, but also a rational explanation involving molecular modeling and the role of loop 150 in the binding.
  3. Hariono M, Nuwarda RF, Yusuf M, Rollando R, Jenie RI, Al-Najjar B, et al.
    J Chem Inf Model, 2020 01 27;60(1):349-359.
    PMID: 31825614 DOI: 10.1021/acs.jcim.9b00630
    Previous studies have reported that compounds bearing an arylamide linked to a heterocyclic planar ring have successfully inhibited the hemopexin-like domain (PEX9) of matrix metalloproteinase 9 (MMP9). PEX9 has been suggested to be more selectively targeted than MMP9's catalytic domain in a degrading extracellular matrix under some pathologic conditions, especially in cancer. In this study, we aim to synthesize and evaluate 10 arylamide compounds as MMP9 inhibitors through an enzymatic assay as well as a cellular assay. The mechanism of inhibition for the most active compounds was investigated via molecular dynamics simulation (MD). Molecular docking was performed using AutoDock4.0 with PEX9 as the protein model to predict the binding of the designed compounds. The synthesis was carried out by reacting aniline derivatives with 3-bromopropanoyl chloride using pyridine as the catalyst at room temperature. The MMP9 assay was conducted using the FRET-based MMP9 kits protocol and gelatin zymography assay. The cytotoxicity assay was done using the MTT method, and the MD simulation was performed using AMBER16. Assay on MMP9 demonstrated activities of three compounds (2, 7, and 9) with more than 50% inhibition. Further inhibition on MMP9 expressed by 4T1 showed that two compounds (7 and 9) inhibited its gelatinolytic activity more than 50%. The cytotoxicity assay against 4T1 cells results in the inhibition of the cell growth with an EC50 of 125 μM and 132 μM for 7 and 9, respectively. The MD simulation explained a stable interaction of 7 and 9 in PEX9 at 100 ns with a free energy of binding of -8.03 kcal/mol and -6.41 kcal/mol, respectively. Arylamides have potential effects as selective MMP9 inhibitors in inhibiting breast cancer cell progression.
  4. Khawory MH, Amat Sain A, Rosli MAA, Ishak MS, Noordin MI, Wahab HA
    Appl Radiat Isot, 2020 Mar;157:109013.
    PMID: 31889674 DOI: 10.1016/j.apradiso.2019.109013
    BACKGROUND AND AIM: The aim of this study is to evaluate the effects of gamma radiation treatment on three medicinal plants, namely Euodia malayana, Gnetum gnemon and Khaya senegalensis at two different forms; methanol leaf extracts and dried leaves respectively.

    EXPERIMENTAL PROCEDURE: The microbial limit test (MLT) studies indicated the suitable dosage of minimum and maximum gamma irradiation for leaf extracts as well as dried leaves of all the tested medicinal plants. Quantitative analysis of total phenolic content (TPC) analysis is based on calorimetric measurements determined using the Folin-Ciocalteu reagent with gallic acid (GA) used as the reference. In vitro cytotoxicity assay by using fibroblast (L929) cell lines was performed on each plant to determine the toxicity effect which sodium dodecyl sulfate (SDS) as the positive control. DPPH (2,2-diphenyl-1-picryl-hydrazyl) assay was conducted by using vitamin C and GA as the positive controls to determine the antioxidant property of each plant.

    RESULTS AND CONCLUSION: The MLT analysis indicated that the suitable dosage gamma irradiation for leaf extracts was 6-12 kGy and dried leaves were 9-13 kGy. The amount of GA concentration in each plant increased significantly from 30-51 mg GAE g-1 before treatment to 57-103 mg GAE g-1 after treatment with gamma radiation. This showed no significant effect of in vitro cytotoxicity activity before and after treatment with gamma irradiation in this study. Effective concentration (EC50) values of Khaya senegalensis plant reduced significantly (P ≤ 0.005) from 44.510 μg/ml before treatment to 24.691 μg/ml after treatment with gamma radiation, which indicate an increase of free radical scavenging activity.

  5. Salin NH, Noordin R, Al-Najjar BO, Kamarulzaman EE, Yunus MH, Karim IZA, et al.
    PLoS One, 2020;15(5):e0225232.
    PMID: 32442170 DOI: 10.1371/journal.pone.0225232
    Toxoplasma gondii is the etiologic agent of toxoplasmosis, a disease which can lead to morbidity and mortality of the fetus and immunocompromised individuals. Due to the limited effectiveness or side effects of existing drugs, the search for better drug candidates is still ongoing. In this study, we performed structure-based screening of potential dual-targets inhibitors of active sites of T. gondii drug targets such as uracil phosphoribosyltransferase (UPRTase) and adenosine kinase (AK). First screening of virtual compounds from the National Cancer Institute (NCI) was performed via molecular docking. Subsequently, the hit compounds were tested in-vitro for anti- T. gondii effect using cell viability assay with Vero cells as host to determine cytotoxicity effects and drug selectivities. Clindamycin, as positive control, showed a selectivity index (SI) of 10.9, thus compounds with SI > 10.9 specifically target T. gondii proliferation with no significant effect on the host cells. Good anti- T. gondii effects were observed with NSC77468 (7-ethoxy-4-methyl-6,7-dihydro-5H-thiopyrano[2,3-d]pyrimidin-2-amine) which showed SI values of 25. This study showed that in-silico selection can serve as an effective way to discover potentially potent and selective compounds against T. gondii.
  6. Muchtaridi M, Nuwarda RF, Ikram EHK, Abdul Rahim AS, Gazzali AM, Wahab HA
    Molecules, 2022 Jan 30;27(3).
    PMID: 35164214 DOI: 10.3390/molecules27030949
    Neuraminidase (NA) is an enzyme that prevents virions from aggregating within the host cell and promotes cell-to-cell spread by cleaving glycosidic linkages to sialic acid. The best-known neuraminidase is the viral neuraminidase, which present in the influenza virus. Thus, the development of anti-influenza drugs that inhibit NA has emerged as an important and intriguing approach in the treatment of influenza. Garcinia atroviridis L. (GA) dried fruits (GAF) are used commercially as seasoning and in beverages. The main objective of this study was to identify a new potential neuraminidase inhibitor from GA. A bioassay-guided fractionation method was applied to obtain the bioactive compounds leading to the identification of garcinia acid and naringenin. In an enzyme inhibition study, garcinia acid demonstrated the highest activity when compared to naringenin. Garcinia acid had the highest activity, with an IC50 of 17.34-17.53 µg/mL or 91.22-92.21 µM against Clostridium perfringens-NA, and 56.71-57.85 µg/mL or 298.32-304.31 µM against H1N1-NA. Based on molecular docking results, garcinia acid interacted with the triad arginine residues (Arg118, Arg292, and Arg371) of the viral neuraminidase, implying that this compound has the potential to act as a NA enzyme inhibitor.
  7. Ahmad R, Khairul Nizam Mazlan M, Firdaus Abdul Aziz A, Mohd Gazzali A, Amir Rawa MS, Wahab HA
    Saudi Pharm J, 2023 Jun;31(6):874-888.
    PMID: 37234341 DOI: 10.1016/j.jsps.2023.04.006
    Phaleria macrocarpa (Scheff.) Boerl. is geographically distributed around Papua Island, Indonesia. Traditionally, P. macrocarpa is exercised to reduce pain, stomachache, diarrhea, tumor problems, blood glucose, cholesterol, and blood pressure. A growing interest in the medicinal values of P. macrocarpa especially in Asia reflects the usage of diverse extraction techniques, particularly modern approaches. In this review article, the extraction methods and solvents relevant to P. macrocarpa were discussed, with the extent of its pharmacological activities. Recent bibliographic databases such as Google Scholar, PubMed, and Elsevier between 2010 and 2022 were assessed. Based on the findings, the pharmacological studies of P. macrocarpa are still pertinent to its traditional uses but primarily emphasise anti-proliferative activity especially colon and breast cancer cells with low toxicity and fruit as the most studied plant part. The utilization of modern separation techniques has predominantly been aimed at extracting mangiferin and phenolic-rich compounds and evaluating their antioxidant capacity. However, the isolation of bioactive compounds remains a challenge, leading to the extensive utilization of the extracts in in vivo studies. This review endeavors to highlight modern extraction methods that could potentially be used as a point of reference in the future for exploring novel bioactive compounds and drug discovery on a multi-scale extraction level.
  8. Al-Thiabat MG, Gazzali AM, Mohtar N, Murugaiyah V, Kamarulzaman EE, Yap BK, et al.
    Molecules, 2021 Aug 31;26(17).
    PMID: 34500740 DOI: 10.3390/molecules26175304
    Drug targeting is a progressive area of research with folate receptor alpha (FRα) receiving significant attention as a biological marker in cancer drug delivery. The binding affinity of folic acid (FA) to the FRα active site provides a basis for recognition of FRα. In this study, FA was conjugated to beta-cyclodextrin (βCD) and subjected to in silico analysis (molecular docking and molecular dynamics (MD) simulation (100 ns)) to investigate the affinity and stability for the conjugated system compared to unconjugated and apo systems (ligand free). Docking studies revealed that the conjugated FA bound into the active site of FRα with a docking score (free binding energy < -15 kcal/mol), with a similar binding pose to that of unconjugated FA. Subsequent analyses from molecular dynamics (MD) simulations, root mean square deviation (RMSD), root mean square fluctuation (RMSF), and radius of gyration (Rg) demonstrated that FA and FA-βCDs created more dynamically stable systems with FRα than the apo-FRα system. All systems reached equilibrium with stable RMSD values ranging from 1.9-2.4 Å and the average residual fluctuation values of the FRα backbone atoms for all residues (except for terminal residues ARG8, THR9, THR214, and LEU215) were less than 2.1 Å with a consistent Rg value of around 16.8 Å throughout the MD simulation time (0-100 ns). The conjugation with βCD improved the stability and decreased the mobility of all the residues (except residues 149-151) compared to FA-FRα and apo-FRα systems. Further analysis of H-bonds, binding free energy (MM-PBSA), and per residue decomposition energy revealed that besides APS81, residues HIS20, TRP102, HIS135, TRP138, TRP140, and TRP171 were shown to have more favourable energy contributions in the holo systems than in the apo-FRα system, and these residues might have a direct role in increasing the stability of holo systems.
  9. Muchtaridi M, Fauzi M, Khairul Ikram NK, Mohd Gazzali A, Wahab HA
    Molecules, 2020 Sep 01;25(17).
    PMID: 32882868 DOI: 10.3390/molecules25173980
    Over the years, coronaviruses (CoV) have posed a severe public health threat, causing an increase in mortality and morbidity rates throughout the world. The recent outbreak of a novel coronavirus, named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused the current Coronavirus Disease 2019 (COVID-19) pandemic that affected more than 215 countries with over 23 million cases and 800,000 deaths as of today. The situation is critical, especially with the absence of specific medicines or vaccines; hence, efforts toward the development of anti-COVID-19 medicines are being intensively undertaken. One of the potential therapeutic targets of anti-COVID-19 drugs is the angiotensin-converting enzyme 2 (ACE2). ACE2 was identified as a key functional receptor for CoV associated with COVID-19. ACE2, which is located on the surface of the host cells, binds effectively to the spike protein of CoV, thus enabling the virus to infect the epithelial cells of the host. Previous studies showed that certain flavonoids exhibit angiotensin-converting enzyme inhibition activity, which plays a crucial role in the regulation of arterial blood pressure. Thus, it is being postulated that these flavonoids might also interact with ACE2. This postulation might be of interest because these compounds also show antiviral activity in vitro. This article summarizes the natural flavonoids with potential efficacy against COVID-19 through ACE2 receptor inhibition.
  10. Mohtar N, Parumasivam T, Gazzali AM, Tan CS, Tan ML, Othman R, et al.
    Cancers (Basel), 2021 Jul 15;13(14).
    PMID: 34298753 DOI: 10.3390/cancers13143539
    Lung cancers, the number one cancer killer, can be broadly divided into small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC), with NSCLC being the most commonly diagnosed type. Anticancer agents for NSCLC suffer from various limitations that can be partly overcome by the application of nanomedicines. Nanoparticles is a branch within nanomedicine that can improve the delivery of anticancer drugs, whilst ensuring the stability and sufficient bioavailability following administration. There are many publications available in the literature exploring different types of nanoparticles from different materials. The effectiveness of a treatment option needs to be validated in suitable in vitro and/or in vivo models. This includes the developed nanoparticles, to prove their safety and efficacy. Many researchers have turned towards in vitro models that use normal cells or specific cells from diseased tissues. However, in cellular works, the physiological dynamics that is available in the body could not be mimicked entirely, and hence, there is still possible development of false positive or false negative results from the in vitro models. This article provides an overview of NSCLC, the different nanoparticles available to date, and in vitro evaluation of the nanoparticles. Different types of cells suitable for in vitro study and the important precautions to limit the development of false results are also extensively discussed.
  11. Ikram NK, Durrant JD, Muchtaridi M, Zalaludin AS, Purwitasari N, Mohamed N, et al.
    J Chem Inf Model, 2015 Feb 23;55(2):308-16.
    PMID: 25555059 DOI: 10.1021/ci500405g
    Recent outbreaks of highly pathogenic and occasional drug-resistant influenza strains have highlighted the need to develop novel anti-influenza therapeutics. Here, we report computational and experimental efforts to identify influenza neuraminidase inhibitors from among the 3000 natural compounds in the Malaysian-Plants Natural-Product (NADI) database. These 3000 compounds were first docked into the neuraminidase active site. The five plants with the largest number of top predicted ligands were selected for experimental evaluation. Twelve specific compounds isolated from these five plants were shown to inhibit neuraminidase, including two compounds with IC50 values less than 92 μM. Furthermore, four of the 12 isolated compounds had also been identified in the top 100 compounds from the virtual screen. Together, these results suggest an effective new approach for identifying bioactive plant species that will further the identification of new pharmacologically active compounds from diverse natural-product resources.
  12. Kamarulzaman EE, Gazzali AM, Acherar S, Frochot C, Barberi-Heyob M, Boura C, et al.
    Int J Mol Sci, 2015 Oct 12;16(10):24059-80.
    PMID: 26473840 DOI: 10.3390/ijms161024059
    Photodynamic therapy (PDT) is a cancer treatment modality that requires three components, namely light, dioxygen and a photosensitizing agent. After light excitation, the photosensitizer (PS) in its excited state transfers its energy to oxygen, which leads to photooxidation reactions. In order to improve the selectivity of the treatment, research has focused on the design of PS covalently attached to a tumor-targeting moiety. In this paper, we describe the synthesis and the physico-chemical and photophysical properties of six new peptide-conjugated photosensitizers designed for targeting the neuropilin-1 (NRP-1) receptor. We chose a TPC (5-(4-carboxyphenyl)-10,15, 20-triphenyl chlorine as photosensitizer, coupled via three different spacers (aminohexanoic acid, 1-amino-3,6-dioxaoctanoic acid, and 1-amino-9-aza-3,6,12,15-tetraoxa-10-on-heptadecanoic acid) to two different peptides (DKPPR and TKPRR). The affinity towards the NRP-1 receptor of the conjugated chlorins was evaluated along with in vitro and in vivo stability levels. The tissue concentration of the TPC-conjugates in animal model shows good distribution, especially for the DKPPR conjugates. The novel peptide-PS conjugates proposed in this study were proven to have potential to be further developed as future NRP-1 targeting photodynamic therapy agent.
  13. Tay YL, Teah YF, Chong YM, Jamil MFA, Kollert S, Adenan MI, et al.
    Toxicol Appl Pharmacol, 2016 08 15;305:22-39.
    PMID: 27260674 DOI: 10.1016/j.taap.2016.05.022
    Mitragyna speciosa Korth is known for its euphoric properties and is frequently used for recreational purposes. Several poisoning and fatal cases involving mitragynine have been reported but the underlying causes remain unclear. Human ether-a-go-go-related gene (hERG) encodes the cardiac IKr current which is a determinant of the duration of ventricular action potentials and QT interval. On the other hand, IK1, a Kir current mediated by Kir2.1 channel and IKACh, a receptor-activated Kir current mediated by GIRK channel are also known to be important in maintaining the cardiac function. This study investigated the effects of mitragynine on the current, mRNA and protein expression of hERG channel in hERG-transfected HEK293 cells and Xenopus oocytes. The effects on Kir2.1 and GIRK channels currents were also determined in the oocytes. The hERG tail currents following depolarization pulses were inhibited by mitragynine with an IC50 value of 1.62μM and 1.15μM in the transfected cell line and Xenopus oocytes, respectively. The S6 point mutations of Y652A and F656A attenuated the inhibitor effects of mitragynine, indicating that mitragynine interacts with these high affinity drug-binding sites in the hERG channel pore cavity which was consistent with the molecular docking simulation. Interestingly, mitragynine does not affect the hERG expression at the transcriptional level but inhibits the protein expression. Mitragynine is also found to inhibit IKACh current with an IC50 value of 3.32μM but has no significant effects on IK1. Blocking of both hERG and GIRK channels may cause additive cardiotoxicity risks.
  14. Koe XF, Tengku Muhammad TS, Chong AS, Wahab HA, Tan ML
    Food Sci Nutr, 2014 Sep;2(5):500-20.
    PMID: 25473508 DOI: 10.1002/fsn3.122
    A multiplex RT-qPCR was developed to examine CYP1A2, CYP2D6, and CYP3A4 induction properties of compounds from food and herbal sources. The induction of drug metabolizing enzymes is an important pharmacokinetic interaction with unique features in comparison with inhibition of metabolizing enzymes. Cytochrome induction can lead to serious drug-drug or drug-food interactions, especially if the coadministered drug plasma level is critical as it can reduce therapeutic effects and cause complications. Using this optimized multiplex RT-qPCR, cytochrome induction properties of andrographolide, curcumin, lycopene, bergamottin, and resveratrol were determined. Andrographolide, curcumin, and lycopene produced no significant induction effects on CYP1A2, CYP2D6, and CYP3A4. However, bergamottin appeared to be a significant in vitro CYP1A2 inducer starting from 5 to 50 μmol/L with induction ranging from 60 to 100-fold changes. On the other hand, resveratrol is a weak in vitro CYP1A2 inducer. Examining the cytochrome induction properties of food and herbal compounds help complement CYP inhibition studies and provide labeling and safety caution for such products.
  15. Lim EL, Seah TC, Koe XF, Wahab HA, Adenan MI, Jamil MF, et al.
    Toxicol In Vitro, 2013 Mar;27(2):812-24.
    PMID: 23274770 DOI: 10.1016/j.tiv.2012.12.014
    CYP450 enzymes are key determinants in drug toxicities, reduced pharmacological effect and adverse drug reactions. Mitragynine, an euphoric compound was evaluated for its effects on the expression of mRNAs encoding CYP1A2, CYP2D6 and CYP3A4 and protein expression and resultant enzymatic activity. The mRNA and protein expression of CYP450 isoforms were carried out using an optimized multiplex qRT-PCR assay and Western blot analysis. CYP1A2 and CYP3A4 enzyme activities were evaluated using P450-Glo™ assays. The effects of mitragynine on human CYP3A4 protein expression were determined using an optimized hCYP3A4-HepG2 cell-based assay. An in silico computational method to predict the binding conformation of mitragynine to the active site of the CYP3A4 enzyme was performed and further validated using in vitro CYP3A4 inhibition assays. Mitragynine was found to induce mRNA and protein expression of CYP1A2. For the highest concentration of 25 μM, induction of mRNA was approximately 70% that of the positive control and was consistent with the increased CYP1A2 enzymatic activity. Thus, mitragynine is a significant in vitro CYP1A2 inducer. However, it appeared to be a weak CYP3A4 inducer at the transcriptional level and a weak CYP3A4 enzyme inhibitor. It is therefore, unlikely to have any significant clinical effects on CYP3A4 activity.
  16. Tay YL, Amanah A, Adenan MI, Wahab HA, Tan ML
    Sci Rep, 2019 12 24;9(1):19757.
    PMID: 31874991 DOI: 10.1038/s41598-019-56106-6
    Mitragyna speciosa Korth (M. speciosa) has been widely used as a recreational product, however, there are growing concerns on the abuse potentials and toxicity of the plant. Several poisoning and fatal cases involving kratom and mitragynine have been reported but the underlying causes remain unclear. The human ether-a-go-go-related gene 1 (hERG1) encodes the pore-forming subunit underlying cardiac rapidly delayed rectifier potassium current (IKr). Pharmacological blockade of the IKr can cause acquired long QT syndrome, leading to lethal cardiac arrhythmias. This study aims to elucidate the mechanisms of mitragynine-induced inhibition on hERG1a/1b current. Electrophysiology experiments were carried out using Port-a-Patch system. Quantitative RT-PCR, Western blot analysis, immunofluorescence and co-immunoprecipitation methods were used to determine the effects of mitragynine on hERG1a/1b expression and hERG1-cytosolic chaperones interaction. Mitragynine was found to inhibit the IKr current with an IC50 value of 332.70 nM. It causes a significant reduction of the fully-glycosylated (fg) hERG1a protein expression but upregulates both core-glycosylated (cg) expression and hERG1a-Hsp90 complexes, suggesting possible impaired hERG1a trafficking. In conclusion, mitragynine inhibits hERG1a/1b current through direct channel blockade at lower concentration, but at higher concentration, it upregulates the complexation of hERG1a-Hsp90 which may be inhibitory towards channel trafficking.
  17. Rusli N, Amanah A, Kaur G, Adenan MI, Sulaiman SF, Wahab HA, et al.
    Naunyn Schmiedebergs Arch Pharmacol, 2019 04;392(4):481-496.
    PMID: 30604191 DOI: 10.1007/s00210-018-01605-y
    Mitragynine is a major component isolated from Mitragyna speciosa Korth or kratom, a medicinal plant known for its opiate-like and euphoric properties. Multiple toxicity and fatal cases involving mitragynine or kratom have been reported but the underlying causes remain unclear. P-glycoprotein (P-gp) is a multidrug transporter which modulates the pharmacokinetics of xenobiotics and plays a key role in mediating drug-drug interactions. This study investigated the effects of mitragynine on P-gp transport activity, mRNA, and protein expression in Caco-2 cells using molecular docking, bidirectional assay, RT-qPCR, Western blot analysis, and immunocytochemistry techniques, respectively. Molecular docking simulation revealed that mitragynine interacts with important residues at the nucleotide binding domain (NBD) site of the P-gp structure but not with the residues from the substrate binding site. This was consistent with subsequent experimental work as mitragynine exhibited low permeability across the cell monolayer but inhibited digoxin transport at 10 μM, similar to quinidine. The reduction of P-gp activity in vitro was further contributed by the downregulation of mRNA and protein expression of P-gp. In summary, mitragynine is likely a P-gp inhibitor in vitro but not a substrate. Hence, concurrent administration of mitragynine-containing kratom products with psychoactive drugs which are P-gp substrates may lead to clinically significant toxicity. Further clinical study to prove this point is needed.
  18. Abduraman MA, Hariono M, Yusof R, Rahman NA, Wahab HA, Tan ML
    Heliyon, 2018 Dec;4(12):e01023.
    PMID: 30560214 DOI: 10.1016/j.heliyon.2018.e01023
    Background: Dengue infection is an endemic infectious disease and it can lead to dengue fever, dengue hemorrhagic fever, and/or dengue shock syndromes. Dengue NS2B/NS3 protease complex is essential for viral replication and is a primary target for anti-dengue drug development. In this study, a NS2B/NS3 protease inhibition assay was developed using AlphaScreen® beads and was used to screen compounds for their protease inhibition activities.

    Methods: The assay system utilized a known NS2B/NS3 peptide substrate, a recombinant of NS2B/NS3 protease with proprietary StrepTactin® donor and nickel chelate acceptor beads in 384-well format.

    Results: The optimized assay to screen for NS2B/NS3 protease inhibitors was demonstrated to be potentially useful with reasonable z' factor, coefficient variance and signal to background ratio. However, screening of synthesized thioguanine derivatives using the optimized AlphaScreen® assay revealed weak NS2B/NS3 inhibition activities.

    Conclusion: The AlphaScreen® assay to screen for NS2B/NS3 protease inhibitors is potentially applicable for high throughput screening.

  19. Koe XF, Lim EL, Seah TC, Amanah A, Wahab HA, Adenan MI, et al.
    Food Chem Toxicol, 2013 Oct;60:98-108.
    PMID: 23876819 DOI: 10.1016/j.fct.2013.07.030
    Drug metabolism involving cytochrome P450 (CYP) enzymes is a key determinant of significant drug interactions. Deoxyelephantopin was evaluated for its effects on the expression of mRNAs encoding CYP1A2, CYP2D6 and CYP3A4, and protein expression and resultant enzymatic activity. The mRNA and protein expression of cytochrome isoforms were carried out using an optimized multiplex qRT-PCR assay and Western blot analysis, respectively. Human CYP3A4 protein expression was determined using an optimized hCYP3A4-HepG2 cell-based assay and the enzymatic activity was evaluated using P450-Glo™ CYP3A4 assay. The molecular interaction and possible inhibition of deoxyelephantopin of the CYP3A4 enzyme was determined in silico and further validated using substrate-specific CYP3A4 inhibition assays. Deoxyelephantopin produced no significant effect on the CYP1A2 and CYP2D6 mRNA and protein expression. However, it has a weak induction effect on CYP3A4 at the transcriptional level. In silico docking simulation showed that deoxyelephantopin has a weak interaction with CYP3A4 enzyme and it minimally affects the metabolism of CYP3A4 substrates. Deoxyelephantopin is not an in vitro CYP1A2 and CYP2D6 inducer. It is both a weak in vitro CYP3A4 inducer and inhibitor and is unlikely to elicit a clinically significant effect in human.
  20. Seah TC, Tay YL, Tan HK, Muhammad TS, Wahab HA, Tan ML
    Int J Toxicol, 2015 08 12;34(5):454-68.
    PMID: 26268769 DOI: 10.1177/1091581815599335
    A cell-based assay to measure cytochrome P450 3A4 (CYP3A4) induction was developed to screen for potential CYP3A4 inducers. This 96-well format assay utilizes HepG2 cells transfected with a gene construct of CYP3A4 proximal promoter linked to green fluorescence protein (GFP) gene, and the expression of the GFP is then measured quantitatively. Bergamottin at 5 to 25 µmol/L produced low induction relative to the positive control. Both curcumin and lycopene were not found to affect the expression of GFP, suggesting no induction properties toward CYP3A4. Interestingly, resveratrol produced significant induction from 25 µmol/L onward, which was similar to omeprazole and may warrant further studies. In conclusion, the present study demonstrated that this cell-based assay can be used as a tool to evaluate the potential CYP3A4 induction properties of compounds. However, molecular docking data have not provided satisfactory pointers to differentiate between CYP3A4 inducers from noninducers or from inhibitors, more comprehensive molecular screening may be indicated.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links