Displaying publications 21 - 40 of 106 in total

Abstract:
Sort:
  1. Al-Hindi B, Yusoff NA, Ahmad M, Atangwho IJ, Asmawi MZ, Al-Mansoub MA, et al.
    BMC Complement Altern Med, 2019 Jun 28;19(1):152.
    PMID: 31253153 DOI: 10.1186/s12906-019-2573-x
    BACKGROUND: The leaves of Gongronema latifolium Benth. have long been recognized traditionally as a remedy for a variety of ailments in Africa. This study was conducted to evaluate the safety profile of the ethanolic extract of G. latifolium (GLES) leaves through a repeated dose 90-day oral toxicity study in male and female of Sprague Dawley rats.

    METHODS: GLES was orally administered at doses of 250, 500 and 1000 mg/kg/day consecutively for 90 days.

    RESULTS: No behavioral or physiological changes and mortality were observed. GLES did not have a marked impact on general hematological parameters and did not precipitate nephrotoxicity. However, compared to the control, serum triglycerides, total cholesterol and low-density lipoprotein levels were lower and white adipose tissue paired retroperitoneal fat depots were depleted in male rats treated with GLES3 by the end of the experiment. The liver was significantly enlarged in GLES-treated rats of both sexes. Negative gender-specific alterations were observed with the highest dose. Adverse risk was evident in the female rats mainly due to marked body weight gain and cerebrum weight reduction.

    CONCLUSION: Further research is needed to reach more specific conclusions about to the safety of ingesting high doses of GLES for long periods of time.

  2. Ahmad M, Lim CP, Akowuah GA, Ismail NN, Hashim MA, Hor SY, et al.
    Phytomedicine, 2013 Sep 15;20(12):1124-30.
    PMID: 23827665 DOI: 10.1016/j.phymed.2013.05.005
    The present study aims to evaluate the safety of methanol extract of Cinnamomum burmannii (MECB) by acute 14-day (single dose) and sub-chronic 28-day (repeated doses) oral administration to Sprague-Dawley rats. Our results showed that no toxicity was found in either acute or sub-chronic toxicity studies. MECB (containing 0.07% and 0.20% (w/w) of coumarin and trans-cinnamaldehyde, respectively), which was given orally at doses of 500, 1000 and 2000 mg/kg caused neither visible signs of toxicity nor mortality. No significant differences were observed in general condition, growth, organ weight, hematological parameters, biochemical values, or the gross and microscopic appearance of the organs from the treatment groups as compared to the control group. In conclusion, MECB did not cause any mortality nor did it cause any abnormalities in the necropsy and histopathology findings of treated rats. The LD50 for the MECB was found to be more than 2000 mg/kg. No adverse effects were observed in the treated rats at all the doses tested. The no-observed-adverse-effect level (NOAEL) for the 28-day study was determined to be 2000 mg/kg body weight/day.
  3. Hor SY, Ahmad M, Farsi E, Yam MF, Hashim MA, Lim CP, et al.
    Regul Toxicol Pharmacol, 2012 Jun;63(1):106-14.
    PMID: 22440551 DOI: 10.1016/j.yrtph.2012.03.006
    Recently, the fruits of Hylocereus polyrhizus, known as red dragon fruit, have received much attention from growers worldwide. However, there is little toxicological information regarding the safety of repeated exposure to these fruits. The present study evaluated the potential toxicity of a methanol extract of H. polyrhizus fruit after acute and subchronic administration in rats. In the acute toxicity study, single doses of fruit extract (1250, 2500 and 5000 mg/kg) were administered to rats by oral gavage, and the rats were then monitored for 14 days. In the subchronic toxicity study, the fruit extract was administered orally to rats at doses of 1250, 2500 and 5000 mg/kg/day for 28 days. There was no mortality or signs of acute or subchronic toxicity. There was no significant difference in body weight, relative organ weight or hematological parameters in the subchronic toxicity study. Biochemical analysis showed some significant changes, including creatinine, globulin, total protein and urea levels. No abnormality of internal organs was observed between treatment and control groups. The lethal oral dose of the fruit extract is more than 5000 mg/kg and the no-observed-adverse-effect level (NOAEL) of the extract for both male and female rats is considered to be 5000 mg/kg per day for 28 days.
  4. Salman IM, Ameer OZ, Sattar MA, Abdullah NA, Yam MF, Najim HS, et al.
    Pathology, 2010 Apr;42(3):259-66.
    PMID: 20350220 DOI: 10.3109/00313021003631304
    We investigated the role of renal sympathetic innervation in the deterioration of renal haemodynamic and excretory functions during the early post-ischaemic phase of renal ischaemia/reperfusion injury.
  5. Salman IM, Sattar MA, Abdullah NA, Ameer OZ, Basri F, Hussain NM, et al.
    J Nephrol, 2010 May-Jun;23(3):291-6.
    PMID: 20349424
    It is well established that renal sympathetic nerves are primarily involved in renal sodium and water regulation. However, the relationship between renal sympathetic nerve activity (RSNA) and renal potassium handling is not extensively known. The present study was performed to investigate the role of the renal sympathetic nervous system in the regulation of tubular potassium reabsorption and secretion.
  6. Salman IM, Sattar MA, Ameer OZ, Abdullah NA, Yam MF, Salman HM, et al.
    Indian J Med Res, 2010 Jun;131:786-92.
    PMID: 20571167
    A wealth of information concerning the essential role of renal sympathetic nerve activity (RSNA) in the regulation of renal function and mean arterial blood pressure homeostasis has been established. However, many important parameters with which RSNA interacts are yet to be explicitly characterized. Therefore, the present study aimed to investigate the impact of acute renal denervation (ARD) on sodium and water excretory responses to intravenous (iv) infusions of either norepinephrine (NE) or angiotensin II (Ang II) in anaesthetized spontaneously hypertensive rats (SHR).
  7. Salman IM, Ameer OZ, Sattar MA, Abdullah NA, Yam MF, Abdullah GZ, et al.
    Neurourol Urodyn, 2011 Mar;30(3):438-46.
    PMID: 21284025 DOI: 10.1002/nau.21007
    We assessed the role of renal sympathetic nervous system in the deterioration of renal hemodynamic and excretory functions in rats with streptozotocin (STZ)-induced diabetic kidney disease (DKD).
  8. Salman IM, Sattar MA, Abdullah NA, Ameer OZ, Yam MF, Kaur G, et al.
    Ren Fail, 2010 Jan;32(1):96-102.
    PMID: 20113274 DOI: 10.3109/08860220903389196
    The role of renal sympathetic nerves in the pathogenesis of ischemic acute renal failure (ARF) and the immediate changes in the renal excretory functions following renal ischemia were investigated. Two groups of male Sprague Dawley (SD) rats were anesthetized (pentobarbitone sodium, 60 mg kg(-1) i.p.) and subjected to unilateral renal ischemia by clamping the left renal artery for 30 min followed by reperfusion. In group 1, the renal nerves were electrically stimulated and the responses in the renal blood flow (RBF) and renal vascular resistance (RVR) were recorded, while group 2 was used to study the early changes in the renal functions following renal ischemia. In post-ischemic animals, basal RBF and the renal vasoconstrictor reperfusion to renal nerve stimulation (RNS) were significantly lower (all p < 0.05 vs. control). Mean arterial pressure (MAP), basal RVR, urine flow rate (UFR), absolute and fractional excretions of sodium (U(Na)V and FE(Na)), and potassium (U(K)V and FE(K)) were higher in ARF rats (all p < 0.05 vs. control). Post-ischemic animals showed markedly lower glomerular filtration rate (GFR) (p < 0.05 vs. control). No appreciable differences were observed in urinary sodium to potassium ratio (U(Na)/U(K)) during the early reperfusion phase of renal ischemia (p > 0.05 vs. control). The data suggest an immediate involvement of renal sympathetic nerve action in the pathogenesis of ischemic ARF primarily through altered renal hemodynamics. Diuresis, natriuresis, and kaliuresis due to impaired renal tubular functions are typical responses to renal ischemia and of comparable magnitudes.
  9. Salman IM, Sattar MA, Abdullah NA, Ameer OZ, Hussain FB, Hye Khan MA, et al.
    Indian J Med Res, 2010 Jan;131:76-82.
    PMID: 20167977
    Regulation of renal function and haemodynamics are under a direct control from the renal sympathetic nerves and renal denervation produces overt diuresis and natriuresis in several mammalian species. However, the inter-related series of changes in renal function and haemodynamics following acute renal denervation (ARD) is not fully understood. Thus, we aimed to investigate and relate the changes in renal function and haemodynamics following acute unilateral renal denervation in anaesthetized Sprague Dawley (SD) rats.
  10. Chen Y, Huang J, Yeap ZQ, Zhang X, Wu S, Ng CH, et al.
    Spectrochim Acta A Mol Biomol Spectrosc, 2018 Jun 15;199:271-282.
    PMID: 29626818 DOI: 10.1016/j.saa.2018.03.061
    Anoectochilus roxburghii (Wall.) Lindl. (Orchidaceae) is a precious traditional Chinese medicinal herb and has been perennially used to treat various illness. However, there were unethical sellers who adulterated wild A. roxburghii with tissue cultured and cultivated ones. Therefore, there is an urgent need for an effective authentication method to differentiate between these different types of A. roxburghii. In this research, the infrared spectroscopic tri-step identification approach including Fourier transform infrared spectroscopy (FT-IR), Second derivative infrared spectra (SD-IR) and two-dimensional correlation infrared spectra (2D-IR) was used to develop a simple and rapid method to discriminate between wild, cultivated and tissue cultivated A. roxburghii plant. Through this study, all three types of A. roxburghii plant were successfully identified and discriminated through the infrared spectroscopic tri-step identification method. Besides that, all the samples of wild, cultivated and tissue cultivated A. roxburghii plant were analysed with the Soft Independent Modelling of Class Analogy (SIMCA) pattern recognition technique to test and verify the experimental results. The results showed that the three types of A. roxburghii can be discriminated clearly as the recognition rate was 100% for all three types and the rejection rate was more than 60%. 70% of the validated samples were also identified correctly by the SIMCA model. The SIMCA model was also validated by comparing 70 standard herbs to the model. As a result, it was demonstrated that the macroscopic IR fingerprint method and the classification analysis could discriminate not only between the A. roxburghi samples and the standard herbs, it could also distinguish between the three different types of A. roxburghi plant in a direct, rapid and holistic manner.
  11. Cai Q, Song Q, Jiang K, Lin Y, Zhang Y, Zhang J, et al.
    Front Chem, 2023;11:1193188.
    PMID: 37324558 DOI: 10.3389/fchem.2023.1193188
    Introduction: Taxus species are used as medicinal plants all over the world. The leaves of Taxus species are sustainable medicinal resources that are rich in taxoids and flavonoids. However, traditional identification methods cannot effectively identify Taxus species on the basis of leaces used as raw medicinal materials, because their appearance and morphological characteristics are almost the same, and the probability of error identification increases in accordance with the subjective consciousness of the experimenter. Moreover, although the leaves of different Taxus species have been widely used, their chemical components are similar and lack systematic comparative research. Such a situation is challenging for quality assessment. Materials and methods: In this study, ultra-high-performance liquid chromatography coupled with triple quadrupole mass spectrometry combined with chemometrics was applied for the simultaneous determination of eight taxoids, four flavanols, five flavonols, two dihydroflavones, and five biflavones in the leaves of six Taxus species, namely, T. mairei, T. chinensis, T. yunnanensis, T. wallichiana, T. cuspidata, and T. media. Chemometric methods, including hierarchical cluster analysis, principal component analysis, orthogonal partial least squares-discriminate analysis, random forest iterative modeling, and fisher linear discriminant analysis, were utilized to differentiate and evaluate the six Taxus species. Results: This proposed method exhibited good linearity (R 2 = 0.9999-0.9972) with a lower quantification limits of 0.94-3.05 ng/mL for all analytes. The intra- and inter-day precisions were within 6.83%. Six compounds, namely, 7-xylosyl-10-deacetyltaxol, ginkgetin, rutin, aromadendrin, 10-deacetyl baccatin III, and epigallocatechin, were identified through chemometrics for the first time. These compounds can be used as important chemical markers to distinguish the above six Taxus species rapidly. Conclusion: This study established a method for determination of the leaves of six Taxus species, and revealing the differences in the chemical components of these six Taxus species.
  12. Zhang Y, Jiang K, Chen S, Wang L, Zhang X, Xu W, et al.
    Front Plant Sci, 2023;14:1234729.
    PMID: 37885663 DOI: 10.3389/fpls.2023.1234729
    RATIONALE: Ganoderma lucidum (G. lucidum) is a popular medicinal fungus that has been used in traditional medicine for decades, with its provenance influencing its medicinal and commercial worth. The amount of active ingredients and the price of G. lucidum from different origins vary significantly; hence, fraudulent labeling is common. Reliable techniques for G. lucidum geographic verification are urgently required to safeguard the interests of consumers, producers, and honest dealers. A stable isotope is widely acknowledged as a useful traceability technique and could be developed to confirm the geographical origin of G. lucidum.

    METHODS: G. lucidum samples from various sources and in varying stages were identified by using δ 13C, δD, δ 18O, δ 15N, C, and N contents combined with chemometric tools. Chemometric approaches, including PCA, OPLS-DA, PLS, and FLDA models, were applied to the obtained data. The established models were used to trace the origin of G. lucidum from various sources or track various stages of G. lucidum.

    RESULTS: In the stage model, the δ 13C, δD, δ 18O, δ 15N, C, and N contents were considered meaningful variables to identify various stages of G. lucidum (bud development, growth, and maturing) using PCA and OPLS-DA and the findings were validated by the PLS model rather than by only four variables (δ 13C, δD, δ 18O, and δ 15N). In the origin model, only four variables, namely δ 13C, δD, δ 18O, and δ 15N, were used. PCA divided G. lucidum samples into four clusters: A (Zhejiang), B (Anhui), C (Jilin), and D (Fujian). The OPLS-DA model could be used to classify the origin of G. lucidum. The model was validated by other test samples (Pseudostellaria heterophylla), and the external test (G. lucidum) by PLS and FLDA models demonstrated external verification accuracy of up to 100%.

    CONCLUSION: C, H, O, and N stable isotopes and C and N contents combined with chemometric techniques demonstrated considerable potential in the geographic authentication of G. lucidum, providing a promising method to identify stages of G. lucidum.

  13. Taleb Agha M, Baharetha HM, Al-Mansoub MA, Tabana YM, Kaz Abdul Aziz NH, Yam MF, et al.
    Scientifica (Cairo), 2020;2020:7286053.
    PMID: 32509375 DOI: 10.1155/2020/7286053
    In this study, the bioactivity-guided fractionation was conducted on the aerial parts of Arctium lappa L. and then the extracts were tested in vitro on breast cancer (MCF-7), colorectal cancer (HCT-116), and normal cells (EA.hy926). The n-hexane fraction (EHX) of the ethanolic extract showed strong activity against both MCF-7 and EA.hy926 cell lines (IC50 values: 14.08 ± 3.64 and 27.25 ± 3.45 μg/mL, respectively). The proapoptotic activity of EHX was assessed using MCF-7. Morphological alterations were visualized using Hoechst staining and a transmission electron microscope. Cancer cell signal transduction pathways were investigated, and EHX significantly upregulated p53, TGF-β, and NF-κB. Furthermore, EHX was found to disrupt the metastatic cascade of breast cancer cells by the inhibition of cell proliferation, migration, invasion, and colonization. The antiangiogenic activity of EHX fraction showed potent inhibition of rat aorta microvessels with IC50 value: 4.34 ± 1.64 μg/mL. This result was supported by the downregulation of VEGF-A expression up to 54%. Over 20 compounds were identified in EHX using GC-MS, of which stigmasterol, ß-sitosterol, and 3-O-acetyllupeol are the major active compounds. Phytochemical analysis of EHX showed higher phenolic and flavonoid contents with a substantial antioxidant activity. In conclusion, this work demonstrated that A. lappa has valuable anticancer activity and antiangiogenic properties that might be useful in breast cancer therapy.
  14. Mohamed EA, Siddiqui MJ, Ang LF, Sadikun A, Chan SH, Tan SC, et al.
    PMID: 23039079 DOI: 10.1186/1472-6882-12-176
    In the present study, we tested a 50% ethanolic extract of Orthosiphon stamineus plants and its isolated bioactive compound with respect to their α-glucosidase and α-amylase inhibitory activities.
  15. Basir R, Rahiman SF, Hasballah K, Chong W, Talib H, Yam M, et al.
    Iran J Parasitol, 2012;7(4):62-74.
    PMID: 23323093
    Animal models with various combination of host-parasite have long been employed to study malaria pathogenesis. Here, we describe the combination of Plasmodium berghei ANKA infection in inbred ICR mice as a model of cerebral malaria (CM).
  16. Al Zarzour RH, Ahmad M, Asmawi MZ, Kaur G, Saeed MAA, Al-Mansoub MA, et al.
    Nutrients, 2017 Jul 18;9(7).
    PMID: 28718838 DOI: 10.3390/nu9070766
    Non-alcoholic fatty liver disease (NAFLD) is one of the major global health issues, strongly correlated with insulin resistance, obesity and oxidative stress. The current study aimed to evaluate anti-NAFLD effects of three different extracts of Phyllanthus niruri (P. niruri). NAFLD was induced in male Sprague-Dawley rats using a special high-fat diet (HFD). A 50% methanolic extract (50% ME) exhibited the highest inhibitory effect against NAFLD progression. It significantly reduced hepatomegaly (16%) and visceral fat weight (22%), decreased NAFLD score, prevented fibrosis, and reduced serum total cholesterol (TC) (48%), low-density lipoprotein (LDL) (65%), free fatty acids (FFAs) (25%), alanine aminotransferase (ALT) (45%), alkaline phosphatase (ALP) (38%), insulin concentration (67%), homeostatic model assessment of insulin resistance (HOMA-IR) (73%), serum atherogenic ratios TC/high-density lipoprotein (HDL) (29%), LDL/HDL (66%) and (TC-HDL)/HDL (64%), hepatic content of cholesterol (43%), triglyceride (29%) and malondialdehyde (MDA) (40%) compared to a non-treated HFD group. In vitro, 50% ME of P. niruri inhibited α-glucosidase, pancreatic lipase enzymes and cholesterol micellization. It also had higher total phenolic and total flavonoid contents compared to other extracts. Ellagic acid and phyllanthin were identified as major compounds. These results suggest that P. niruri could be further developed as a novel natural hepatoprotective agent against NAFLD and atherosclerosis.
  17. Ameer OZ, Salman IM, Siddiqui MJ, Yam MF, Sriramaneni RN, Mohamed AJ, et al.
    J Ethnopharmacol, 2010 Jan 8;127(1):19-25.
    PMID: 19808083 DOI: 10.1016/j.jep.2009.09.057
    The present study was aimed to investigate the pharmacological basis for the use of Loranthus ferrugineus in hypertension.
  18. Loh YC, Tan CS, Ch'ng YS, Yeap ZQ, Ng CH, Yam MF
    Int J Mol Sci, 2018 Jan 02;19(1).
    PMID: 29301280 DOI: 10.3390/ijms19010120
    Hypertension is asymptomatic and a well-known "silent killer", which can cause various concomitant diseases in human population after years of adherence. Although there are varieties of synthetic antihypertensive drugs available in current market, their relatively low efficacies and major application in only single drug therapy, as well as the undesired chronic adverse effects associated, has drawn the attention of worldwide scientists. According to the trend of antihypertensive drug evolution, the antihypertensive drugs used as primary treatment often change from time-to-time with the purpose of achieving the targeted blood pressure range. One of the major concerns that need to be accounted for here is that the signaling mechanism pathways involved in the vasculature during the vascular tone regulation should be clearly understood during the pharmacological research of antihypertensive drugs, either in vitro or in vivo. There are plenty of articles that discussed the signaling mechanism pathways mediated in vascular tone in isolated fragments instead of a whole comprehensive image. Therefore, the present review aims to summarize previous published vasculature-related studies and provide an overall depiction of each pathway including endothelium-derived relaxing factors, G-protein-coupled, enzyme-linked, and channel-linked receptors that occurred in the microenvironment of vasculature with a full schematic diagram on the ways their signals interact. Furthermore, the crucial vasodilative receptors that should be included in the mechanisms of actions study on vasodilatory effects of test compounds were suggested in the present review as well.
  19. Loh YC, Tan CS, Ch'ng YS, Ahmad M, Ng CH, Yam MF
    J Med Food, 2017 Dec;20(12):1201-1213.
    PMID: 28953423 DOI: 10.1089/jmf.2017.3958
    Hypertension, one of the famous "silent killers" that can attack people at any age, is a current hot topic among scientists due to multiple syndromic behavior and concomitant diseases. The new scientific-based Traditional Chinese Medicine (TCM) formulation approach was used in a previous study by combining five TCM herbs, including Gastrodia elata Bl., Uncaria rhynchophylla (Miq.) Miq. ex Havil., Pueraria thomsonii Benth., Panax notoginseng (Burk.) F.H. Chen, and Alisma orientalis (Sam.) Juzep in optimized ratio (named BPAid). The objective of the present study was to evaluate the mechanism pathways employed by BPAid for vasodilatory effect with the use of an in vitro isolated aortic rings assay. Interestingly, all the mechanisms investigated were involved in the BPAid's vasodilation activity in which the majority contributed through the nitric oxide/soluble guanylyl cyclase/cyclic guanosine monophosphate (NO/sGC/cGMP) pathways, followed by prostacyclin (PGI2), β2-adrenergic, and M3-receptors pathways. Furthermore, the BPAid appeared to manage vascular tone by regulating action potential through potassium and both voltage-operated calcium channel and inositol triphosphate receptor (IP3R) pathways. The results obtained has confirmed the expected outcome that the benefits of TCM herbs in BPAid can meet the criteria of counteracting multiple signaling mechanism pathways involved in the etiology of hypertension. In addition to this study, the fingerprints and chemical properties of BPAid was identified by using tri-step Fourier transform infrared spectroscopy and compared with its derivatives. The results obtained suggested that the majority of the vasodilatory effects exerted by BPAid were attributed to the presence of saponins and aromatic ring-containing vasoactive compounds.
  20. Yam MF, Loh YC, Oo CW, Basir R
    Int J Mol Sci, 2020 Jun 19;21(12).
    PMID: 32575378 DOI: 10.3390/ijms21124355
    Pain is the most common sensation installed in us naturally which plays a vital role in defending us against severe harm. This neurological mechanism pathway has been one of the most complex and comprehensive topics but there has never been an elaborate justification of the types of analgesics that used to reduce the pain sensation through which specific pathways. Of course, there have been some answers to curbing of pain which is a lifesaver in numerous situations-chronic and acute pain conditions alike. This has been explored by scientists using pain-like behavioral study methodologies in non-anesthetized animals since decades ago to characterize the analgesic profile such as centrally or peripherally acting drugs and allowing for the development of analgesics. However, widely the methodology is being practiced such as the tail flick/Hargreaves test and Von Frey/Randall-Selitto tests which are stimulus-evoked nociception studies, and there has rarely been a complete review of all these methodologies, their benefits and its downside coupled with the mechanism of the action that is involved. Thus, this review solely focused on the complete protocol that is being adapted in each behavioral study methods induced by different phlogogenic agents, the different assessment methods used for phasic, tonic and inflammatory pain studies and the proposed mechanism of action underlying each behavioral study methodology for analgesic drug profiling. It is our belief that this review could significantly provide a concise idea and improve our scientists' understanding towards pain management in future research.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links