Displaying publications 21 - 40 of 41 in total

Abstract:
Sort:
  1. Zarei M, Qorbani M, Djalalinia S, Sulaiman N, Subashini T, Appanah G, et al.
    Int J Prev Med, 2021;12:8.
    PMID: 34084305 DOI: 10.4103/ijpvm.IJPVM_61_19
    Background: This review seeks to determine the relationship between food insecurity among elderly people over the past decades and nutrient deficiency, which is rather unclear. We aim to systematically review the relationship between food insecurity and dietary intake among elderly population.

    Methods: In this systematic review, we systematically searched the international databases including PubMed, Web of Sciences, and Scopus for scientifically related papers which have been published up until January 2018. For a more refined search, we used the Medical Subject Headings (MeSH) terms and Emtree. In terms of search protocol, no restrictions were placed on time and language. Two independent reviewers conducted the data refining processes. Validated form (PRISMA) was used to conduct quality assessment and data extraction.

    Results: Eight cross sectional studies have been included in this review. Two of the studies were conducted in Asia and the remaining six studies were largely based in the United States and Canada. Food insecurity was associated with low levels of vitamin and mineral intakes such as vitamins E, A, B, and D and also zinc, calcium, magnesium, and iron. Most studies also reported insufficient energy, and micro and macronutrients intake among elderly people.

    Conclusions: The findings of this review evidence a considerable amount of food insecurity and nutrient deficiency, including vitamins E, C, D, B 2, and B 12 and zinc, phosphorus, and calcium among elderly population. These findings could be used as reliable evidence by policy makers and future complementary analyses.

  2. Brishti FH, Chay SY, Muhammad K, Ismail-Fitry MR, Zarei M, Karthikeyan S, et al.
    Food Res Int, 2020 12;138(Pt B):109783.
    PMID: 33288169 DOI: 10.1016/j.foodres.2020.109783
    Mung bean is an inexpensive yet sustainable protein source. Current work compared the effects of freeze (FD), spray (SD) and oven drying (OD), on mung bean protein isolate (MBPI) produced on pilot scale. All samples showed no dissociation of protein subunits and were thermally stable (Td = 157.90-158.07 °C). According to morphological studies, FD formed a porous protein while SD and OD formed wrinkled and compact crystals, respectively. FD and SD formed elastic gels with better gelling capacity than OD (aggregated gel). FD showed exceptional protein solubility, water and oil absorption capacity (4.23 g/g and 8.38 g/g, respectively). SD demonstrated the smallest particle size, excellent emulsion activity index (29.21 m2/g) and stability (351.90 min) and the highest β-sheet amount (37.61%). FTIR spectra for all samples showed characteristic peaks which corresponded well to the secondary structure of legume proteins. Rheological analysis revealed that gelation temperature for all MBPI lied around 90 °C. Current work described the different final properties achieved for MBPI produced under different drying techniques that allowed tailoring for different food systems, whereby FD is ideal for meat extender, SD is suitable for meat emulsion while OD is suitable in general protein-based application.
  3. Brishti FH, Chay SY, Muhammad K, Rashedi Ismail-Fitry M, Zarei M, Saari N
    Food Funct, 2020 Oct 21;11(10):8918-8930.
    PMID: 32996964 DOI: 10.1039/d0fo01463j
    Mung bean is gaining attention as a sustainable and economic source of plant protein. The current study evaluates the techno-functionality, anti-nutrient properties, in vivo protein quality and toxicity of texturized mung bean protein (TMBP) produced under optimized conditions. Our work successfully produces TMBP with improved techno-functionalities that are crucial for meat-based food applications, credited to retained juiciness and fat-binding ability. Alkaline extraction and extrusion significantly reduce trypsin inhibitor, phytic acid and tannin content in TMBP. An in vivo study using Sprague-Dawley rats reveals the good protein quality of TMBP, with a true protein digestibility of 99.26% resembling casein (99.36%, control protein), a net protein utilization of 63.99% and a biological value of 64.46%. The good protein quality, increased lean muscle mass along with reduced cholesterol and triglyceride secures TMBP's potential as a Protein meal replacer and dietary suplement. Non-toxicity of TMBP is confirmed by normal serum biochemical parameters and healthy organs, ascertaining the safety of alkaline extraction. The current study elucidates the production of TMBP with improved techno-functionalities (for meat-based food applications), reduced anti-nutritional factors and high quality (for weight-watchers and malnourished individuals).
  4. Hanafi MA, Hashim SN, Chay SY, Ebrahimpour A, Zarei M, Muhammad K, et al.
    Food Res Int, 2018 04;106:589-597.
    PMID: 29579964 DOI: 10.1016/j.foodres.2018.01.030
    As a protein-rich, underutilized crop, green soybean could be exploited to produce hydrolysates containing angiotensin-I converting enzyme (ACE) inhibitory peptides. Defatted green soybean was hydrolyzed using four different food-grade proteases (Alcalase, Papain, Flavourzyme and Bromelain) and their ACE inhibitory activities were evaluated. The Alcalase-generated green soybean hydrolysate showed the highest ACE inhibitory activity (IC50: 0.14 mg/mL at 6 h hydrolysis time) followed by Papain (IC50: 0.20 mg/mL at 5 h hydrolysis time), Bromelain (IC50: 0.36 mg/mL at 6 h hydrolysis time) and Flavourzyme (IC50: 1.14 mg/mL at 6 h hydrolysis time) hydrolysates. The Alcalase-generated hydrolysate was profiled based on its hydrophobicity and isoelectric point using reversed phase high performance liquid chromatography (RP-HPLC) and isoelectric point focusing (IEF) fractionators. The Alcalase-generated green soybean hydrolysate comprising of peptides EAQRLLF, PSLRSYLAE, PDRSIHGRQLAE, FITAFR and RGQVLS, revealed the highest ACE inhibitory activity of 94.19%, 99.31%, 92.92%, 101.51% and 90.40%, respectively, while their IC50 values were 878 μM, 532 μM, 1552 μM, 1342 μM and 993 μM, respectively. It can be concluded that Alcalase-digested green soybean hydrolysates could be exploited as a source of peptides to be incorporated into functional foods with antihypertensive activity.
  5. Hasani M, Djalalinia S, Khazdooz M, Asayesh H, Zarei M, Gorabi AM, et al.
    Hormones (Athens), 2019 Dec 10.
    PMID: 31820398 DOI: 10.1007/s42000-019-00143-3
    AIM: The aim of this study is the systematic review and meta-analysis of controlled trial studies to assess the antioxidant effects of selenium (Se) supplementation.

    METHODS: The systematic review and meta-analysis were performed according to the previously published protocol. The PubMed, Web of Sciences, and Scopus databases were meticulously searched for relevant data, without time or language restriction, up to June 1, 2017. All clinical trials which assessed the effect of Se supplementation on antioxidant markers, including oxidative stress index (OSI), antioxidant potency composite (APC) index, plasma malonaldehyde (MDA), total antioxidant capacity (TAC), antioxidant enzymes (superoxide dismutase (SOD), glutathione peroxidase (GPX), catalase (CAT)), and total antioxidant plasma (TAP), were included. The effect of Se supplementation on antioxidant markers was assessed using standardized mean difference (SMD) and 95% confidence interval (CI). The random-effect meta-analysis method was used to estimate the pooled SMD.

    RESULTS: In total, 13 studies which assessed the effect of Se supplementation on antioxidant markers were included. The random-effect meta-analysis method showed that Se supplementation significantly increased GPX (SMD = 0.54; 95% CI = 0.21-0.87) and TAC (SMD = 0.39, 95% CI = 0.13, 0.66) levels and decreased MDA levels (SMD = - 0.54, 95% CI = - 0.78, - 0.30). The effect of Se supplementation on other antioxidant markers was not statistically significant (P > 0.05).

    CONCLUSION: The findings showed that Se supplementation might reduce oxidative stress by increasing TAC and GPX levels and decreasing serum MDA, both of which are crucial factors for reduction of oxidative stress.

  6. Arulrajah B, Muhialdin BJ, Qoms MS, Zarei M, Hussin ASM, Hasan H, et al.
    Int J Food Microbiol, 2021 Dec 02;359:109418.
    PMID: 34607033 DOI: 10.1016/j.ijfoodmicro.2021.109418
    This study determined the favourable fermentation conditions for the production of antifungal peptides from kenaf seeds and their effectiveness in extending the shelf-life of tomato puree. The optimum fermentation conditions for the maximum activity of the antifungal peptides were 8.4% (w/v), 7 days and 3.7% for substrate/water ratio, fermentation time and glucose concentration, respectively. Eight cationic peptides of low molecular weight ranging from 840 to 1876 Da were identified in kenaf seed peptides mixture (KSPM). The minimum inhibitory concentration and minimum fungicidal concentration of KSPM against Fusarium sp. were 0.18 mg/mL and 0.70 mg/mL, respectively, while those for Aspergillus niger were 1.41 mg/mL and 2.81 mg/mL respectively. KSPM exhibited a fungicidal effect and a prolonged lag phase, with increased fungal membrane permeability as the concentration of KSPM increased, as evidenced by the release of intracellular constituents. The treatment of tomato puree with 1000 mg/kg KSPM delayed fungal growth for up to 14 and 23 days at 25 °C and 4 °C respectively, significantly reducing Aspergillus niger and Fusarium sp. counts. In conclusion, kenaf seed peptides prepared by lacto-fermentation possess antifungal activity, hence can be applied as natural bio preservatives to extend the shelf-life of food products such as tomato puree.
  7. Chay SY, Salleh A, Sulaiman NF, Zainal Abidin N, Hanafi MA, Zarei M, et al.
    Food Funct, 2018 Mar 01;9(3):1657-1671.
    PMID: 29469915 DOI: 10.1039/c7fo01769c
    Winged bean seed (WBS) is an underutilized tropical crop. The current study evaluates its potential to reduce blood pressure (BP) in spontaneously hypertensive rats and finds that it reduces BP significantly, in a dose-dependent manner. Five peptides with the sequences, RGVFPCLK, TQLDLPTQ, EPALVP, MRSVVT and DMKP, have been characterized in terms of their stability against ACE via in vitro and in silico modelling. All peptides exhibited IC50 values between 0.019 and 6.885 mM and various inhibitory modes, including substrate, prodrug and true inhibitor modes. The toxicity status of non-Current Good Manufacturing Practice (non-CGMP) peptides is evaluated and the results show that such peptides are toxic, and thus are not suitable to be tested in animals, particularly in repeated-dose studies. In short, WBS hydrolysate demonstrated in vitro ACE inhibitory properties and in vivo blood pressure lowering efficacy in rat models, fostering its potential as a functional food ingredient. Non-CGMP grade peptides are toxic and unfit for testing in animal models.
  8. Muhialdin BJ, Zawawi N, Abdull Razis AF, Bakar J, Zarei M
    Food Control, 2021 Sep;127:108140.
    PMID: 33867696 DOI: 10.1016/j.foodcont.2021.108140
    The recent COVID-19, a viral outbreak calls for a high demand for non-conventional antiviral agents that can reduce the risk of infections and promote fast recovery. Fermented foods and their probiotics bacteria have recently received increasing interest due to the reported potential of high antiviral activity. Several probiotics strains demonstrated broad range of antiviral activities and different mechanisms of action. This article will review the diversity, health benefits, interaction with immune system and antiviral activity of fermented foods and their probiotics bacteria. In addition, the mechanisms of action will be reviewed to determine the broad range potential antiviral activity against the respiratory and alimentary tracts viruses. The probiotics bacteria and bioactive compounds in fermented foods demonstrated antiviral activities against respiratory and alimentary tracts viruses. The mechanism of action was reported to be due to the stimulation of the immune system function via enhancing natural killers cell toxicity, enhance the production of pro-inflammatory cytokines, and increasing the cytotoxic of T lymphocytes (CD3+, CD16+, CD56+). However, further studies are highly recommended to determine the potential antiviral activity for traditional fermented foods.
  9. Zarei M, Rahimi K, Hassanzadeh K, Abdi M, Hosseini V, Fathi A, et al.
    Environ Res, 2021 Oct;201:111555.
    PMID: 34197816 DOI: 10.1016/j.envres.2021.111555
    Several factors ranging from environmental risks to the genetics of the virus and that of the hosts, affect the spread of COVID-19. The impact of physicochemical variables on virus vitality and spread should be taken into account in experimental and clinical studies. Another avenue to explore is the effect of diet and its interaction with the immune system on SARS-CoV-2 infection and mortality rate. Past year have witnessed extensive studies on virus and pathophysiology of the COVID-19 disease and the cellular mechanisms of virus spreading. However, our knowledge has not reached a level where we plan an efficient therapeutic approach to prevent the virus entry to the cells or decreasing the spreading and morbidity in severe cases of disease. The risk of infection directly correlates with the control of virus spreading via droplets and aerosol transmission, as well as patient immune system response. A key goal in virus restriction and transmission rate is to understand the physicochemical structure of aerosol and droplet formation, and the parameters that affect the droplet-borne and airborne in different environmental conditions. The lifetime of droplets on different surfaces is described based on the contact angle. Hereby, we recommend regular use of high-quality face masks in high temperature and low humidity conditions. However, in humid and cold weather conditions, wearing gloves and frequently hand washing, gain a higher priority. Additionally, social distancing rules should be respected in all aforementioned conditions. We will also discuss different routes of SARS-CoV-2 entry into the cells and how multiple genetic factors play a role in the spread of the virus. Given the role of environmental and nutritional factors, we discuss and recommend some strategies to prevent the disease and protect the population against COVID-19. Since an effective vaccine can prevent the transmission of communicable diseases and abolish pandemics, we added a brief review of candidate SARS-CoV-2 vaccines.
  10. Zarei M, Abidin NBZ, Auwal SM, Chay SY, Haiyee ZA, Sikin AM, et al.
    Biomolecules, 2019 10 04;9(10).
    PMID: 31590308 DOI: 10.3390/biom9100569
    Three novel peptide sequences identified from palm kernel cake (PKC) generated protein hydrolysate including YLLLK, WAFS and GVQEGAGHYALL were used for stability study against angiotensin-converting enzyme (ACE), ACE-inhibition kinetics and molecular docking studies. Results showed that the peptides were degraded at different cleavage degrees of 94%, 67% and 97% for YLLLK, WAFS and GVQEGAGHYALL, respectively, after 3 h of incubation with ACE. YLLLK was found to be the least stable (decreased ACE-inhibitory activity) compared to WAFS and GVQEGAGHYALL (increased ACE-inhibitory activity). YLLLK showed the lowest Ki (1.51 mM) in inhibition kinetics study when compared to WAFS and GVQEGAGHYALL with Ki of 2 mM and 3.18 mM, respectively. In addition, ACE revealed the lowest Kmapp and Vmaxapp and higher catalytic efficiency (CE) in the presence of YLLLK at different concentrations, implying that the enzyme catalysis decreased and hence the inhibition mode increased. Furthermore, YLLLK showed the lowest docking score of -8.224 and seven interactions with tACE, while peptide GVQEGAGHYALL showed the higher docking score of -7.006 and five interactions with tACE.
  11. Auwal SM, Zainal Abidin N, Zarei M, Tan CP, Saari N
    PLoS One, 2019;14(5):e0197644.
    PMID: 31145747 DOI: 10.1371/journal.pone.0197644
    Stone fish is an under-utilized sea cucumber with many health benefits. Hydrolysates with strong ACE-inhibitory effects were generated from stone fish protein under the optimum conditions of hydrolysis using bromelain and fractionated based on hydrophobicity and isoelectric properties of the constituent peptides. Five novel peptide sequences with molecular weight (mw) < 1000 daltons (Da) were identified using LC-MS/MS. The peptides including Ala-Leu-Gly-Pro-Gln-Phe-Tyr (794.44 Da), Lys-Val-Pro-Pro-Lys-Ala (638.88 Da), Leu-Ala-Pro-Pro-Thr-Met (628.85 Da), Glu-Val-Leu-Ile-Gln (600.77 Da) and Glu-His-Pro-Val-Leu (593.74 Da) were evaluated for ACE-inhibitory activity and showed IC50 values of 0.012 mM, 0.980 mM, 1.310 mM, 1.440 mM and 1.680 mM, respectively. The ACE-inhibitory effects of the peptides were further verified using molecular docking study. The docking results demonstrated that the peptides exhibit their effect mainly via hydrogen and electrostatic bond interactions with ACE. These findings provide evidence about stone fish as a valuable source of raw materials for the manufacture of antihypertensive peptides that can be incorporated to enhance therapeutic relevance and commercial significance of formulated functional foods.
  12. Wazir H, Chay SY, Zarei M, Hussin FS, Mustapha NA, Wan Ibadullah WZ, et al.
    Antioxidants (Basel), 2019 Oct 16;8(10).
    PMID: 31623062 DOI: 10.3390/antiox8100486
    Studies on the oxidative changes in meat-based, low-moisture, ready to eat foods are complicated due to complex food system and slow lipid-protein oxidative deterioration. The current study evaluates the oxidative changes over six months of storage on shredded beef and chicken products (locally known as serunding) for physicochemical analysis, lipid oxidation (conjugated dienes and malondialdehydes) and protein co-oxidation (soluble protein content, amino acid composition, protein carbonyl, tryptophan loss and Schiff base fluorescence) at 25 °C, 40 °C and 60 °C. The lipid stability of chicken serunding was significantly lower than beef serunding, illustrated by higher conjugated dienes content and higher rate of malondialdehyde formation during storage. In terms of protein co-oxidation, chicken serunding with higher polyunsaturated fatty acids (PUFA) experienced more severe oxidation, as seen from lower protein solubility, higher protein carbonyl and Schiff base formation compared to beef serunding. To conclude, chicken serunding demonstrates lower lipid and protein stability and exhibits higher rate of lipid oxidation and protein co-oxidation than beef serunding. These findings provide insights on the progression of lipid oxidation and protein co-oxidation in cooked, shredded meat products and could be extrapolated to minimize possible adverse effects arising from lipid oxidation and protein co-oxidation, on the quality of low-moisture, high-lipid, high-protein foods.
  13. Wazir H, Chay SY, Ibadullah WZW, Zarei M, Mustapha NA, Saari N
    RSC Adv, 2021 Nov 29;11(61):38565-38577.
    PMID: 35493245 DOI: 10.1039/d1ra06872e
    Ambient-storage-friendly, ready-to-eat (RTE) meat products are convenient in emergencies, such as earthquakes, flash floods and the current global Covid-19 lockdown. However, given the processing and long storage time of such food products, the lipid and protein components may be more susceptible to oxidation. Chicken serunding is a low-moisture, high-lipid, high-protein, RTE product that is prone to lipid oxidation and protein co-oxidation, causing product quality deterioration. The present study assessed the effects of storage temperature (25, 40, 60 °C), antioxidant (butylated hydroxyanisole, BHA), and multilayer packaging materials [metallised polyethene terephthalate (MPET) and aluminium] on the lipid oxidation and protein co-oxidation of chicken serunding during six months of storage. All lipid and protein markers elevated with increasing temperature (25 < 40 < 60 °C), indicating that storage of low-moisture meat at high temperature is not feasible. BHA was effective against lipid oxidation, as indicated by the significantly lower (p <0.05) extracted lipid content and delayed formation of malondialdehyde, a secondary lipid oxidation product. However, BHA is not effective against protein co-oxidation, as shown by the insignificant (p >0.05) effect on preventing tryptophan loss, protein carbonyl formation and Schiff base accumulation. MPET packaging with a superior light and oxygen barrier provided significant protection (p <0.05) compared to aluminium. In conclusion, low temperature (25 °C) storage of low-moisture, high-lipid, high-protein, cooked meat systems in MPET packaging is recommended for long-term storage to delay the progression of lipid oxidation and protein co-oxidation.
  14. Hussin FS, Chay SY, Zarei M, Meor Hussin AS, Ibadullah WZW, Zaharuddin ND, et al.
    Foods, 2020 Dec 09;9(12).
    PMID: 33316941 DOI: 10.3390/foods9121826
    The current study evaluated the γ-aminobutyric acid (GABA) producing ability from three novel strains of lactic acid bacteria (L. plantarum Taj-Apis362, assigned as UPMC90, UPMC91, and UPMC1065) co-cultured with starter culture in a yogurt. A combination of UPMC90 + UPMC91 with starter culture symbiotically revealed the most prominent GABA-producing effect. Response surface methodology revealed the optimized fermentation conditions at 39.0 °C, 7.25 h, and 11.5 mM glutamate substrate concentration to produce GABA-rich yogurt (29.96 mg/100 g) with desirable pH (3.93) and water-holding capacity (63.06%). At 2% glucose to replace pyridoxal-5-phosphate (PLP), a cofactor typically needed during GABA production, GABA content was further enhanced to 59.00 mg/100 g. In vivo study using this sample revealed a blood pressure-lowering efficacy at 0.1 mg/kg GABA dosage (equivalent to 30 mg/kg GABA-rich yogurt) in spontaneously hypertensive rats. An improved method to produce GABA-rich yogurt has been established, involving shorter fermentation time and lower glutamate concentration than previous work, along with glucose induction that omits the use of costly PLP, fostering the potential of developing a GABA-rich functional dairy product through natural fermentation with desirable product quality and antihypertensive property.
  15. Khazdouz M, Djalalinia S, Sarrafi Zadeh S, Hasani M, Shidfar F, Ataie-Jafari A, et al.
    Biol Trace Elem Res, 2020 Jun;195(2):373-398.
    PMID: 31494808 DOI: 10.1007/s12011-019-01870-9
    The prevalence of cardiometabolic risk factors has been increasing worldwide. The results of reported studies on the effects of zinc supplementation on cardiometabolic risk factors are unequivocal. This systematic review and meta-analysis of randomized controlled trials was conducted to evaluate the effects of zinc supplementation on cardiometabolic risk factors. A systematic search was conducted through international databases (PubMed/Medline, Institute of Scientific Information, and Scopus) until December 2018 to include all randomized controlled trials (RCT), quasi-RCT, and controlled clinical trials which assessed the effect of zinc supplementation on cardiometabolic risk factors including lipid profile, glycemic indices, blood pressure, and anthropometric indices. Random- or fixed-effects meta-analysis method was used to estimate the standardized mean difference (SMD) and 95% confidence interval (CI). A total of 20 studies were included in the meta-analysis, which included a total of 1141 participants in the intervention group. Meta-analysis showed that zinc supplementation significantly decreased plasma levels of triglyceride (SMD - 0.66, 95% CI - 1.27, - 0.06), very-low-density lipoprotein (SMD - 1.59, 95% CI - 2.86, - 0.31), and total cholesterol (SMD - 0.65, 95% CI - 1.15, - 0.15). Similarly, zinc supplementation significantly decreased fasting blood glucose (SMD - 0.52, 95% CI - 0.96, - 0.07) and HbA1c (SMD - 0.64, 95% CI - 1.27, - 0.02). The effects of zinc supplementation on blood pressure and anthropometric indices were not statistically significant (P > 0.05). Zinc supplements had beneficial effects on glycemic indices and lipid profile. Thus, it appeared that zinc supplementation might be associated with a decrease in cardiometabolic risk factors contributing to a reduction in risk of atherosclerosis.
  16. Djalalinia S, Hasani M, Asayesh H, Ejtahed HS, Malmir H, Kasaeian A, et al.
    J Diabetes Metab Disord, 2021 Jun;20(1):1051-1062.
    PMID: 34222098 DOI: 10.1007/s40200-021-00821-3
    Purpose: Selenium (Se) is a trace element having significant effects on human metabolism. Recent studies suggest that Se supplementation have a pivotal effect on the inflammatory markers. Therefore, the aim of this study was to assess the effect of Se supplementation on plasma inflammatory markers including C-reactive protein (CRP) and high-sensitivity C-reactive protein (hs-CRP) and nitric oxide (NO) as a stress oxidative index, among patients with metabolic diseases.

    Methods: To assess the effects of Se on the inflammatory markers, following the PRISMA-P guidelines, we systematically searched ISI/WOS, PubMed/MEDLINE, and Scopus for studies that assessed the effect of Se supplementation on the inflammatory markers. Data extraction was performed by two independent investigators. Using the random effects or fixed-effects model depending on the results of heterogeneity tests was used to estimate the pooled standardized mean difference (SMD). Heterogeneity between studies was assessed using Cochran's Q test and I2 index.

    Results: The initial search revealed 3,320 papers. After screening process and considering inclusion criteria, 7 publications were eligible for inclusion in the meta-analysis. The meta-analysis results showed that Se supplementation did not significantly affect CRP and hs-CRP concentrations (mean difference (MD) = -0.15; 95% CI: -0.55- 0.23; P = 0.43). Subgroup analysis of CRP type showed that Se supplementation significantly decreased hs-CRP level (pooled SMD = -0.44; 95% CI: -0.67-0.21). Moreover, no significant change was observed in NO level by continuing to take Se supplementation, (pooled SMD: 0.003, 95%CI: -0.26, 0.26).

    Conclusions: This study revealed that Se supplementation would have desirable effects on cardio-metabolic indicators through affecting the levels of inflammatory markers. Given the importance of concerns, more attention should be given to more prospective studies with longer follow-up.

  17. Hussein FA, Chay SY, Ghanisma SBM, Zarei M, Auwal SM, Hamid AA, et al.
    J Dairy Sci, 2020 Mar;103(3):2053-2064.
    PMID: 31882211 DOI: 10.3168/jds.2019-17462
    We evaluated the acute (single-dose) and subacute (repeated-dose) oral toxicity of alcalase-hydrolyzed whey protein concentrate. Our acute study revealed no death or treatment-related complications, and the median lethal dose of whey protein concentrate hydrolysate was >2,500 mg/kg. In the subacute study, when the hydrolysate was fed at 3 different concentrations (200, 400, and 800 mg/kg), no groups showed toxicity changes compared with controls. Then, whey protein concentrate hydrolysate was orally administered to spontaneously hypertensive rats. Results revealed significant reductions in blood pressure in a dose-dependent manner, and dosing at 400 mg/kg led to significant blood pressure reduction (-47.8 mm Hg) compared with controls (blood pressure maintained) and the findings of previous work (-21 mm Hg). Eight peptides-RHPEYAVSVLLR, GGAPPAGRL, GPPLPRL, ELKPTPEGDL, VLSELPEP, DAQSAPLRVY, RDMPIQAF, and LEQVLPRD-were sequentially identified and characterized. Of the peptides, VLSELPEP and LEQVLPRD showed the most prominent in vitro angiotensin-I converting enzyme inhibition with half-maximal inhibitory concentrations of 0.049 and 0.043 mM, respectively. These findings establish strong evidence for the in vitro and in vivo potential of whey protein concentrate hydrolysate to act as a safe, natural functional food ingredient that exerts antihypertensive activity.
  18. Mousavi SM, Hashemi SA, Zarei M, Bahrani S, Savardashtaki A, Esmaeili H, et al.
    Data Brief, 2020 Feb;28:104929.
    PMID: 31886360 DOI: 10.1016/j.dib.2019.104929
    The biosynthesis of materials using medicinal plants can be a low-cost and eco-friendly approach due to their extraordinary properties. Herein, we reported a facile synthesis of Fe3O4 nanoparticles using Malva sylvestris. The surface morphology, functional groups, and elemental analysis were done to characterize the synthesized nanoparticles. The cytotoxicity performance of the synthesized nanoparticles was analyzed by exposing nanoparticles to MCF-7 and Hep-G2 cancer cell lines through MTT colorimetric assay and the IC50 value was defined as 100 μg/mL and 200 μg/mL, respectively. The antibacterial performance of synthesized nanoparticles against four different bacterial strains including Staphylococcus aureus, Corynebacterium, Pseudomonas aeruginosa, and Klebsiella pneumoniae were assessed through microdilution broth method. The synthesized Fe3O4 nanoparticles using Malva sylvestris demonstrated higher antibacterial effects against Gram-positive strains with MIC values of 62.5 μg/mL and 125 μg/mL which increase the inhibitory percentage to more than 90%.
  19. Mousavi SM, Hashemi SA, Zarei M, Gholami A, Lai CW, Chiang WH, et al.
    PMID: 33281911 DOI: 10.1155/2020/4397543
    Kombucha is a valuable traditional natural tea that contains beneficial compounds like organic acids, minerals, different vitamins, proteins, polyphenols, and several anions. Kombucha possesses anticancer, antioxidant, antimicrobial, and antifungal activity as well as hepatoprotective effects. Considering the unique properties of Kombucha, several investigations have already been conducted on its nutritional properties. In this review, an effort has been devoted to pool recent literature on the biomedical application of Kombucha under the objectives, including the chemical composition of Kombucha and industrial production, and highlight different properties of Kombucha. Finally, we explain its adverse effects and prospect. This review is an active, in-depth, and inclusive report about Kombucha and its health benefits.
  20. Mahdavi Gorabi A, Hasani M, Djalalinia S, Zarei M, Ejtahed H, Abdar ME, et al.
    J Diabetes Metab Disord, 2019 Dec;18(2):349-362.
    PMID: 31890660 DOI: 10.1007/s40200-019-00419-w
    PURPOSE: The association between selenium supplementation and glycemic indices seems to be a controversial issue. This systematic review and meta-analysis was conducted to evaluate the effect of selenium supplementation on glycemic indices.

    METHODS: We systematically searched PubMed/MEDLINE, ISI/WOS, and Scopus (from their commencements up to Jan 2016) for relevant studies examining the association between intake of selenium and glycemic indices. The data were extracted from relevant qualified studies and estimated using the random-effect or pooled model and standardized mean difference (SMD) with 95% confidence interval (CI).

    RESULTS: Twelve articles published between 2004 and 2016 were included. In all the studies, the participants were randomly assigned to an intervention group (n = 757) or a control group(n = 684). All the studies were double blind, placebo controlled trials. Selenium supplementation resulted in a significant decrease in homeostasis model of assessment-estimated β-cell function (HOMA-B) (SMD: -0.63; 95%CI: -0.89 to -0.38) and a significant increase in quantitative insulin sensitivity check index (QUICKI) (SMD: by 0.74; 95%CI: 0.49 to 0.1) as compared with the controls. There were no statistically significant improvements in glycemic indices, such as fasting plasma glucose (FPG), insulin, homeostasis model of assessment-estimated insulin resistance (HOMA-IR), Hemoglobin A1c (HbA1c) and adiponectin.

    CONCLUSION: This meta-analysis indicated that selenium supplementation significantly decreased HOMA-B and increased QUICKI score. There was no statistically significant improvement in FPG, insulin, HOMA-IR, HbA1c and adiponectin indices following selenium supplementation.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links