METHODS: The title amides (4a-j) were obtained by simple nucleophilic substitution reaction of dexibuprofen acid chloride with substituted amines in good yield and chemical structures were confirmed by FTIR, 1H NMR, 13C NMR and mass spectral data.
RESULTS: The brine shrimp lethality assay results showed that all of the synthesized compounds are non-toxic to shrimp larvae. The inhibitory effects on tumor growth were evaluated and it was observed that N-(2,5-dichlorophenyl)-2-(4-isobutylphenyl) propionamide (4e) and N-(2-chlorophenyl)-2-(4-isobutylphenyl) propionamide (4g) exhibited excellent antitumor activity compared to all other derivatives. The compound 4e bearing 2,5-dichloro substituted phenyl ring and 4g possesses 2-chloro substituted phenyl ring exhibited 100% inhibition of the tumor growth. The anticancer activity was evaluated against breast carcinoma cell line (MCF-7) and it was observed that derivative 4e exhibited excellent growth inhibition of cancer cells with IC50 value of 0.01±0.002 µm, which is better than the standard drugs. The docking studies against breast cancer type 1 susceptibility protein BRCA1 (PDBID 3K0H) exhibited good binding affinities, which are in good agreement with the wet lab results. The compounds 4e and 4g showed the binding energy values of -6.39 and -6.34 Kcal/mol, respectively. The molecular dynamic (MD) simulation was also carried out to evaluate the residual flexibility of the best docking complexes of compounds 4e and 4g. The MD simulation analysis assured that the 4e formed a more stable complex with the target protein than the 4g. The synthesized amide derivatives exhibited were devoid of gastrointestinal side effects and no cytotoxic effects against human normal epithelial breast cell line (MCF-12A) were found.
CONCLUSION: Based upon our wet lab and dry lab findings we propose that dexibuprofen analogue 4e may serve as a lead structure for the design of more potent anticancer drugs.
MATERIALS AND METHODS: We retrospectively analyzed the clinical and imaging data of cervical cancer patients diagnosed pathologically at our hospital from January 2021 to June 2024. All patients underwent routine magnetic resonance imaging (MRI), diffusion-weighted imaging (DWI), and APT imaging before treatment. Apparent diffusion coefficient (ADC) and APT values were measured. Based on the pathological results, patients were categorized into LVSI (+) and LVSI (-) groups, and PMI (+) and PMI (-) groups. Independent sample t-tests were used to compare the ADC and APT values between these groups. Receiver operating characteristic (ROC) curves were used to assess the sensitivity, specificity, and area under the curve (AUC) of ADC, APT, and ADC + APT in predicting PMI and LVSI. The Delong test was employed to compare the diagnostic performance among these measures.
RESULTS: A total of 83 patients were included, with 56 in the LVSI (-) group, 27 in the LVSI (+) group, 35 in the PMI (-) group, and 16 in the PMI (+) group. The ADC values for the LVSI (+) and PMI (+) groups were significantly lower than those for the LVSI (-) and PMI (-) groups (P
RESULTS: The pharmacophore modelling mode of 5RE6 displayed two Hydrogen Bond Acceptors (HBA) and one Hydrophobic (HY) interaction. Besides, the pharmacophore model of 5REX showed two HBA and two HY interactions. Finally, the pharmacophore model of 5RFZ showed three HBA and one HY interaction. Based on ligand-based approach, 20 Schiff-based vanillin derivatives, showed strong MPro inhibition activity. This was due to their good alignment and common features to PDB-5RE6. Similarly, monolaurin and tetrodotoxin displayed some significant activity against SARS-CoV-2. From structure-based approach, vanillin derivatives (1) to (12) displayed some potent MPro inhibition against SARS-CoV-2. Favipiravir, chloroquine and hydroxychloroquine also showed some significant MPro inhibition.