Displaying publications 21 - 40 of 2162 in total

Abstract:
Sort:
  1. Amil MA, Rahman SNSA, Yap LF, Razak FA, Bakri MM, Salem LSO, et al.
    Chem Biodivers, 2024 Mar;21(3):e202301836.
    PMID: 38253795 DOI: 10.1002/cbdv.202301836
    Essential oils have been recognised for their potential benefits in oral care. The aim of this study was to evaluate the antibacterial and antiproliferative activity of essential oils derived from four Zingiberaceae species. A combination of GC/MS and GC-FID was employed to analyse these essential oils. The results showed that β-myrcene (79.77 %) followed by ethyl-cinnamate (40.14 %), β-curcumene (34.90 %), and alloaromadendrene (25.15 %) as the primary constituents of Curcuma mangga, Curcuma xanthorrhiza, Kaempferia galanga and Curcuma aeruginosa, respectively. The Zingiberaceae oils were tested for their antibacterial activity against oral bacteria using the disc diffusion test. Curcuma xanthorrhiza oil showed the largest inhibition zones against Streptococcus mitis (19.50±2.22 mm) and Streptococcus sanguinis (15.04±3.05 mm). Similarly, Curcuma mangga oil exhibited significant antibacterial activity against Streptococcus mutans (12.55±0.45 mm) and mixed oral bacteria (15.03±3.82 mm). Furthermore, the MTT viability assay revealed moderate inhibitory activity of these essential oils against H103 and ORL-204 oral cancer cells. The study findings demonstrate that Curcuma xanthorrhiza and Curcuma mangga essential oils have potent antibacterial properties, suggesting their potential use as natural alternatives to synthetic antibacterial agents in oral care products. However, further investigations are necessary to fully explore their therapeutic applications.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  2. Kumar N, Sheikh Ghadzi SM, Rajpoot PL, Thanganadar H, Hashmi FK, Noor A, et al.
    J Infect Dev Ctries, 2024 Feb 29;18(2):177-187.
    PMID: 38484345 DOI: 10.3855/jidc.18313
    INTRODUCTION: Hypertension significantly contributes to the severity and mortality of COVID-19 patients. It has also been a risk factor for prolonged hospitalization and the need for intensive care. However, the data is still evolving. Therefore, this study investigated the predictors of mortality among hypertensive COVID-19 patients.

    METHODOLOGY: A single-center cohort study was performed at Indus Hospital and Health Network, Karachi, Pakistan, between April 1, 2021, and October 31, 2021. This study included 333 hospitalized hypertensive COVID-19 patients and evaluated their clinical characteristics and survival outcomes. A multivariate logistic regression model was applied in IBM SPSS 27.0 to determine the predictors of mortality.

    RESULTS: The majority of patients were females (54.7%), the median age was 62 [55-70] years, with co-existing diabetes (56.5%) and severely ill (52.6%). The independent predictors of mortality identified were age ≥ 65 years (aOR 20.89, 95% CI, 5.81-75.15; p < 0.001), pulse rate (aOR 1.03, 95% CI 1.01-1.63; p = 0.006), serum creatinine (aOR 1.34, 95% CI 1.11-1.63; p = 0.002), use of antibiotics (aOR 3.40, 95% CI 1.29-8.98; p = 0.014)), corticosteroid (aOR 49.68, 95% CI 1.83-1350.31; p = 0.020), and who needed high flow oxygen supply (aOR 13.08, 95% CI 1.70-100.54; p < 0.001), non-invasive mechanical ventilation (aOR 229.01, 95% CI 29.30-1789.71; p < 0.001) and invasive mechanical ventilation (aOR 379.54, 95% CI 36.60-3935.87; p < 0.001).

    CONCLUSIONS: Our study suggests that older age, elevated pulse rate, serum creatinine, use of antibiotics and corticosteroids, and the need for mechanical ventilation predict mortality among hypertensive COVID-19.

    Matched MeSH terms: Anti-Bacterial Agents
  3. Ravikumar OV, Marunganathan V, Kumar MSK, Mohan M, Shaik MR, Shaik B, et al.
    Mol Biol Rep, 2024 Feb 24;51(1):352.
    PMID: 38400866 DOI: 10.1007/s11033-024-09289-9
    BACKGROUND: Oral diseases are often attributed to dental pathogens such as S. aureus, S. mutans, E. faecalis, and C. albicans. In this research work, a novel approach was employed to combat these pathogens by preparing zinc oxide nanoparticles (ZnO NPs) capped with cinnamic acid (CA) plant compounds.

    METHODS: The synthesized ZnO-CA NPs were characterized using SEM, FTIR, and XRD to validate their composition and structural features. The antioxidant activity of ZnO-CA NPs was confirmed using DPPH and ABTS free radical scavenging assays. The antimicrobial effects of ZnO-CA NPs were validated using a zone of inhibition assay against dental pathogens. Autodock tool was used to identify the interaction of cinnamic acid with dental pathogen receptors.

    RESULTS: ZnO-CA NPs exhibited potent antioxidant activity in both DPPH and ABTS assays, suggesting their potential as powerful antioxidants. The minimal inhibitory concentration of ZnO-CA NPs against dental pathogens was found 25 µg/mL, indicating their effective antimicrobial properties. Further, ZnO-CA NPs showed better binding affinity and amino acid interaction with dental pathogen receptors. Also, the ZnO-CA NPs exhibited dose-dependent (5 µg/mL, 15 µg/mL, 25 µg/mL, and 50 µg/mL) anticancer activity against Human Oral Epidermal Carcinoma KB cells. The mechanism of action of apoptotic activity of ZnO-CA NPs on the KB cells was identified through the upregulation of BCL-2, BAX, and P53 genes.

    CONCLUSIONS: This research establishes the potential utility of ZnO-CA NPs as a promising candidate for dental applications. The potent antioxidant, anticancer, and effective antimicrobial properties of ZnO-CA NPs make them a valuable option for combating dental pathogens.

    Matched MeSH terms: Anti-Bacterial Agents/pharmacology; Anti-Bacterial Agents/chemistry
  4. Navaneethan RD, N C J PL, Ramaiah M, Ravindran R, T AK, Chinnathambi A, et al.
    Nanotechnology, 2024 Feb 21;35(19).
    PMID: 38320329 DOI: 10.1088/1361-6528/ad26d9
    The phytochemicals found inCaralluma pauciflorawere studied for their ability to reduce silver nitrate in order to synthesise silver nanoparticles (AgNPs) and characterise their size and crystal structure. Thunbergol, 1,1,6-trimethyl-3-methylene-2-(3,6,9,13-tetram, Methyl nonadecanoate, Methyl cis-13,16-Docosadienate, and (1R,4aR,5S)-5-[(E)-5-Hydroxy-3-methylpent were the major compounds identified in the methanol extract by gas chromatography-mass spectrum analysis. UV/Vis spectra, Fourier-transform infrared spectroscopy, x-ray diffraction, scanning electron microscope with Energy Dispersive Xâray Analysis (EDAX), Dynamic Light Scattering (DLS) particle size analyser and atomic force microscope (AfM) were used to characterise theCaralluma paucifloraplant extract-based AgNPs. The crystal structure and estimated size of the AgNPs ranged from 20.2 to 43 nm, according to the characterization data. The anti-cancer activity of silver nanoparticles (AgNPs) synthesised fromCaralluma paucifloraextract. The AgNPs inhibited more than 60% of the AGS cell lines and had an IC50 value of 10.9640.318 g, according to the findings. The cells were further examined using fluorescence microscopy, which revealed that the AgNPs triggered apoptosis in the cells. Furthermore, the researchers looked at the levels of reactive oxygen species (ROS) in cells treated with AgNPs and discovered that the existence of ROS was indicated by green fluorescence. Finally, apoptotic gene mRNA expression analysis revealed that three target proteins (AKT, mTOR, and pI3K) were downregulated following AgNP therapy. Overall, the findings imply that AgNPs synthesised from Caralluma pauciflora extract could be used to treat human gastric cancer.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  5. Ahmed SR, Sherazee M, Das P, Shalauddin M, Akhter S, Basirun WJ, et al.
    Biosens Bioelectron, 2024 Feb 15;246:115857.
    PMID: 38029708 DOI: 10.1016/j.bios.2023.115857
    This study unveils the electrochemically-enhanced nanozymatic activity exhibited by borophene during the reaction of 3,3',5,5'-tetramethylbenzidine (TMB) and H2O2. Herein, the surface of the pristine borophene was first modified with the addition of thiocyanate groups to improve hydroxyl radical (•OH) scavenging activity. Then, the oxidation reaction of TMB was accelerated under applied electrochemical potential. Both factors significantly improved the detection limit and drastically decreased the detection time. DPPH testing revealed that the radical scavenging nature of borophene was more than 70%, boosting its catalytic activity. In the presence of H2O2, borophene catalyzed the oxidation of TMB and produced a blue-colored solution that was linearly correlated with the concentration of H2O2 and allowed for the detection of H2O2 up to 38 nM. The present finding was further extended to nanozymatic detection of tetracyclines (TCs) using a target-specific aptamer, and the results were colorimetrically quantifiable up to 1 μM with a LOD value of 150 nM. Moreover, transferring the principles of the discussed detection method to form a portable and disposable paper-based system enabled the quantification of TCs up to 0.2 μM. All the sensing experiments in this study indicate that the nanozymatic activity of borophene has significantly improved under electrochemical potential compared to conventional nanozyme-based colorimetric detection. Hence, the present discovery of electrochemically-enhanced nanozymatic activity would be promising for various sensitive and time-dependent colorimetric sensor development initiatives in the future.
    Matched MeSH terms: Anti-Bacterial Agents
  6. Agatonovic-Kustrin S, Wong S, Dolzhenko AV, Gegechkori V, Morton DW
    J Pharm Biomed Anal, 2024 Feb 15;239:115912.
    PMID: 38128161 DOI: 10.1016/j.jpba.2023.115912
    Olive trees are one of the most widely cultivated fruit trees in the world. The chemical compositions and biological activities of olive tree fruit and leaves have been extensively researched for their nutritional and health-promoting properties. In contrast, limited data have been reported on olive flowers. The present study aimed to analyse bioactive compounds in olive flower extracts and the effect of fermentation-assisted extraction on phenolic content and antioxidant activity. High-performance thin-layer chromatography (HPTLC) hyphenated with the bioassay-guided detection and spectroscopic identification of bioactive compounds was used for the analysis. Enzymatic and bacterial in situ bioassays were used to detect COX-1 enzyme inhibition and antibacterial activity. Multiple zones of antibacterial activity and one zone of COX-1 inhibition were detected in both, non-fermented and fermented, extracts. A newly developed HPTLC-based experimental protocol was used to measure the high-maximal inhibitory concentrations (IC50) for the assessment of the relative potency of the extracts in inhibiting COX-1 enzyme and antibacterial activity. Strong antibacterial activities detected in zones 4 and 7 were significantly higher in comparison to ampicillin, as confirmed by low IC50 values (IC50 = 57-58 µg in zone 4 and IC50 = 157-167 µg in zone 7) compared to the ampicillin IC50 value (IC50 = 495 µg). The COX-1 inhibition by the extract (IC50 = 76-98 µg) was also strong compared to that of salicylic acid (IC50 = 557 µg). By comparing the locations of the bands to coeluted standards, compounds from detected bioactive bands were tentatively identified. The eluates from bioactive HPTLC zones were further analysed by FTIR NMR, and LC-MS spectroscopy. Multiple zones of antibacterial activity were associated with the presence of triterpenoid acids, while COX-1 inhibition was related to the presence of long-chain fatty acids.
    Matched MeSH terms: Anti-Bacterial Agents/analysis; Anti-Bacterial Agents/pharmacology
  7. Che Hamzah AM, Chew CH, Al-Trad EI, Puah SM, Chua KH, A Rahman NI, et al.
    Sci Rep, 2024 Feb 12;14(1):3485.
    PMID: 38347106 DOI: 10.1038/s41598-024-54182-x
    Despite the importance of methicillin-resistant Staphylococcus aureus (MRSA) as a priority nosocomial pathogen, the genome sequences of Malaysian MRSA isolates are currently limited to a small pool of samples. Here, we present the genome sequence analyses of 88 clinical MRSA isolates obtained from the main tertiary hospital in Terengganu, Malaysia in 2016-2020, to obtain in-depth insights into their characteristics. The EMRSA-15 (ST22-SCCmec IV) clone of the clonal complex 22 (CC22) lineage was predominant with a total of 61 (69.3%) isolates. Earlier reports from other Malaysian hospitals indicated the predominance of the ST239 clone, but only two (2.3%) isolates were identified in this study. Two Indian-origin clones, the Bengal Bay clone ST772-SCCmec V (n = 2) and ST672 (n = 10) were also detected, with most of the ST672 isolates obtained in 2020 (n = 7). Two new STs were found, with one isolate each, and were designated ST7879 and ST7883. From the core genome phylogenetic tree, the HSNZ MRSA isolates could be grouped into seven clades. Antimicrobial phenotype-genotype concordance was high (> 95%), indicating the accuracy of WGS in predicting most resistances. Majority of the MRSA isolates were found to harbor more than 10 virulence genes, demonstrating their pathogenic nature.
    Matched MeSH terms: Anti-Bacterial Agents
  8. Wu XY, Zhao ZY, Osman EEA, Wang XJ, Choo YM, Benjamin MM, et al.
    Bioorg Chem, 2024 Feb;143:107103.
    PMID: 38211549 DOI: 10.1016/j.bioorg.2024.107103
    Three undescribed (1-3) and nine known (4-12) platanosides were isolated and characterized from a bioactive extract of the May leaves of Platanus × acerifolia that initially showed inhibition against Staphylococcus aureus. Targeted compound mining was guided by an LC-MS/MS-based molecular ion networking (MoIN) strategy combined with conventional isolation procedures from a unique geographic location. The novel structures were mainly determined by 2D NMR and computational (NMR/ECD calculations) methods. Compound 1 is a rare acylated kaempferol rhamnoside possessing a truxinate unit. 6 (Z,E-platanoside) and 7 (E,E-platanoside) were confirmed to have remarkable inhibitory effects against both methicillin-resistant S. aureus (MIC: ≤ 16 μg/mL) and glycopeptide-resistant Enterococcus faecium (MIC: ≤ 1 μg/mL). These platanosides were subjected to docking analyses against FabI (enoyl-ACP reductase) and PBP1/2 (penicillin binding protein), both of which are pivotal enzymes governing bacterial growth but not found in the human host. The results showed that 6 and 7 displayed superior binding affinities towards FabI and PBP2. Moreover, surface plasmon resonance studies on the interaction of 1/7 and FabI revealed that 7 has a higher affinity (KD = 1.72 μM), which further supports the above in vitro data and is thus expected to be a novel anti-antibacterial drug lead.
    Matched MeSH terms: Anti-Bacterial Agents/chemistry
  9. Abdulshaheed AA, Hanafiah MM, Nawaz R, Muslim SN
    Microb Pathog, 2024 Feb;187:106534.
    PMID: 38184176 DOI: 10.1016/j.micpath.2024.106534
    One of the most prevalent infectious diseases and a key driver of antibiotic prescriptions in pediatrics is urinary tract infection (UTI). Due to the emergence of more resistant uropathogenic bacterial and fungal strains, current treatments are no longer effective, necessitating the urgent development of novel antibacterial and antifungal drugs. In this study, the antifungal, antibacterial, and anti-biofilm capabilities of compounds, such as tannase (TN) and gallic acid (GA), which were produced from a novel natural source, Acinetobacter baumannii (AB11) bacteria, were assessed for the inactivation of uropathogenic microorganisms (UMs). Ammonium sulphate precipitation, ion exchange, high-performance liquid chromatography, and gel filtration were used to purify TN and GA that were isolated from A. baumannii. A 43.08 % pure TN with 1221.2 U/mg specific activity and 10.51 mg/mL GA was obtained. The antibacterial, antifungal and anti-biofilm activities of TN and GA were evaluated against UMs and compared to those of commercially available antibiotics including sulfamethoxazole (SXT), levofloxacin (LEV), ciprofloxacin (CIP), amikacin (Ak), and nitrofurantoin (F). The results showed that TN and GA were superior to commercial antibiotics in their ability to inactivate UMs and considerably reduced biofilms formation. Additionally, the GA emerges as the top substitute for currently available medications, demonstrating superior antibacterial and antibiofilm properties against all UMs evaluated in this study. The results of this investigation showed that A. baumannii-derived TN and GA could be utilized as an alternative medication to treat UTIs.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology; Anti-Bacterial Agents/therapeutic use
  10. Fugaban JII, Dioso CM, Choi GH, Bucheli JEV, Liong MT, Holzapfel WH, et al.
    Probiotics Antimicrob Proteins, 2024 Feb;16(1):35-52.
    PMID: 36445687 DOI: 10.1007/s12602-022-10017-7
    The aim of this project was to screen for bacteriocinogenic Bacillus strains with activity versus Staphylococcus spp. with future application in formulation of pharmaceutical antimicrobial preparations. Putative bacteriocinogenic strains, isolated and pre-identified as Bacillus spp. were selected for future study and differentiated based on repPCR and identified as Bacillus subtilis for strains ST826CD and ST829CD, Bacillus subtilis subsp. stercoris for strain ST794CD, Bacillus subtilis subsp. spizizenii for strain ST824CD, Bacillus velezensis for strain ST796CD, and Bacillus tequilensis for strain ST790CD. Selected strains were evaluated regarding their safety/virulence, beneficial properties, and potential production of antimicrobials based on biomolecular and physiological approves. Expressed bacteriocins were characterized regarding their proteinaceous nature, stability at different levels of pH, temperatures, and the presence of common chemicals applied in bacterial cultivation and bacteriocin purification. Dynamic of bacterial growth, acidification, and cumulation of produced bacteriocins and some aspects of the bacteriocins mode of action were evaluated. Based on obtained results, isolation and application of expressed antimicrobials can be realistic scenario for treatment of some staphylococcal associated infections. Appropriate biotechnological approaches need to be developed for cost effective production, isolation, and purification of expressed antimicrobials by studied Bacillus strains.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  11. Hii SYF, Zaiful Bahrina NN, Mohd Zaidi MN, Hashim R, Ahmad N
    Eur J Clin Microbiol Infect Dis, 2024 Feb;43(2):373-378.
    PMID: 37999783 DOI: 10.1007/s10096-023-04707-5
    Burkholderia pseudomallei is intrinsically resistant to many antibiotics. This study aimed to assess bacterial colony morphotypes and the validity of using disk diffusion method (DD) to determine antibiotic resistance in Malaysian clinical B. pseudomallei isolates for ceftazidime (CAZ), meropenem (MEM), amoxicillin-clavulanate (AMC) and doxycycline (DOX). DD produced good categorical agreements exhibiting concordance of 100% with reference method, broth microdilution for CAZ and DOX, 98.6% for MEM and 97.2% for AMC. Smooth-centred colonies were most frequently observed. EUCAST DD interpretative criterion is suitable to interpret B. pseudomallei CAZ, MEM, AMC and DOX resistance. Increasing AMC MIC in B. pseudomallei is a concern.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology; Anti-Bacterial Agents/therapeutic use
  12. Gunasekara YD, Kottawatta SA, Nisansala T, Wijewickrama IJB, Basnayake YI, Silva-Fletcher A, et al.
    Zoonoses Public Health, 2024 Feb;71(1):84-97.
    PMID: 37880923 DOI: 10.1111/zph.13087
    This study aimed to investigate and compare the proportion of AMR Escherichia coli (E. coli) between urban (Dompe in the Western province) and rural (Dambana in the Sabaragamuwa province) areas in Sri Lanka. The overall hypothesis of the study is that there is a difference in the proportion of AMR E. coli between the urban and the rural areas. Faecal samples were collected from healthy humans (n = 109), dairy animals (n = 103), poultry (n = 35), wild mammals (n = 81), wild birds (n = 76), soil (n = 80) and water (n = 80) from both areas. A total of 908 E. coli isolates were tested for susceptibility to 12 antimicrobials. Overall, E. coli isolated from urban area was significantly more likely to be resistant than those isolated from rural area. The human domain of the area had a significantly higher prevalence of AMR E. coli, but it was not significantly different in urban (98%) and rural (97%) areas. AMR E. coli isolated from dairy animals, wild animals and water was significantly higher in the urban area compared with the rural area. There was no significant difference in the proportion of multidrug resistance (MDR) E. coli isolated from humans, wild animals and water between the two study sites. Resistant isolates found from water and wild animals suggest contamination of the environment. A multi-sectorial One Health approach is urgently needed to control the spread of AMR and prevent the occurrences of AMR in Sri Lanka.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  13. Chabattula SC, Patra B, Gupta PK, Govarthanan K, Rayala SK, Chakraborty D, et al.
    Appl Biochem Biotechnol, 2024 Feb;196(2):1058-1078.
    PMID: 37318689 DOI: 10.1007/s12010-023-04582-y
    Metal/Metal Oxide nanoparticles (M/MO NPs) exhibit potential biomedical applications due to their tunable physicochemical properties. Recently, the biogenic synthesis of M/MO NPs has gained massive attention due to their economical and eco-friendly nature. In the present study, Nyctanthes arbor-tristis (Nat) flower extract-derived Zinc Ferrite NPs (Nat-ZnFe2O4 NPs) were synthesized and physicochemically characterized by FTIR, XRD, FE-SEM, DLS, and other instruments to study their crystallinity, size, shape, net charge, presence of phytocompounds on NP's surface and several other features. The average particle size of Nat-ZnFe2O4 NPs was approx. 25.87 ± 5.67 nm. XRD results showed the crystalline nature of Nat-ZnFe2O4 NPs. The net surface charge on NPs was -13.28 ± 7.18 mV. When tested on mouse fibroblasts and human RBCs, these NPs were biocompatible and hemocompatible. Later, these Nat-ZnFe2O4 NPs exhibited potent anti-neoplastic activity against pancreatic, lung, and cervical cancer cells. In addition, NPs induced apoptosis in tested cancer cells through ROS generation. These in vitro studies confirmed that Nat-ZnFe2O4 NPs could be used for cancer therapy. Moreover, further studies are recommended on ex vivo platforms for future clinical applications.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  14. Indumathi T, Kumaresan I, Suriyaprakash J, Alarfaj AA, Hirad AH, Jaganathan R, et al.
    J Basic Microbiol, 2024 Feb;64(2):e2300494.
    PMID: 37988661 DOI: 10.1002/jobm.202300494
    Globally, cancer is the leading cause of death and morbidity, and skin cancer is the most common cancer diagnosis. Skin problems can be treated with nanoparticles (NPs), particularly with zinc oxide (ZnO) NPs, which have antioxidant, antibacterial, anti-inflammatory, and anticancer properties. An antibacterial activity of zinc oxide nanoparticles prepared in the presence of 4-nitrobenzaldehyde (4NB) was also tested in the present study. In addition, the influence of synthesized NPs on cell apoptosis, cell viability, mitochondrial membrane potential (MMP), endogenous reactive oxygen species (ROS) production, apoptosis, and cell adhesion was also examined. The synthesized 4-nitro benzaldehyde with ZnO (4NBZnO) NPs were confirmed via characterization techniques. 4NBZnO NPs showed superior antibacterial properties against the pathogens tested in antibacterial investigations. As a result of dose-based treatment with 4NBZnO NPs, cell viability, and MMP activity of melanoma cells (SK-MEL-3) cells were suppressed. A dose-dependent accumulation of ROS was observed in cells exposed to 4NBZnO NPs. As a result of exposure to 4NBZnO NPs in a dose-dependent manner, viable cells declined and apoptotic cells increased. This indicates that apoptotic cell death was higher. The cell adhesion test revealed that 4NBZnO NPs reduced cell adhesion and may promote apoptosis of cancer cells because of enhanced ROS levels.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  15. Indumathi T, Suriyaprakash J, Alarfaj AA, Hirad AH, Jaganathan R, Mathanmohun M
    J Basic Microbiol, 2024 Feb;64(2):e2300505.
    PMID: 37988658 DOI: 10.1002/jobm.202300505
    The current investigation focuses on synthesizing copper oxide (CuO)-titanium oxide (TiO2 )-chitosan-farnesol nanocomposites with potential antibacterial, antifungal, and anticancer properties against Melanoma cells (melanoma cells [SK-MEL-3]). The nanocomposites were synthesized using the standard acetic acid method and subsequently characterized using an X-ray diffractometer, scanning electron microscope, transmission electron microscopy, and Fourier transform infrared spectroscopy. The results from the antibacterial tests against Streptococcus pneumoniae and Stapylococcus aureus demonstrated significant antibacterial efficacy. Additionally, the antifungal studies using Candida albicans through the agar diffusion method displayed a considerable antifungal effect. For evaluating the anticancer activity, various assays such as MTT assay, acridine orange/ethidium bromide dual staining assay, reactive oxygen species (ROS) generation assay, and mitochondrial membrane potential (MMP) analysis were conducted on SK-MEL-3 cells. The nanocomposites exhibited the ability to induce ROS generation, decrease MMP levels, and trigger apoptosis in SK-MEL-3 cells. Collectively, the findings demonstrated a distinct pattern for the synthesized bimetallic nanocomposites. Furthermore, these nanocomposites also displayed significant (p 
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology; Anti-Bacterial Agents/chemistry
  16. Mohamad Azranyi M, Aziz ZA, Ishak D, Mohd Nais NF, Elias ZA, Sulaiman NAF, et al.
    J Med Microbiol, 2024 Feb;73(2).
    PMID: 38380521 DOI: 10.1099/jmm.0.001809
    Introduction. Non-tuberculous Mycobacteria (NTM) is a group of mycobacteria distinct from the Mycobacterium tuberculosis complex. They can cause opportunistic infections, especially in immunocompromised individuals.Gap Statement. Over the last few years, there has been a growing concern regarding the distribution and antimicrobial resistance of NTM in Malaysia. however, a comprehensive study to fully grasp the NTM situation has yet to be conducted.Aim. This study aimed to investigate the species distribution and antimicrobial susceptibility patterns of NTM isolated from clinical samples in Malaysia from 2018 to 2022.Methodology. A retrospective analysis was conducted on NTM isolates obtained from various clinical specimens over a span of five years. The isolates were identified using phenotypic and molecular techniques, and antimicrobial susceptibility profiles for clinically significant isolates were determined using minimum inhibitory concentration.Results. The study revealed a diverse distribution of NTM species in Malaysia, with Mycobacteroides abscessus complex and Mycobacterium avium complex emerging as the most predominant. Furthermore, the antimicrobial susceptibility patterns showed varying degrees of resistance to commonly used antibiotics, highlighting the significance of treatment tailored to susceptibility testing results.Conclusion. This study provides valuable perspective into the epidemiology of NTM in Malaysia. The information gained from this study should prove useful for empirically treating serious NTM infections prior to species identification and the availability of antimicrobial susceptibility testing results.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  17. Hamid HA, Lin X, Qin YK, Akim AM, Zhang L, Wang J, et al.
    Int Wound J, 2024 Feb;21(2):e14574.
    PMID: 38379231 DOI: 10.1111/iwj.14574
    This cross-sectional study was conducted to examine the most effective strategies for managing malodorous and infected wounds in patients who have been diagnosed with advanced cervical cancer. The research was conducted in Liupanshui, China. The study specifically examined demographic profiles, wound characteristics and effectiveness of wound management approaches. The study incorporated the heterogeneous sample of 289 participants who fulfilled the inclusion criteria. Data collection was conducted via structured questionnaires and medical record evaluations. Descriptive statistics and statistical analyses, such as regression analysis, were utilized to evaluate demographic attributes, wound profiles and effects of different approaches to wound management. The findings unveiled the heterogeneous demographic composition of patients, encompassing differences in socioeconomic standing, educational attainment and age. A wide range of wound characteristics were observed, as 65.7% of lesions during the acute phase with diameter between 2 and 5 centimetres, while 41.5% of lesions had this range. The most prevalent types of infections were those caused by fungi (48.4%), followed by bacterial infections lacking resistance (38.1%). A moderate degree of odour intensity was prevalent, affecting 45.0% of the cases. With maximal odour reduction of 80%, a mean healing time of 25 days and patient satisfaction rating of 4.5 out of 5, Negative Pressure Wound Therapy demonstrated itself to be the most efficacious treatment method. Additional approaches, such as photodynamic therapy and topical antibiotic therapy, demonstrated significant effectiveness, as evidenced by odour reductions of 70% and 75%, respectively, and patient satisfaction ratings of 4.3 and 4.2. Thus, the study determined challenges associated with management of malodorous and infected lesions among patients with advanced cervical cancer. The results underscored the significance of individualized care approaches, drew attention to efficacious wound management techniques and identified critical determinants that impacted patient recuperation. The findings of this study hold potential for advancing palliative care for individuals diagnosed with advanced cervical cancer.
    Matched MeSH terms: Anti-Bacterial Agents
  18. Wang JL, Lai CC, Ko WC, Hsueh PR
    Int J Antimicrob Agents, 2024 Feb;63(2):107072.
    PMID: 38154661 DOI: 10.1016/j.ijantimicag.2023.107072
    To understand the global changes in non-susceptibility rates of Streptococcus pneumoniae to ceftriaxone, we conducted a study using the Antimicrobial Testing Leadership and Surveillance database. A total of 15,717 S. pneumoniae isolates were collected from 2016 to 2021. The minimum inhibitory concentrations (MICs) were determined using broth microdilution. The overall susceptibility rates of S. pneumoniae isolates to penicillin, ceftriaxone and ceftaroline were 63.4%, 94.0% and 99.6%, respectively. The geometric mean of MICs and MIC50/MIC90 values of ceftriaxone were higher in Asia than in other continents. China (33.9%), South Korea (33.8%) and Taiwan (27.6%) had the highest ceftriaxone non-susceptibility rates, followed by Turkey, India, Brazil, Malaysia, South Africa and Colombia, with rates between 10% and 20%. During the study period from 2020 to 2021, Asia had the highest MIC90 value (4 mg/L) for ceftriaxone in S. pneumoniae isolates, and the geometric mean of MICs increased from 0.25 mg/L in 2016-2017 to 0.39 mg/L in 2020-2021. Both Asia (from 83.4% to 75.1%) and Latin America (from 94.2% to 86.3%) showed a decreasing trend in ceftriaxone susceptibility rates from 2016 to 2021. In North America, Europe and Oceania, the susceptibility rate was higher than 95%, and there was no obvious change in the rate during the 6 y. Further analysis of the data from Asia revealed that individuals younger than 6 y of age had a lower susceptibility rate to ceftriaxone (71.6% vs. 81.7%, P < 0.05) than patients ≥6 y. The higher non-susceptibility rates of ceftriaxone in S. pneumoniae in Asia may lead to therapeutic challenges in community-acquired pneumonia.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology
  19. Sia T, Yong E
    BMJ Case Rep, 2024 Jan 16;17(1).
    PMID: 38232998 DOI: 10.1136/bcr-2023-258386
    A previously healthy woman in her mid-70s presented with right upper quadrant abdominal pain, fever, intermittent chills and malaise for 1 week. She was clinically septic with raised inflammatory markers. Her blood culture revealed Pasteurella multocida, which was susceptible to penicillin and amoxicillin-clavulanic acid. CT of liver revealed an abscess of 8.0×7.9×8.5 cm at the left lobe of the liver. However, the abscess was not amenable for surgical or radiological drainage. She was a farmer and had close contact with her pet cats. She was occasionally scratched by her cats when caring for them. The liver abscess resolved completely without drainage after prolonged antimicrobial therapy of 109 days. She commenced on 63 days of intravenous antimicrobials and 46 days of oral amoxicillin-clavulanic acid. This case illustrated P. multocida bacteraemia with a large liver abscess in an immunocompetent adult after non-bite exposure.
    Matched MeSH terms: Anti-Bacterial Agents/therapeutic use
  20. De Soir S, Parée H, Kamarudin NHN, Wagemans J, Lavigne R, Braem A, et al.
    Microbiol Spectr, 2024 Jan 11;12(1):e0321923.
    PMID: 38084971 DOI: 10.1128/spectrum.03219-23
    Biofilm-related infections are among the most difficult-to-treat infections in all fields of medicine due to their antibiotic tolerance and persistent character. In the field of orthopedics, these biofilms often lead to therapeutic failure of medical implantable devices and urgently need novel treatment strategies. This forthcoming article aims to explore the dynamic interplay between newly isolated bacteriophages and routinely used antibiotics and clearly indicates synergetic patterns when used as a dual treatment modality. Biofilms were drastically more reduced when both active agents were combined, thereby providing additional evidence that phage-antibiotic combinations lead to synergism and could potentially improve clinical outcome for affected patients.
    Matched MeSH terms: Anti-Bacterial Agents/pharmacology; Anti-Bacterial Agents/therapeutic use
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links