Displaying publications 21 - 40 of 236 in total

Abstract:
Sort:
  1. Yeoh, S.J., Taip, F.S., Endan, J., Talib, R.A., Sita Mazlina, M.K.
    MyJurnal
    Aquaculture is a growing industry with a great potential towards the contribution of the country’s total
    fish requirement. Serious efforts have been done to develop and improve the production of fish by rearing high value fish in tanks or ponds. Under the Third National Agricultural Policy (1998-2010), the target is to annually produce 1.93 million tonnes of fish worth approximately RM8.3 billion by the year 2010. Consequently, the development of an automatic fish feeding machine can be very beneficial to the growth of the aquaculture industry. This device was developed to overcome labour problems in the industry and introduce a semi-automatic process in the aquaculture industry. It has the ability to dispense dried fish food in various forms such as pellets, sticks, tablets or granules into fish tanks or ponds in a controlled manner for a stipulated time. The automatic fish feeder is controlled by a digital timer and it is capable of feeding the fish in accordance with a pre-determined time schedule without the presence of an operator, and at a feeding rate of 250g/min. The feeder can be adjusted to the desired height and conveniently moved around to be positioned adjacent to the pond or tank. Meanwhile, its hopper can be covered and easily dissembled to change the size of the hopper to accommodate different capacities of feed. This automatic fish feeder can be implemented in aquaculture system to convenience to fish culturists.
    Matched MeSH terms: Aquaculture
  2. Nurul-Yuziana Mohd-Yusof, Hoh CC, Adura Mohd-Adnan, Wan KL
    The Asian seabass (Lates calcarifer) is one of the most economically important aquaculture fish species in South East Asia. While the biology of the Asian seabass is widely studied, relatively little information is available at the molecular level. This lack of molecular information represents one obstacle to rapid progress in the study of immune responses particularly under aquaculture conditions. In light of this situation, we have undertaken an expressed sequence tag (EST) project on the Asian seabass spleen, the secondary lymphoid organ, for the identification of immune-related genes. A
    total of 2932 ESTs were generated and grouped into 1063 unique transcripts (UTs), which consisted of 104 consensi and 959 singletons. Of these, 51.3% (545/1063) matched to previously identified genes, while 48.7% (518/1063) showed no match. Of the 545 homologous UTs, 102 (9.6%) can be putatively identified as immune-related genes. The identification of the putative immune-related genes provides a meaningful framework in the effort to comprehend the Asian seabass immune system that may lead to an increase in the understanding of the defense mechanisms of and our abilities to
    manage this fish species.
    Matched MeSH terms: Aquaculture
  3. Wan Mahari WA, Waiho K, Azwar E, Fazhan H, Peng W, Ishak SD, et al.
    Chemosphere, 2022 Feb;288(Pt 2):132559.
    PMID: 34655643 DOI: 10.1016/j.chemosphere.2021.132559
    Global production of shellfish aquaculture is steadily increasing owing to the growing market demands for shellfish. The intensification of shellfish aquaculture to maximize production rate has led to increased generation of aquaculture waste streams, particularly the effluents and shellfish wastes. If not effectively managed, these wastes could pose serious threats to human health and the ecosystem while compromising the overall sustainability of the industry. The present work comprehensively reviews the source, composition, and environmental implications of shellfish wastes and aquaculture wastewater. Moreover, recent advancements in the valorization of shellfish wastes into value-added biochar via emerging thermochemical and modification techniques are scrutinized. The utilization of the produced biochar in removing emerging pollutants from aquaculture wastewater is also discussed. It was revealed that shellfish waste-derived biochar exhibits relatively higher adsorption capacities (300-1500 mg/g) compared to lignocellulose biochar (<200 mg/g). The shellfish waste-derived biochar can be effectively employed for the removal of various contaminants such as antibiotics, heavy metals, and excessive nutrients from aquaculture wastewater. Finally, future research priorities and challenges faced to improve the sustainability of the shellfish aquaculture industry to effectively support global food security are elaborated. This review envisages that future studies should focus on the biorefinery concept to extract more useful compounds (e.g., carotenoid, chitin) from shellfish wastes for promoting environmental-friendly aquaculture.
    Matched MeSH terms: Aquaculture
  4. Campbell I, Mateo J, Rusekwa SB, Kambey CSB, Hurtado A, Msuya FE, et al.
    J Environ Manage, 2022 Feb 15;304:114112.
    PMID: 34923419 DOI: 10.1016/j.jenvman.2021.114112
    Seaweeds form the second largest global aquaculture product in volume, and despite rapid growth of the sector over the last 25 years, production and quality in top producing regions is becoming increasingly limited due to disease and pest outbreaks, the spread of non-native cultivars and the degradation of genetic health due to inbreeding. Most notably, the lack of biosecurity measures leading to disease and pest outbreaks are reported to cause the most significant production losses in the seaweed industry. This study uses the Knowledge, Attitude and Practice (KAP) survey tool to quantify and compare biosecurity cross-culturally, in two major red seaweed producing countries, the Philippines and Tanzania. Both countries have significantly different political contexts and the seaweed sector sits within two very different value chains. Seaweed-based commodities from these countries, however, enters the same international market for carrageenan, a thickening agent used for a variety of products globally. This study uses the KAP survey tool to assess currently-adopted biosecurity control measures and understand how potential policy strategies could be developed on an international scale. Farmers from both producing countries have good biosecurity knowledge. In Tanzania 64% farmers scored Fair or Good, and in the Philippines this was 95%. Corresponding scores in practices were lower, 85% Poor for Tanzania, and 88% Fair for the Philippines, indicating there is a lack of resources for farmers to implement additional practices. The information gathered using the KAP tool in the context of the global seaweed industry can be used to facilitate compromise between science, policy and practice whilst taking into consideration smaller-scale regional challenges. Given the results from the seaweed industry were similar to that of smallholder agricultural sectors, it is suggested that governmental programs to incentivise biosecurity in smallholder rural agriculture could be adapted for the seaweed industry. This study also demonstrates the potential use of the KAP survey, as a tool to accurately compare biosecurity challenges faced by farmers in different aquaculture sectors globally, and to encourage alignment in international approaches to aquaculture biosecurity policies.
    Matched MeSH terms: Aquaculture
  5. Azwar E, Chan DJC, Kasan NA, Rastegari H, Yang Y, Sonne C, et al.
    J Hazard Mater, 2022 02 15;424(Pt A):127329.
    PMID: 34601414 DOI: 10.1016/j.jhazmat.2021.127329
    Aquatic weeds pose hazards to aquatic ecosystems and particularly the aquatic environment in shellfish aquaculture due to its excessive growth covering entire freshwater bodies, leading to environmental pollution particularly eutrophication intensification, water quality depletion and aquatic organism fatality. In this study, pyrolysis of six aquatic weed types (wild and cultured species of Salvinia sp., Lemna sp. and Spirodella sp.) were investigated to evaluate its potential to reduce and convert the weeds into value-added chemicals. The aquatic weeds demonstrated high fixed carbon (8.7-47.3 wt%), volatile matter content (39.0-76.9 wt%), H/C ratio (1.5-2.0) and higher heating value (6.6-18.8 MJ/kg), representing desirable physicochemical properties for conversion into biofuels. Kinetic analysis via Coats-Redfern integral method obtained different orders for chemical reaction mechanisms (n = 1, 1.5, 2, 3), activation energy (55.94-209.41 kJ/mol) and pre-exponential factor (4.08 × 104-4.20 × 1017 s-1) at different reaction zones (zone 1: 150-268 °C, zone 2: 268-409 °C, zone 3: 409-600 °C). The results provide useful information for design and optimization of the pyrolysis reactor and establishment of the process condition to dispose this environmentally harmful species.
    Matched MeSH terms: Aquaculture
  6. Jazamuddin FM, Aizat WM, Goh HH, Low CF, Baharum SN
    Data Brief, 2018 Feb;16:466-469.
    PMID: 29255779 DOI: 10.1016/j.dib.2017.11.024
    Vibriosis disease by Vibrio spp. greatly reduced productivity of aquaculture, such as brown-marbled grouper (Epinephelus fuscoguttatus), which is an economically important fish species in Malaysia. Preventive measures and immediate treatment are critical to reduce the mortality of E. fuscoguttatus from vibriosis. To investigate the molecular mechanisms associated with immune response and host-bacteria interaction, a transcriptomic analysis was performed to compare between healthy and Vibrio-infected groupers. This permits the discovery of immune-related genes, specifically the resistance genes upon infection. Herein, we provide the raw transcriptome data from Illumina HiSeq. 4000 that have been deposited into NCBI SRA database with the BioProject accession number PRJNA396437. A total of 493,403,076 raw sequences of 74.5 Gb were obtained. Trimming of the raw data produced 437,186,232 clean reads of ~58 Gb. These datasets will be useful to elucidate the defence mechanisms of E. fuscoguttatus against Vibrio vulnificus infection for future development of effective prevention and treatment of vibriosis.
    Matched MeSH terms: Aquaculture
  7. Foo SM, Eng WWH, Lee YP, Gui K, Gan HM
    Genome Announc, 2017 May 11;5(19).
    PMID: 28495773 DOI: 10.1128/genomeA.00302-17
    The acquisition of Photorhabdus insect-related (Pir) toxin-like genes in Vibrio parahaemolyticus has been linked to hepatopancreatic necrosis disease in shrimp. We report the whole-genome sequences of genetically virulent and avirulent V. parahaemolyticus isolated from a Malaysian aquaculture pond and show that they represent previously unreported sequence types of V. parahaemolyticus.
    Matched MeSH terms: Aquaculture
  8. Wei L, Bee MY, Poh SC, Garg A, Lin F, Gao J
    Environ Monit Assess, 2022 Dec 27;195(1):231.
    PMID: 36572829 DOI: 10.1007/s10661-022-10822-1
    The marine aquaculture industry has caused a suite of adverse environmental consequences, including offshore eutrophication. However, little is known about the extent to which aquaculture effluents affect nearby wetland ecosystems. We carried out a field experiment in a mangrove stand located between two effluent-receiving creeks to estimate the extent to which marine aquaculture affects the soil nutrient distribution and plant nutrient status of adjacent mangroves. Carbon (C), nitrogen (N), and phosphorus (P) contents and C isotopic signatures were determined seasonally in creeks, pore water, surface soils, and in the leaves of the dominant mangrove species Kandelia obovata. The creeks exhibited nutrient enrichment (2.44 mg N L-1 and 0.09 mg P L-1 on average). The soils had N (from 1.40 to 2.70 g kg-1) and P (from 0.58 to 2.76 g kg-1) much greater than those of pristine mangrove forests. Combined analyses of the N:P ratio, nutrient resorption efficiency, and proficiency indicated that soil P met plant demands, but plants in most plots showed N limitation, suggesting that soil nutrient accumulation did not fundamentally impact the plant nutrient status. Collectively, this case study shows that marine aquaculture farms can affect adjacent mangrove stands even though their effluents are not directly discharged into the mangrove stands, but mangrove forests may have substantial buffering capabilities for long-term nutrient loading.
    Matched MeSH terms: Aquaculture
  9. Garza M, Mohan CV, Brunton L, Wieland B, Häsler B
    Int J Antimicrob Agents, 2022 Jan;59(1):106495.
    PMID: 34896577 DOI: 10.1016/j.ijantimicag.2021.106495
    Indiscriminate antimicrobial use (AMU) in aquaculture to treat and prevent diseases is common and can lead to the emergence of antimicrobial-resistant micro-organisms, potentially impacting public health and connected ecosystems. This study aimed to develop a typology to classify and characterise interventions to reduce AMU in aquaculture and identify points of action. Seventeen aquaculture and animal health professionals in Asian and African countries were interviewed to gather information on characteristics of interventions in different contexts to develop a typology. Seven types of interventions were defined: (i) legislation and regulations; (ii) industry rules and standards; (iii) voluntary instruments; (iv) commercial technology and alternatives to antimicrobials; (v) on-farm management; (vi) learning and awareness-raising; and (vii) activities with co-benefits. Types were based on intervention function, scope of implementation, implementer, compulsion, strength of the intervention, AMU/antimicrobial resistance (AMR) objective and stakeholder to influence. For each type, examples were described and discussed. The most common interventions to address AMU and AMR were legislative and regulatory frameworks and voluntary instruments, including National Action Plans. Interventions addressing AMU/AMR specifically were scarce. Other interventions focused on indirect effect pathways to AMU and AMR reduction aiming to improve good aquaculture practices, disease prevention and improved management. Monitoring and evaluation of these interventions were found to be rare, only present for interventions driven by development projects and international agencies. The presented typology of existing strategies and interventions addressing AMU/AMR in aquaculture systems can guide evaluation of AMR-sensitive interventions that promote responsible AMU, and informs the design and implementation of future interventions.
    Matched MeSH terms: Aquaculture/legislation & jurisprudence*; Aquaculture/methods*; Aquaculture/standards*
  10. Waiho K, Abd Razak MS, Abdul Rahman MZ, Zaid Z, Ikhwanuddin M, Fazhan H, et al.
    PeerJ, 2023;11:e15758.
    PMID: 37790619 DOI: 10.7717/peerj.15758
    Biofloc technology improves water quality and promote the growth of beneficial bacteria community in shrimp culture. However, little is known about the bacteria community structure in both water and gut of cultured organisms. To address this, the current study characterised the metagenomes derived from water and shrimp intestine samples of novel Rapid BFTTM with probiotic and clearwater treatments using 16S V4 region and full length 16S sequencing. Bacteria diversity of water and intestine samples of Rapid BFTTM and probiotic treatments were similar. Based on the 16S V4 region, water samples of >20 μm biofloc had the highest abundance of amplicon sequence variant (ASV). However, based on full length 16S, no clear distinction in microbial diversity was observed between water samples and intestine samples. Proteobacteria was the most abundant taxon in all samples based on both 16S V4 and full length 16S sequences. Vibrio was among the highest genus based on 16S V4 region but only full length 16S was able to discern up to species level, with three Vibrios identified-V. harveyi, V. parahaemolyticus and V. vulnificus. Vibrio harveyi being the most abundant species in all treatments. Among water samples, biofloc water samples had the lowest abundance of all three Vibrios, with V. vulnificus was present only in bioflocs of <20 μm. Predicted functional profiles of treatments support the beneficial impacts of probiotic and biofloc inclusion into shrimp culture system. This study highlights the potential displacement of opportunistic pathogens by the usage of biofloc technology (Rapid BFTTM) in shrimp culture.
    Matched MeSH terms: Aquaculture
  11. Muhsin MF, Fujaya Y, Hidayani AA, Fazhan H, Wan Mahari WA, Lam SS, et al.
    PeerJ, 2023;11:e16252.
    PMID: 37842055 DOI: 10.7717/peerj.16252
    Sea cucumbers have high economic value, and in most forms of trade, their body wall is typically the only part that is harvested and sold. The organs of the sea cucumber, collectively known as the viscera, are frequently discarded, contributing to land and water pollution. However, discarded sea cucumber viscera contain various nutrients that can be used in many applications. Therefore, this review highlights the biological and economic aspects of sea cucumbers, followed by a critical discussion of the nutritional value of their internal organs and possible applications, including as functional feed additives in the aquaculture industry, sources of natural testosterone for application in sex reversal and production of monosex population, of neuroprotective agents against central nervous system disorders and of cosmetic ingredients, especially for skin whitening and anti-ageing products. The review further highlights the valorisation potential of viscera to maximize their economic potential, thus providing an enormous prospect for reusing sea cucumber waste, thereby reducing the negative impact of the sea cucumber fishery sector on the environment.
    Matched MeSH terms: Aquaculture
  12. Chong CM, Lee PT, Rakus K, Wangkahart E
    Front Immunol, 2023;14:1305784.
    PMID: 38022499 DOI: 10.3389/fimmu.2023.1305784
    Matched MeSH terms: Aquaculture
  13. Ahmed N, Azra MN
    Curr Environ Health Rep, 2022 Sep;9(3):423-435.
    PMID: 35713850 DOI: 10.1007/s40572-022-00364-6
    PURPOSE OF REVIEW: The purpose of this review is to summarize the impacts of the coronavirus disease 2019 (COVID-19) pandemic on aquaculture input supply, production, distribution, and consumption.

    RECENT FINDINGS: The COVID-19 pandemic-related lockdowns, social distancing, supply chain disruptions, and transport restrictions affect seafood production, distribution, marketing, and consumption. Recommendations are suggested to overcome these challenges. The COVID-19 has led to disruption of aquaculture practices worldwide. The pandemic has adversely affected the aquaculture input supply of fish stocking and feeding, which, in turn, has impacted aquaculture production. Moreover, the COVID-19 crisis has had adverse effects on value addition to aquaculture products, through the restrictions of seafood marketing and exporting. Aquatic food production is vulnerable to the effects of COVID-19 outbreak; hence, adaptation strategies must be developed to cope with the challenges. There is an urgent need for collaboration among key stakeholders to rebuild the supply chain of inputs and fish marketing for sustainable aquaculture practices. International agencies, donors, government and non-governmental organizations, researchers, and policymakers need to develop policies to support aquaculture production and supply chains.

    Matched MeSH terms: Aquaculture
  14. Etherington GJ, Nash W, Ciezarek A, Mehta TK, Barria A, Peñaloza C, et al.
    BMC Genomics, 2022 Dec 15;23(1):832.
    PMID: 36522771 DOI: 10.1186/s12864-022-09065-8
    BACKGROUND: The Nile tilapia (Oreochromis niloticus) is the third most important freshwater fish for aquaculture. Its success is directly linked to continuous breeding efforts focusing on production traits such as growth rate and weight. Among those elite strains, the Genetically Improved Farmed Tilapia (GIFT) programme initiated by WorldFish is now distributed worldwide. To accelerate the development of the GIFT strain through genomic selection, a high-quality reference genome is necessary.

    RESULTS: Using a combination of short (10X Genomics) and long read (PacBio HiFi, PacBio CLR) sequencing and a genetic map for the GIFT strain, we generated a chromosome level genome assembly for the GIFT. Using genomes of two closely related species (O. mossambicus, O. aureus), we characterised the extent of introgression between these species and O. niloticus that has occurred during the breeding process. Over 11 Mb of O. mossambicus genomic material could be identified within the GIFT genome, including genes associated with immunity but also with traits of interest such as growth rate.

    CONCLUSION: Because of the breeding history of elite strains, current reference genomes might not be the most suitable to support further studies into the GIFT strain. We generated a chromosome level assembly of the GIFT strain, characterising its mixed origins, and the potential contributions of introgressed regions to selected traits.

    Matched MeSH terms: Aquaculture
  15. Rodde C, de Verdal H, Vandeputte M, Allal F, Nati J, Besson M, et al.
    J Anim Sci, 2021 Jun 01;99(6).
    PMID: 33966070 DOI: 10.1093/jas/skab152
    Feed efficiency (FE) is the amount of body weight gain for a given feed intake. Improving FE through selective breeding is key for sustainable finfish aquaculture but its evaluation at individual level is technically challenging. We therefore investigated whether individual routine metabolic rate (RMR) was a predictor of individual FE in the European sea bass Dicentrarchus labrax, a major species in European mariculture. The European sea bass has three genetically distinct populations across its geographical range, namely Atlantic (AT), West Mediterranean (WM), and East Mediterranean (EM). We compared FE and RMR of fish from these three populations at 18 or 24 °C. We held 200 fish (62 AT, 66 WM, and 72 EM) in individual aquaria and fed them from ad libitum down to fasting. FI was assessed for an ad libitum feeding rate and for a fixed restricted ration (1% of metabolic body weight·day-1, with metabolic body weight = body weight0.8). After being refed 12 wk in a common tank, individual RMR was measured over 36 h by intermittent flow respirometry. There was a significant effect of temperature whereby fish at 18 °C had greater mean FE (P < 0.05) and lower RMR (P < 0.001). There was also a significant effect of population, where AT fish had lower FE (P < 0.05) and greater RMR (P < 0.001) than WM and EM, at both temperatures. Despite these differences in temperature and population means, individual FE and RMR were not significantly correlated (P > 0.05). Therefore, although the results provide evidence of an association between metabolic rate and FE, RMR was not a predictor of individual FE, for reasons that require further investigation.
    Matched MeSH terms: Aquaculture
  16. Tan K, Xu P, Huang L, Luo C, Huang J, Fazhan H, et al.
    Sci Total Environ, 2024 Mar 01;914:169892.
    PMID: 38211869 DOI: 10.1016/j.scitotenv.2024.169892
    Global human population has increased dramatically over the past 50 years. As a result, marine fisheries and finfish aquaculture have become increasingly unsustainable, driving bivalve aquaculture to become an important food industry for the production of marine animal protein to support the growing market demand for animal protein. It is projected that the rate of bivalve aquaculture expansion will be greatly accelerated in the near future as the human population continues to increase. Although it is generally believed that unfed bivalve aquaculture has less impact on the environment than finfish aquaculture, the rapid expansion of bivalve aquaculture has raised concerns about its potential negative impact, especially on plankton and benthic community. Therefore, there is an urgent need to update the potential effects of bivalve aquaculture on plankton and benthic community. This article reviews the present state of knowledge on environmental issues related to bivalve aquaculture, and discusses potential mitigation measures for the environmental impacts induced by expansion of bivalve aquaculture. This review provides guidance for scientists and farm managers to clarify the current state of research and identify priority research needs for future bivalve aquaculture research. Therefore, specific management strategies can be formulated for the sustainable development and expansion of bivalve aquaculture.
    Matched MeSH terms: Aquaculture
  17. Abd Hamid M, Md Sah ASR, Idris I, Mohd Nor SA, Mansor M
    PeerJ, 2023;11:e15986.
    PMID: 38144186 DOI: 10.7717/peerj.15986
    BACKGROUND: The Temengor Reservoir is the second largest reservoir in Peninsular Malaysia. Located in the northwestern state of Perak, it was selected to develop a large-scale tilapia (Oreochromis niloticus) aquaculture facility within the Aquaculture Industrial Zone (AIZ) in 2008 due to its favourable environmental conditions. No record of tilapia has ever been reported in the natural waters prior to this. However, a post-establishment study recorded tilapia sightings in the natural waters of this lake. The cultured tilapia was easily recognizable with the elongated mouth and body, and long caudal fin. It is postulated that these were escapees from the floating cages that had invaded the natural waters and would negatively impact the native fish species. To test our hypothesis, we investigated the impact of the aquaculture facility on native fish diversity through a spatial design.

    METHODS: The study was focused on assessing the impact of tilapia culture at sites nearer to the AIZ vs more distant sites, the former with a greater likelihood of receiving escapees. Two major sites were chosen; within 5 km (near-cage) and within 5-15 km (far-cage) radii from the AIZ. Fish sampling was conducted using multiple mesh sizes of gill nets (3.7, 5.1, 6.5, 7.6, and 10.2 cm) deployed at the littoral zone of the sampling points. Species diversity, abundance, dietary habits, and habitat preference were investigated.

    RESULTS: The CPUE (individual/hour) of native fish species at the far-cage site of the AIZ Reservoir was found to be significantly higher (p < 0.05) than that at the near-cage site. Principal component analysis (PCA) based on diet and habitat preferences showed that the tilapia, O. niloticus had almost overlapping diet resources and habitat with native fish species.

    CONCLUSION: We conclude that there is a correlation between the reduced catches of native species (based on CPUE) and the high presence of tilapia. Thus, appropriate actions must be implemented for strategic and effective planning in terms of native fish conservation.

    Matched MeSH terms: Aquaculture
  18. Tay ZH, Ng FL, Thong CH, Lee CW, Gnana Kumar G, Al-Sehemi AG, et al.
    Appl Microbiol Biotechnol, 2024 Dec;108(1):1-14.
    PMID: 38194143 DOI: 10.1007/s00253-023-12951-0
    In this study, the bioelectrical power generation potential of four tropical marine microalgal strains native to Malaysia was investigated using BPV platforms. Chlorella UMACC 258 produced the highest power density (0.108 mW m-2), followed by Halamphora subtropica UMACC 370 (0.090 mW m-2), Synechococcus UMACC 371 (0.065 mW m-2) and Parachlorella UMACC 245 (0.017 mW m-2). The chlorophyll-a (chl-a) content was examined to have a linear positive relationship with the power density (p 
    Matched MeSH terms: Aquaculture
  19. Banerjee S, Ooi MC, Shariff M, Khatoon H
    ScientificWorldJournal, 2012;2012:130136.
    PMID: 22619583 DOI: 10.1100/2012/130136
    Salmonella and Vibrio species were isolated and identified from Litopenaeus vannamei cultured in shrimp farms. Shrimp samples showed occurrence of 3.3% of Salmonella and 48.3% of Vibrio. The isolates were also screened for antibiotic resistance to oxolinic acid, sulphonamides, tetracycline, sulfamethoxazole/trimethoprim, norfloxacin, ampicillin, doxycycline hydrochloride, erythromycin, chloramphenicol, and nitrofurantoin. Salmonella enterica serovar Corvallis isolated from shrimp showed individual and multiple antibiotic resistance patterns. Five Vibrio species having individual and multiple antibiotic resistance were also identified. They were Vibrio cholerae (18.3%), V. mimicus (16.7%), V. parahaemolyticus (10%), V. vulnificus (6.7%), and V. alginolyticus (1.7%). Farm owners should be concerned about the presence of these pathogenic bacteria which also contributes to human health risk and should adopt best management practices for responsible aquaculture to ensure the quality of shrimp.
    Matched MeSH terms: Aquaculture*
  20. Lind CE, Ponzoni RW, Nguyen NH, Khaw HL
    Reprod. Domest. Anim., 2012 Aug;47 Suppl 4:255-63.
    PMID: 22827379 DOI: 10.1111/j.1439-0531.2012.02084.x
    To satisfy increasing demands for fish as food, progress must occur towards greater aquaculture productivity whilst retaining the wild and farmed genetic resources that underpin global fish production. We review the main selection methods that have been developed for genetic improvement in aquaculture, and discuss their virtues and shortcomings. Examples of the application of mass, cohort, within family, and combined between-family and within-family selection are given. In addition, we review the manner in which fish genetic resources can be lost at the intra-specific, species and ecosystem levels and discuss options to best prevent this. We illustrate that fundamental principles of genetic management are common in the implementation of both selective breeding and conservation programmes, and should be emphasized in capacity development efforts. We highlight the value of applied genetics approaches for increasing aquaculture productivity and the conservation of fish genetic resources.
    Matched MeSH terms: Aquaculture/methods*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links