Displaying publications 21 - 40 of 704 in total

Abstract:
Sort:
  1. Mohajeri L, Aziz HA, Isa MH, Zahed MA
    Bioresour Technol, 2010 Feb;101(3):893-900.
    PMID: 19773160 DOI: 10.1016/j.biortech.2009.09.013
    This work studied the bioremediation of weathered crude oil (WCO) in coastal sediment samples using central composite face centered design (CCFD) under response surface methodology (RSM). Initial oil concentration, biomass, nitrogen and phosphorus concentrations were used as independent variables (factors) and oil removal as dependent variable (response) in a 60 days trial. A statistically significant model for WCO removal was obtained. The coefficient of determination (R(2)=0.9732) and probability value (P<0.0001) demonstrated significance for the regression model. Numerical optimization based on desirability function were carried out for initial oil concentration of 2, 16 and 30 g per kg sediment and 83.13, 78.06 and 69.92 per cent removal were observed respectively, compare to 77.13, 74.17 and 69.87 per cent removal for un-optimized results.
    Matched MeSH terms: Biomass
  2. Atnaw SM, Sulaiman SA, Yusup S
    ScientificWorldJournal, 2014;2014:121908.
    PMID: 24578617 DOI: 10.1155/2014/121908
    Biomass wastes produced from oil palm mills and plantations include empty fruit bunches (EFBs), shells, fibers, trunks, and oil palm fronds (OPF). EFBs and shells are partially utilized as boiler fuel while the rest of the biomass materials like OPF have not been utilized for energy generation. No previous study has been reported on gasification of oil palm fronds (OPF) biomass for the production of fuel gas. In this paper, the effect of moisture content of fuel and reactor temperature on downdraft gasification of OPF was experimentally investigated using a lab scale gasifier of capacity 50 kW. In addition, results obtained from equilibrium model of gasification that was developed for facilitating the prediction of syngas composition are compared with experimental data. Comparison of simulation results for predicting calorific value of syngas with the experimental results showed a satisfactory agreement with a mean error of 0.1 MJ/Nm³. For a biomass moisture content of 29%, the resulting calorific value for the syngas was found to be only 2.63 MJ/Nm³, as compared to nearly double (4.95 MJ/Nm³) for biomass moisture content of 22%. A calorific value as high as 5.57 MJ/Nm³ was recorded for higher oxidation zone temperature values.
    Matched MeSH terms: Biomass*
  3. Loy ACM, Alhazmi H, Lock SSM, Yiin CL, Cheah KW, Chin BLF, et al.
    Bioresour Technol, 2021 Dec;341:125796.
    PMID: 34454232 DOI: 10.1016/j.biortech.2021.125796
    The environmental footprints of H2productionviacatalytic gasification of wheat straw using straw-derived biochar catalysts were examined. The functional unit of 1 kg of H2was adopted in the system boundaries, which includes 5 processes namely biomass collection and pre-treatment units (P1), biochar catalyst preparation using fast pyrolysis unit (P2), two-stage pyrolysis-gasification unit (P3), products separation unit (P4), and H2distribution to downstream plants (P5). Based on the life-cycle assessment, the hot spots in this process were identified, the sequence was as follows: P4 > P2 > P1 > P3 > P5. The end-point impacts score for the process was found to be 93.4017 mPt. From benchmarking analysis, the proposed straw-derived biochar catalyst was capable of offering almost similar catalytic performance with other metal-based catalysts with a lower environmental impact.
    Matched MeSH terms: Biomass
  4. Rashidi NA, Yusup S
    Environ Sci Pollut Res Int, 2019 Nov;26(33):33732-33746.
    PMID: 29740771 DOI: 10.1007/s11356-018-1903-8
    The feasibility of biomass-based activated carbons has received a huge attention due to their excellent characteristics such as inexpensiveness, good adsorption behaviour and potential to reduce a strong dependency towards non-renewable precursors. Therefore, in this research work, eco-friendly activated carbon from palm kernel shell that has been produced from one-stage physical activation by using the Box-Behnken design of Response Surface Methodology is highlighted. The effect of three input parameters-temperature, dwell time and gas flow rate-towards product yield and carbon dioxide (CO2) uptake at room temperature and atmospheric pressure are studied. Model accuracy has been evaluated through the ANOVA analysis and lack-of-fit test. Accordingly, the optimum condition in synthesising the activated carbon with adequate CO2 adsorption capacity of 2.13 mmol/g and product yield of 25.15 wt% is found at a temperature of 850 °C, holding time of 60 min and CO2 flow rate of 450 cm3/min. The synthesised activated carbon has been characterised by diverse analytical instruments including thermogravimetric analyser, scanning electron microscope, as well as N2 adsorption-desorption isotherm. The characterisation analysis indicates that the synthesised activated carbon has higher textural characteristics and porosity, together with better thermal stability and carbon content as compared to pristine palm kernel shell. Activated carbon production via one-step activation approach is economical since its carbon yield is within the industrial target, whereas CO2 uptake is comparable to the synthesised activated carbon from conventional dual-stage activation, commercial activated carbon and other published data from literature.
    Matched MeSH terms: Biomass
  5. Azmi NA, Idris A, Yusof NSM
    Ultrason Sonochem, 2018 Oct;47:99-107.
    PMID: 29908610 DOI: 10.1016/j.ultsonch.2018.04.016
    Feather keratin is a biomass generated in excess from various livestock industries. With appropriate processing, it holds potential as a green source for degradable biopolymer that could potentially replace current fossil fuel based materials. Several processing methods have been developed, but the use of ultrasonication has not been explored. In this study, we focus on (i) comparing and optimizing the dissolution process of turkey feather keratin through sonication and conventional processes, and (ii) generating a biodegradable polymer material, as a value added product, from the dissolved keratin that could be used in packaging and other applications. Sonication of feather keratin in pure ionic liquids (ILs) and a mixture containing ILs and different co-solvents was conducted under different applied acoustic power levels. It was found that ultrasonic irradiation significantly improved the rate of dissolution of feather keratin as compared to the conventional method, from about 2 h to less than 20 min. The amount of ILs needed was also reduced by introducing a suitable co-solvent. The keratin was then regenerated, analyzed and characterized using various methods. This material holds the potential to be reused in various appliances.
    Matched MeSH terms: Biomass
  6. Sun Q, Chen WJ, Pang B, Sun Z, Lam SS, Sonne C, et al.
    Bioresour Technol, 2021 Dec;341:125807.
    PMID: 34474237 DOI: 10.1016/j.biortech.2021.125807
    In recent years, visualization and characterization of lignocellulose at different scales elucidate the modifications of its ultrastructural and chemical features during hydrothermal pretreatment which include degradation and dissolving of hemicelluloses, swelling and partial hydrolysis of cellulose, melting and redepositing a part of lignin in the surface. As a result, cell walls are swollen, deformed and de-laminated from the adjacent layer, lead to a range of revealed droplets that appear on and within cell walls. Moreover, the certain extent morphological changes significantly promote the downstream processing steps, especially for enzymatic hydrolysis and anaerobic fermentation to bioethanol by increasing the contact area with enzymes. However, the formation of pseudo-lignin hinders the accessibility of cellulase to cellulose, which decreases the efficiency of enzymatic hydrolysis. This review is intended to bridge the gap between the microstructure studies and value-added applications of lignocellulose while inspiring more research prospects to enhance the hydrothermal pretreatment process.
    Matched MeSH terms: Biomass
  7. Fan S, Ji B, Abu Hasan H, Fan J, Guo S, Wang J, et al.
    Bioprocess Biosyst Eng, 2021 Aug;44(8):1733-1739.
    PMID: 33772637 DOI: 10.1007/s00449-021-02556-0
    Microalgal-bacterial granular sludge (MBGS) process has become a focal point in treating municipal wastewater. However, it remains elusive whether the emerging process can be applied for the treatment of aquaculture wastewater, which contains considerable concentrations of nitrate and nitrite. This study evaluated the feasibility of MBGS process for aquaculture wastewater treatment. Result showed that the MBGS process was competent to remove respective 64.8%, 84.9%, 70.8%, 50.0% and 84.2% of chemical oxygen demand, ammonia-nitrogen, nitrate-nitrogen, nitrite-nitrogen and phosphate-phosphorus under non-aerated conditions within 8 h. The dominant microalgae and bacteria were identified to be Coelastrella and Rhodobacteraceae, respectively. Further metagenomics analysis implied that microbial assimilation was the main contributor in organics, nitrogen and phosphorus removal. Specifically, considerable nitrate and nitrite removals were also obtained with the synergy between microalgae and bacteria. Consequently, this work demonstrated that the MBGS process showed a prospect of becoming an environmentally friendly and efficient alternative in aquaculture wastewater treatment.
    Matched MeSH terms: Biomass
  8. Ahmad Farid MA, Hassan MA, Roslan AM, Ariffin H, Norrrahim MNF, Othman MR, et al.
    Environ Sci Pollut Res Int, 2021 Jun;28(22):27976-27987.
    PMID: 33527241 DOI: 10.1007/s11356-021-12585-7
    This study provides insight into the decolorization strategy for crude glycerol obtained from biodiesel production using waste cooking oil as raw material. A sequential procedure that includes physico-chemical treatment and adsorption using activated carbon from oil palm biomass was investigated. The results evidenced decolorization and enrichment of glycerol go hand in hand during the treatment, achieving >89% color removal and > 98% increase in glycerol content, turning the glycerol into a clear (colorless) solution. This is attributed to the complete removal of methanol, free fatty acids, and triglycerides, as well as 85% removal of water, and 93% removal of potassium. Properties of the resultant glycerol met the quality standard of BS 2621:1979. The economic aspects of the proposed methods are examined to fully construct a predesign budgetary estimation according to chemical engineering principles. The starting capital is proportionate to the number of physical assets to acquire where both entail a considerable cost at USD 13,200. Having the benefit of sizeable scale production, it reasonably reduces the operating cost per unit product. As productivity sets at 33 m3 per annum, the annual operating costs amount to USD 79,902 in glycerol decolorization. This is translatable to USD 5.38 per liter glycerol, which is ~69% lower compared to using commercial activated carbon.
    Matched MeSH terms: Biomass
  9. Jung C, Phal N, Oh J, Chu KH, Jang M, Yoon Y
    J Hazard Mater, 2015 Dec 30;300:808-814.
    PMID: 26340547 DOI: 10.1016/j.jhazmat.2015.08.025
    Despite recent interest in transforming biomass into bio-oil and syngas, there is inadequate information on the compatibility of byproducts (e.g., biochar) with agriculture and water purification infrastructures. A pyrolysis at 300°C yields efficient production of biochar, and its physicochemical properties can be improved by chemical activation, resulting in a suitable adsorbent for the removal of natural organic matter (NOM), including hydrophobic and hydrophilic substances, such as humic acids (HA) and tannic acids (TA), respectively. In this study, the adsorption affinities of different HA and TA combinations in NOM solutions were evaluated, and higher adsorption affinity of TA onto activated biochar (AB) produced in the laboratory was observed due to its superior chemisorption tendencies and size-exclusion effects compared with that of HA, whereas hydrophobic interactions between adsorbent and adsorbate were deficient. Assessment of the AB role in an adsorption-coagulation hybrid system as nuclei for coagulation in the presence of aluminum sulfate (alum) showed a synergistic effect in a HA-dominated NOM solution. An AB-alum hybrid system with a high proportion of HA in the NOM solution may be applicable as an end-of-pipe solution.
    Matched MeSH terms: Biomass
  10. Tan K, Heo S, Foo M, Chew IM, Yoo C
    Sci Total Environ, 2019 Feb 10;650(Pt 1):1309-1326.
    PMID: 30308818 DOI: 10.1016/j.scitotenv.2018.08.402
    Nanocellulose, a structural polysaccharide that has caught tremendous interests nowadays due to its renewability, inherent biocompatibility and biodegradability, abundance in resource, and environmental friendly nature. They are promising green nanomaterials derived from cellulosic biomass that can be disintegrated into cellulose nanofibrils (CNF) or cellulose nanocrystals (CNC), relying on their sensitivity to hydrolysis at the axial spacing of disordered domains. Owing to their unique mesoscopic characteristics at nanoscale, nanocellulose has been widely researched and incorporated as a reinforcement material in composite materials. The world has been consuming the natural resources at a much higher speed than the environment could regenerate. Today, as an uprising candidate in soft condensed matter physics, a growing interest was received owing to its unique self-assembly behaviour and quantum size effect in the formation of three-dimensional nanostructured material, could be utilised to address an increasing concern over global warming and environmental conservation. In spite of an emerging pool of knowledge on the nanocellulose downstream application, that was lacking of cross-disciplinary study of its role as a soft condensed matter for food, water and energy applications toward environmental sustainability. Here we aim to provide an insight for the latest development of cellulose nanotechnology arises from its fascinating physical and chemical characteristic for the interest of different technology holders.
    Matched MeSH terms: Biomass
  11. Yee W
    World J Microbiol Biotechnol, 2016 Apr;32(4):64.
    PMID: 26931604 DOI: 10.1007/s11274-016-2023-6
    Over the years, microalgae have been identified to be a potential source of commercially important products such as pigments, polysaccharides, polyunsaturated fatty acids and in particular, biofuels. Current demands for sustainable fuel sources and bioproducts has led to an extensive search for promising strains of microalgae for large scale cultivation. Prospective strains identified for these purposes were among others, mainly from the genera Hematococcus, Dunaliella, Botryococcus, Chlorella, Scenedesmus and Nannochloropsis. Recently, microalgae from the Selenastraceae emerged as potential candidates for biodiesel production. Strains from the Selenastraceae such as Monoraphidium sp. FXY-10, M. contortum SAG 47.80, Ankistrodesmus sp. SP2-15 and M. minutum were high biomass and lipid producers when cultivated under optimal conditions. A number of Selenastraceae strains were also reported to be suitable for cultivation in wastewater. This review highlights recent reports on potential strains from the Selenastraceae for biodiesel production and contrasts their biomass productivity, lipid productivity as well as fatty acid profile. Cultivation strategies employed to enhance their biomass and lipid productivity as well as to reduce feedstock cost are also discussed in this paper.
    Matched MeSH terms: Biomass
  12. Yee W
    Bioresour Technol, 2015 Nov;196:1-8.
    PMID: 26210717 DOI: 10.1016/j.biortech.2015.07.033
    In order to assess the feasibility of various carbon sources and plant materials in increasing the growth rate and biomass productivity of Monoraphidium griffithii, ten carbon sources as well as six plant materials were tested in mixotrophic cultures with or without aeration. It was found that glucose, fructose, maltose, sodium acetate and mannitol were potential carbon sources for growth enhancement of M. griffithii. Supplementation of culture medium with these carbon sources resulted in approximately 1-4-fold increase in cell density compared to control in a small scale culture. In a larger scale mixotrophic culture with aeration, 0.05% mannitol and 0.1% fructose resulted in a decent 1-1.5-fold increase in final cell density, approximately 2-fold increase in growth rate and 0.5-1-fold increase in dry biomass weight. Findings from this study suggests that glucose, fructose, maltose and mannitol were potential organic carbon sources for mixotrophic culture of M. griffithii.
    Matched MeSH terms: Biomass
  13. Cui J, Zhang Y, Yang F, Chang Y, Du K, Chan A, et al.
    Ecotoxicol Environ Saf, 2020 Apr 15;193:110344.
    PMID: 32092583 DOI: 10.1016/j.ecoenv.2020.110344
    To identify seasonal fluxes and sources of dissolved inorganic nitrogen (DIN) wet deposition, concentrations and δ15N signatures of nitrate (NO3-) and ammonium (NH4+) in wet precipitation were measured at four typical land-use types in the Three Gorges reservoir (TGR) area of southwest China for a one-year period. Higher DIN fluxes were recorded in spring and summer and their total fluxes (averaged 7.58 kg N ha-1) were similar to the critical loads in aquatic ecosystems. Significant differences of precipitation δ15N were observed for NH4+-N between town and wetland sites in spring and between urban and rural sites in summer. For NO3--N, significant differences of precipitation δ15N were observed between town and rural sites in spring and between urban and town sites in autumn, respectively. Quantitative results of NO3--N sources showed that both biomass burning and coal combustion had higher fluxes at the urban site especially in winter (0.18 ± 0.09 and 0.19 ± 0.08 kg N ha-1), which were about three times higher than those at the town site. A similar finding was observed for soil emission and vehicle exhausts in winter. On the whole, DIN wet deposition averaged at 12.13 kg N ha-1 yr-1 with the urban site as the hotspot (17.50 kg N ha-1 yr-1) and regional NO3--N fluxes had a seasonal pattern with minimum values in winter. The contribution to NO3--N wet deposition from biomass burning was 26.1 ± 14.1%, which is the second dominant factor lower than coal combustion (26.5 ± 12.6%) in the TGR area during spring and summer. Hence N emission reduction from biomass burning, coal combustion and vehicle exhausts should be strengthened especially in spring and summer to effectively manage DIN pollution for the sustainable development in TGR area.
    Matched MeSH terms: Biomass
  14. Zambry NS, Rusly NS, Awang MS, Md Noh NA, Yahya ARM
    Bioprocess Biosyst Eng, 2021 Jul;44(7):1577-1592.
    PMID: 33687550 DOI: 10.1007/s00449-021-02543-5
    The present study focused on lipopeptide biosurfactant production by Streptomyces sp. PBD-410L in batch and fed-batch fermentation in a 3-L stirred-tank reactor (STR) using palm oil as a sole carbon source. In batch cultivation, the impact of bioprocessing parameters, namely aeration rate and agitation speed, was studied to improve biomass growth and lipopeptide biosurfactant production. The maximum oil spreading technique (OST) result (45 mm) which corresponds to 3.74 g/L of biosurfactant produced, was attained when the culture was agitated at 200 rpm and aeration rate of 0.5 vvm. The best aeration rate and agitation speed obtained from the batch cultivation was adopted in the fed-batch cultivation using DO-stat feeding strategy to further improve the lipopeptide biosurfactant production. The lipopeptide biosurfactant production was enhanced from 3.74 to 5.32 g/L via fed-batch fermentation mode at an initial feed rate of 0.6 mL/h compared to that in batch cultivation. This is the first report on the employment of fed-batch cultivation on the production of biosurfactant by genus Streptomyces.
    Matched MeSH terms: Biomass
  15. Abdullah N, Ujang Z, Yahya A
    Bioresour Technol, 2011 Jun;102(12):6778-81.
    PMID: 21524907 DOI: 10.1016/j.biortech.2011.04.009
    The present study investigates the formation of aerobic granular sludge in sequencing batch reactor (SBR) fed with palm oil mill effluent (POME). Stable granules were observed in the reactor with diameters between 2.0 and 4.0mm at a chemical oxygen demand (COD) loading rate of 2.5 kg COD m(-3) d(-1). The biomass concentration was 7600 mg L(-1) while the sludge volume index (SVI) was 31.3 mL g SS(-1) indicating good biomass accumulation in the reactor and good settling properties of granular sludge, respectively. COD and ammonia removals were achieved at a maximum of 91.1% and 97.6%, respectively while color removal averaged at only 38%. This study provides insights on the development and the capabilities of aerobic granular sludge in POME treatment.
    Matched MeSH terms: Biomass
  16. Nur-Nazratul FMY, Rakib MRM, Zailan MZ, Yaakub H
    PLoS One, 2021;16(9):e0258065.
    PMID: 34591932 DOI: 10.1371/journal.pone.0258065
    The changes in lignocellulosic biomass composition and in vitro rumen digestibility of oil palm empty fruit bunch (OPEFB) after pre-treatment with the fungus Ganoderma lucidum were evaluated. The results demonstrated that the pre-treatment for 2-12 weeks has gradually degraded the OPEFB in a time-dependent manner; whereby lignin, cellulose, and hemicellulose were respectively degraded by 41.0, 20.5, and 26.7% at the end of the incubation period. The findings were corroborated using the physical examination of the OPEFB by scanning electron microscopy. Moreover, the OPEFB pre-treated for 12 weeks has shown the highest in vitro digestibility of dry (77.20%) and organic (69.78%) matter, where they were enhanced by 104.07 and 96.29%, respectively, as compared to the untreated control. The enhancement in the in vitro ruminal digestibility was negatively correlated with the lignin content in the OPEFB. Therefore, biologically delignified OPEFB with G. lucidum fungal culture pre-treatment have the potential to be utilized as one of the ingredients for the development of a novel ruminant forage.
    Matched MeSH terms: Biomass
  17. Segaran TC, Azra MN, Handayani KS, Lananan F, Xu J
    Mar Environ Res, 2023 Nov;192:106216.
    PMID: 37891025 DOI: 10.1016/j.marenvres.2023.106216
    Seaweed has garnered increasing interest due to its capacity to mitigate climate change by curbing carbon emissions from agriculture, as well as its potential to serve as a supplement or alternative for dietary, livestock feed, or fuel source production. Moreover, seaweed is regarded as one of the earliest plant forms to have evolved on Earth. Owing to the extensive body of literature available and the uncertainty surrounding the future trajectory of seaweed research under evolving climate conditions, this review scrutinizes the structure, dynamics, and progression of the literature pertaining to seaweed and climate change. This analysis is grounded in the Web of Science Core Collection database, augmented by CiteSpace software. Furthermore, we discuss the productivity and influence of individual researchers, research organizations, countries, and scientific journals. To date, there have been 8047 articles published globally (after a series of filters and exclusions), with a notable upswing in publication frequency since 2018. The USA, China, and Australia are among the leading countries contributing to this research area. Our findings reveal that current research on seaweed and climate change encompasses 13 distinct research clusters, including "marine heatwave", "temperate estuary", "ocean acidification", and "macroalgal bloom". The most frequently cited keywords are "climate change", "biomass", "community", and "photosynthesis". The seaweed species most commonly referenced in relation to climate change include Gracilaria sp., Sargassum sp., Ecklonia maxima, and Macrocystis pyrifera. These results provide valuable guidance for shaping the direction of specialized topics concerning marine biodiversity under shifting climate conditions. We propose that seaweed production may be compromised during prolonged episodes of reduced water availability, emphasizing the need to formulate strategies to guarantee its continued viability. This article offers fresh perspectives on the analysis of seaweed research in the context of impending climate change.
    Matched MeSH terms: Biomass
  18. Sheng Y, Lam SS, Wu Y, Ge S, Wu J, Cai L, et al.
    Bioresour Technol, 2021 Mar;324:124631.
    PMID: 33454445 DOI: 10.1016/j.biortech.2020.124631
    The demands of energy sustainability drive efforts to bio-chemical conversion of biomass into biofuels through pretreatment, enzymatic hydrolysis, and microbial fermentation. Pretreatment leads to significant structural changes of the complex lignin polymer that affect yield and productivity of the enzymatic conversion of lignocellulosic biomass. Structural changes of lignin after pretreatment include functional groups, inter unit linkages and compositions. These changes influence non-productive adsorption of enzyme on lignin through hydrophobic interaction and electrostatic interaction as well as hydrogen bonding. This paper reviews the relationships between structural changes of lignin and enzymatic hydrolysis of pretreated lignocellulosic biomass. The formation of pseudo-lignin during dilute acid pretreatment is revealed, and their negative effect on enzymatic hydrolysis is discussed.
    Matched MeSH terms: Biomass
  19. Loow YL, Wu TY
    J Environ Manage, 2018 Jun 15;216:192-203.
    PMID: 28545947 DOI: 10.1016/j.jenvman.2017.04.084
    Among the chemical pretreatments available for pretreating biomass, the inorganic salt is considered to be a relatively new but simple reagent that offers comparable pentose (C5) sugar recoveries as the conventional dilute acid hydrolysis. This study investigated the effects of different concentrations (1.5-6.0% (v/v)) of H2O2 or Na2S2O8 in facilitating CuSO4·5H2O pretreatment for improving pentose sugar recovery from oil palm fronds. The best result was observed when 0.2 mol/L of CuSO4·5H2O was integrated with 4.5% (v/v) of Na2S2O8 to recover 8.2 and 0.9 g/L of monomeric xylose and arabinose, respectively in the liquid fraction. On the other hand, an addition of 1.5% (v/v) of H2O2 yielded approximately 74% lesser total pentose sugars as compared to using 4.5% (v/v) Na2S2O8. By using CuSO4·5H2O alone (control), only 0.8 and 1.0 g/L xylose and arabinose, respectively could be achieved. The results mirrored the importance of using chemical additives together with the inorganic salt pretreatment of oil palm fronds. Thus, an addition of 4.5% (v/v) of Na2S2O8 during CuSO4·5H2O pretreatment of oil palm fronds at 120 °C and 30 min was able to attain a total pentose sugar yield up to ∼40%.
    Matched MeSH terms: Biomass
  20. Ho MC, Wu TY
    Bioresour Technol, 2020 Apr;301:122684.
    PMID: 31954964 DOI: 10.1016/j.biortech.2019.122684
    In this study, a novel Type II deep eutectic solvent (DES) namely, choline chloride:copper(II) chloride dihydrate (ChCl:CuCl2·2H2O) was used to pretreat oil palm fronds (OPFs). The sequential pretreatment with alkaline hydrogen peroxide (0.25 vol%, 90 min) at ambient conditions and a Type II DES (90 °C, 3 h) at a later stage resulted in a delignification of 55.14% with high xylan (80.79%) and arabinan (98.02%) removals. The characterizations of pretreated OPFs confirmed the excellent performance of DES in OPF fractionation. Thus, the application of a Type II DES at ambient pressure and relatively lower temperature was able to improve the lignin and hemicellulose removals from OPFs.
    Matched MeSH terms: Biomass
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links