Displaying publications 21 - 40 of 704 in total

Abstract:
Sort:
  1. Lim YA, Ilankoon IMSK, Khong NMH, Priyawardana SD, Ooi KR, Chong MN, et al.
    Bioresour Technol, 2024 Feb;393:129898.
    PMID: 37890731 DOI: 10.1016/j.biortech.2023.129898
    Microalgae's exceptional photosynthetic prowess, CO2 adaptation, and high-value bioproduct accumulation make them prime candidates for microorganism-based biorefineries. However, most microalgae research emphasizes downstream processes and applications rather than fundamental biomass and biochemical balances and kinetic under the influence of greenhouse gases such as CO2. Therefore, three distinctly different microalgae species were cultivated under 0% to 20% CO2 treatments to examine their biochemical responses, biomass production and metabolite accumulations. Using a machine learning approach, it was found that Chlorella sorokiniana showed a positive relationship between biomass and chl a, chl b, carotenoids, and carbohydrates under increasing CO2 treatments, while Chlamydomonas angulosa too displayed positive relationships between biomass and all studied biochemical contents, with minimal trade-offs. Meanwhile, Nostoc sp. exhibited a negative correlation between biomass and lipid contents under increasing CO2 treatment. The study showed the potential of Chlorella, Chlamydomonas and Nostoc for commercialization in biorefineries and carbon capture systems where their trade-offs were identified for different CO2 treatments and could be prioritized based on commercial objectives. This study highlighted the importance of understanding trade-offs between biomass production and biochemical yields for informed decision-making in microalgae cultivation, in the direction of mass carbon capture for climate change mitigation.
    Matched MeSH terms: Biomass
  2. Silvanir, Lai SY, Asmawi AA, Chew KW, Ngan CL
    Bioresour Technol, 2024 Feb;393:130094.
    PMID: 38000640 DOI: 10.1016/j.biortech.2023.130094
    Microalgae is a sustainable alternative source to traditional proteins. Existing pretreatment methods for protein extraction from microalgae still lack scalability, are uneconomical and inefficient. Herein, high shear mixing (HSM) was applied to disrupt the rigid cell walls and was found to assist in protein release from microalgae. This study integrates HSM in liquid biphasic system with seven parameters being investigated on extraction efficiency (EE) and protein yield (Y). The highest EE and Y obtained are 96.83 ± 0.47 % and 40.98 ± 1.27 %, respectively, using 30% w/v K3PO4 salt, 60 % v/v alcohol, volume ratio of 1:1 and 0.5 % w/v biomass loading under shearing rate of 16,000 rpm for 1 min.
    Matched MeSH terms: Biomass
  3. Fardi Z, Shahbeik H, Nosrati M, Motamedian E, Tabatabaei M, Aghbashlo M
    Environ Res, 2024 Feb 01;242:117614.
    PMID: 37996005 DOI: 10.1016/j.envres.2023.117614
    Waste-to-energy conversion presents a pivotal strategy for mitigating the energy crisis and curbing environmental pollution. Pyrolysis is a widely embraced thermochemical approach for transforming waste into valuable energy resources. This study delves into the co-pyrolysis of terrestrial biomass (potato peel) and marine biomass (Sargassum angastifolium) to optimize the quantity and quality of the resultant bio-oil and biochar. Initially, thermogravimetric analysis was conducted at varying heating rates (5, 20, and 50 °C/min) to elucidate the thermal degradation behavior of individual samples. Subsequently, comprehensive analyses employing FTIR, XRD, XRF, BET, FE-SEM, and GC-MS were employed to assess the composition and morphology of pyrolysis products. Results demonstrated an augmented bio-oil yield in mixed samples, with the highest yield of 27.1 wt% attained in a composition comprising 75% potato peel and 25% Sargassum angastifolium. As confirmed by GC-MS analysis, mixed samples exhibited reduced acidity, particularly evident in the bio-oil produced from a 75% Sargassum angastifolium blend, which exhibited approximately half the original acidity. FTIR analysis revealed key functional groups on the biochar surface, including O-H, CO, and C-O moieties. XRD and XRF analyses indicated the presence of alkali and alkaline earth metals in the biochar, while BET analysis showed a surface area ranging from 0.64 to 1.60 m2/g. The favorable characteristics of the products highlight the efficacy and cost-effectiveness of co-pyrolyzing terrestrial and marine biomass for the generation of biofuels and value-added commodities.
    Matched MeSH terms: Biomass
  4. Tong CY, Honda K, Derek CJC
    Sci Total Environ, 2024 Jan 01;906:167576.
    PMID: 37804964 DOI: 10.1016/j.scitotenv.2023.167576
    Research on renewable energy from microalgae has led to a growing interest in porous substrate photobioreactors, but their widespread adoption is currently limited to pure microalgal biofilm cultures. The behavior of microalgal-bacterial biofilms immobilized on microporous substrates remains as a research challenge, particularly in uncovering their mutualistic interactions in environment enriched with dissolved organic matter. Therefore, this study established a novel culture platform by introducing microalgal-derived bio-coating that preconditioned hydrophilic polyvinylidene fluoride membranes for the microalgal-bacterial biofilm growth of freshwater microalgae, Chlorella vulgaris ESP 31 and marine microalgae, Cylindrotheca fusiformis with bacteria, Escherichia coli. In the attached co-culture mode, the bio-coating we proposed demonstrated the ability to enhance microalgal growth for both studied species by a range of 2.5 % to 19 % starting from day 10 onwards. Additionally, when compared to co-culture on uncoated membranes, the bio-coating exhibited a significant bacterial growth promotion effect, increasing bacterial growth by at least 2.35 times for the C. vulgaris-E. coli co-culture after an initial adaptation phase. A significant increase of at least 72 % in intracellular biochemical compounds (including chlorophyll, polysaccharides, proteins, and lipids) was observed within just five days, primarily due to the high concentration of pre-coated organic matter, mainly sourced from the internal organic matter (IOM) of C. fusiformis. Higher accumulation of organic compounds in the bio-coating indirectly triggers a competition between microalgae and bacteria which potentially stimulate the production of additional intra-/extra-organic substances as a defensive response. In short, insight gained from this study may represent a paradigm shift in the ways that symbiotic interactions are promoted to increase the yield of specific bio-compounds with the presence of bio-coating.
    Matched MeSH terms: Biomass
  5. Rawindran H, Arif Bin Hut N, Vrasna DK, Goh PS, Lim JW, Liew CS, et al.
    Chemosphere, 2024 Jan;346:140591.
    PMID: 37918531 DOI: 10.1016/j.chemosphere.2023.140591
    Current study had made a significant progress in microalgal wastewater treatment through the implementation of an economically viable polyethylene terephthalate (PET) membrane derived from plastic bottle waste. The membrane exhibited an exceptional pure water flux of 156.5 ± 0.25 L/m2h and a wastewater flux of 15.37 ± 0.02 L/m2h. Moreover, the membrane demonstrated remarkable efficiency in selectively removing a wide range of residual parameters, achieving rejection rates up to 99%. The reutilization of treated wastewater to grow microalgae had resulted in a marginal decrease in microalgal density, from 10.01 ± 0.48 to 9.26 ± 0.66 g/g. However, this decline was overshadowed by a notable enhancement in lipid production with level rising from 181.35 ± 0.42 to 225.01 ± 0.11 mg/g. These findings signified the membrane's capacity to preserve nutrients availability within the wastewater; thus, positively influencing the lipid synthesis and accumulation within microalgal cells. Moreover, the membrane's comprehensive analysis of cross-sectional and surface topographies revealed the presence of macropores with a highly interconnected framework, significantly amplifying the available surface area for fluid flow. This exceptional structural attribute had substantially contributed to the membrane's efficacy by facilitating superior filtration and separation process. Additionally, the identified functional groups within the membrane aligned consistently with those commonly found in PET polymer, confirming the membrane's compatibility and efficacy in microalgal wastewater treatment.
    Matched MeSH terms: Biomass
  6. Norfarhana AS, Ilyas RA, Ngadi N, Othman MHD, Misenan MSM, Norrrahim MNF
    Int J Biol Macromol, 2024 Jan;256(Pt 1):128256.
    PMID: 38000585 DOI: 10.1016/j.ijbiomac.2023.128256
    The potential for the transformation of lignocellulosic biomass into valuable commodities is rapidly growing through an environmentally sustainable approach to harness its abundance, cost-effectiveness, biodegradability, and environmentally friendly nature. Ionic liquids (ILs) have received considerable and widespread attention as a promising solution for efficiently dissolving lignocellulosic biomass. The fact that ILs can act as solvents and reagents contributes to their widespread recognition. In particular, ILs are desirable because they are inert, non-toxic, non-flammable, miscible in water, recyclable, thermally and chemically stable, and have low melting points and outstanding ionic conductivity. With these characteristics, ILs can serve as a reliable replacement for traditional biomass conversion methods in various applications. Thus, this comprehensive analysis explores the conversion of lignocellulosic biomass using ILs, focusing on main components such as cellulose, hemicellulose, and lignin. In addition, the effect of multiple parameters on the separation of lignocellulosic biomass using ILs is discussed to emphasize their potential to produce high-value products from this abundant and renewable resource. This work contributes to the advancement of green technologies, offering a promising avenue for the future of biomass conversion and sustainable resource management.
    Matched MeSH terms: Biomass
  7. Suparmaniam U, Lam MK, Lim JW, Tan IS, Chin BLF, Shuit SH, et al.
    Biotechnol Adv, 2024;70:108280.
    PMID: 37944570 DOI: 10.1016/j.biotechadv.2023.108280
    Microalgae showcase an extraordinary capacity for synthesizing high-value phytochemicals (HVPCs), offering substantial potential for diverse applications across various industries. Emerging research suggests that subjecting microalgae to abiotic stress during cultivation and the harvesting stages can further enhance the accumulation of valuable metabolites within their cells, including carotenoids, antioxidants, and vitamins. This study delves into the pivotal impacts of manipulating abiotic stress on microalgae yields, with a particular focus on biomass and selected HVPCs that have received limited attention in the existing literature. Moreover, approaches to utilising abiotic stress to increase HVPCs production while minimising adverse effects on biomass productivity were discussed. The present study also encompasses a techno-economic assessment (TEA) aimed at pinpointing significant bottlenecks in the conversion of microalgae biomass into high-value products and evaluating the desirability of various conversion pathways. The TEA methodology serves as a valuable tool for both researchers and practitioners in the quest to identify sustainable strategies for transforming microalgae biomass into high-value products and goods. Overall, this comprehensive review sheds light on the pivotal role of abiotic stress in microalgae cultivation, promising insights that could lead to more efficient and sustainable approaches for HVPCs production.
    Matched MeSH terms: Biomass
  8. Tong CY, Kee CY, Honda K, Derek CJC
    Environ Res, 2023 Dec 15;239(Pt 2):117403.
    PMID: 37848079 DOI: 10.1016/j.envres.2023.117403
    Bio-coating, a recent and promising approach in attached microalgal cultivation systems, has garnered attention due to its efficiency in enhancing immobilized algal growth, particularly in submerged cultivation systems. However, when the cells are cultured on thin solid microporous substrates that physically separate them from the nutrient medium, it remains unclear whether the applied bio-coatings still have a significant impact on algal growth or the subsequent rates of algal organic matter (AOM) release. Therefore, this current work investigated the role of bio-coatings on the microalgal monoculture growth of one freshwater species, Chlorella vulgaris ESP 31, and one marine species, Cylindrotheca fusiformis on a hydrophilic substrate, polyvinylidene fluoride membrane in a permeated cultivation system. Wide range of bio-coating sources were adapted, with the result demonstrating that bacteria-derived coating promoted algal growth by as high as 140% when compared with the control group for both species. Interestingly, two distinct adaptation mechanisms were observed between the species, with only C. fusiformis demonstrating a positive correlation between cell growth and AOM productivity, particularly in its extracellularly bound fractions. It is worth noting that despite this specific fraction exhibiting the lowest content among all; it displayed significant relevance in terms of AOM productivity. High extracellular protein-to-polysaccharide ratio (>5.7 fold) quantified on bacterial intracellular exudate-coated membranes indirectly revealed an underlying symbiotic microalgal-bacterial interaction. This is the first study showing how bio-coating influenced AOM yield without any physical interaction between microalgae and bacteria. It further confirms the practical benefits of bio-coating in attached cultivation systems.
    Matched MeSH terms: Biomass
  9. 'Aizat Norhisham D, Md Saad N, Ahmad Usuldin SR, Vayabari DAG, Ilham Z, Ibrahim MF, et al.
    Bioengineered, 2023 Dec;14(1):2262203.
    PMID: 37791464 DOI: 10.1080/21655979.2023.2262203
    The versatility of a well-known fibrous crop, Hibiscus cannabinus (kenaf) is still relatively new to many. Kenaf's potential applications, which can be extended even into critical industries such as pharmaceutical and food industries, have always been overshadowed by its traditionally grown fiber. Therefore, this study aimed to venture into the biotechnological approach in reaping the benefits of kenaf through plant cell suspension culture to maximize the production of kenaf callus biomass (KCB) and exopolysaccharide (EPS), which is deemed to be more sustainable. A growth curve was established which indicates that cultivating kenaf callus in suspension culture for 22 days gives the highest KCB (9.09 ± 1.2 g/L) and EPS (1.1 ± 0.02 g/L). Using response surface methodology (RSM), it was found that sucrose concentration, agitation speed, and naphthalene acetic acid (NAA) concentration can affect the production of KCB and EPS significantly (p 
    Matched MeSH terms: Biomass
  10. Jayakumar M, Hamda AS, Abo LD, Daba BJ, Venkatesa Prabhu S, Rangaraju M, et al.
    Chemosphere, 2023 Dec;345:140515.
    PMID: 37871877 DOI: 10.1016/j.chemosphere.2023.140515
    Biochar is an ample source of organic carbon prepared by the thermal breakdown of biomass. Lignocellulosic biomass is a promising precursor for biochar production, and has several applications in various industries. In addition, biochar can be applied for environmental revitalization by reducing the negative impacts through intrinsic mechanisms. In addition to its environmentally friendly nature, biochar has several recyclable and inexpensive benefits. Nourishing and detoxification of the environment can be undertaken using biochar by different investigators on account of its excellent contaminant removal capacity. Studies have shown that biochar can be improved by activation to remove toxic pollutants. In general, biochar is produced by closed-loop systems; however, decentralized methods have been proven to be more efficient for increasing resource efficiency in view of circular bio-economy and lignocellulosic waste management. In the last decade, several studies have been conducted to reveal the unexplored potential and to understand the knowledge gaps in different biochar-based applications. However, there is still a crucial need for research to acquire sufficient data regarding biochar modification and management, the utilization of lignocellulosic biomass, and achieving a sustainable paradigm. The present review has been articulated to provide a summary of information on different aspects of biochar, such as production, characterization, modification for improvisation, issues, and remediation have been addressed.
    Matched MeSH terms: Biomass
  11. Bosu S, Rajamohan N, Sagadevan S, Raut N
    Chemosphere, 2023 Dec;345:140471.
    PMID: 37871875 DOI: 10.1016/j.chemosphere.2023.140471
    The rapid consumption of metals and unorganized disposal have led to unprecedented increases in heavy metal ion concentrations in the ecosystem, which disrupts environmental homeostasis and results in agricultural biodiversity loss. Mitigation and remediation plans for heavy metal pollution are largely dependent on the discovery of cost-effective, biocompatible, specific, and robust detectors because conventional methods involve sophisticated electronics and sample preparation procedures. Carbon dots (CDs) have gained significant importance in sensing applications related to environmental sustainability. Fluorescence sensor applications have been enhanced by their distinctive spectral properties and the potential for developing efficient photonic devices. With the recent development of biomass-functionalized carbon dots, a wide spectrum of multivalent and bivalent transition metal ions responsible for water quality degradation can be detected with high efficiency and minimal toxicity. This review explores the various methods of manufacturing carbon dots and the biochemical mechanisms involved in metal detection using green carbon dots for sensing applications involving Cu (II), Fe (III), Hg (II), and Cr (VI) ions in aqueous systems. A detailed discussion of practical challenges and future recommendations is presented to identify feasible design routes.
    Matched MeSH terms: Biomass
  12. Nurul Rizki I, Amalina I, Hasan NS, Khusnun NF, Abdul Jalil A, Firmansyah ML
    Chemosphere, 2023 Dec;345:140455.
    PMID: 37858767 DOI: 10.1016/j.chemosphere.2023.140455
    Electronic waste has become a global concern, as it has been steadily increasing over the years. The lack of regulation and appropriate processing facilities has rendered these wastes an environmental hazard. However, they represent excellent alternative sources of precious metals, which are highly in demand in various industries. Adsorption has been a popular method for metal removal/recovery because of several advantages, such as ease of use and low cost. In this regard, it is crucial to develop an inexpensive and functionalized adsorbent to selectively adsorb precious metals. Thus, silica, which is derived from rice husk and is abundantly present in Indonesia, was functionalized using an ionic liquid (SiRH_Im) and used for Au(III) adsorption from a simulated mobile phone leach liquor. SiRH_Im exhibited a high adsorption capacity (232.5 mg g-1). The Au(III) adsorption kinetic suitably fitted with the pseudo-second-order kinetic model. The Au(III) adsorption followed a chemisorption route that suited the monolayer model. Thomas' and Yoon-Nelson's models were well suited for the continuous Au(III) behavior. Selective recovery of Au(III) from SiRH_Im was achieved via sequential desorption. SiRH_Im also showed excellent reusability, as indicated by a negligible decrease in adsorptive performance over three cycles. The functionalization of silica derived from rice husk using an ionic liquid led to the successful creation of a solid adsorbent with a high adsorption capacity toward precious metals present in a simulated leach solution. Our results highlight the benefit of the functionalization of biomass through the immobilization of an ionic liquid toward the enhancement of its adsorption capability.
    Matched MeSH terms: Biomass
  13. Tong KTX, Tan IS, Foo HCY, Show PL, Lam MK, Wong MK
    Bioengineered, 2023 Dec;14(1):246-289.
    PMID: 37482680 DOI: 10.1080/21655979.2023.2236842
    The imminent need for transition to a circular biorefinery using microbial fuel cells (MFC), based on the valorization of renewable resources, will ameliorate the carbon footprint induced by industrialization. MFC catalyzed by bioelectrochemical process drew significant attention initially for its exceptional potential for integrated production of biochemicals and bioenergy. Nonetheless, the associated costly bioproduct production and slow microbial kinetics have constrained its commercialization. This review encompasses the potential and development of macroalgal biomass as a substrate in the MFC system for L-lactic acid (L-LA) and bioelectricity generation. Besides, an insight into the state-of-the-art technological advancement in the MFC system is also deliberated in detail. Investigations in recent years have shown that MFC developed with different anolyte enhances power density from several µW/m2 up to 8160 mW/m2. Further, this review provides a plausible picture of macroalgal-based L-LA and bioelectricity circular biorefinery in the MFC system for future research directions.
    Matched MeSH terms: Biomass
  14. Tong CY, Lim SL, Chua MX, Derek CJC
    Bioengineered, 2023 Dec;14(1):2252213.
    PMID: 37695682 DOI: 10.1080/21655979.2023.2252213
    Spontaneous natural biofilm concentrates microalgal biomass on solid supports. However, the biofilm is frequently susceptible to exfoliation upon nutrient deficiency, particularly found in aged biofilm. Therefore, this study highlights a novel biofilm cultivation technique by pre-depositing the algal organic matters from marine diatom, Navicula incerta onto microporous polyvinylidene fluoride membrane to further strengthen the biofilm developed. Due to the improvement in membrane surface roughness and hydrophobicity, cells adhered most abundantly to soluble extrapolymeric substances-coated (sEPS) (76×106±16×106 cells m-2), followed by bounded EPS-coated (57.67×106±0.33×106 cells m-2), internally organic matter (IOM)-coated (39.00×106±5.19×106 cells m-2), and pristine control the least (6.22×106±0.77×106 cells m-2) at 24th h. Surprisingly, only bEPS-coated membrane demonstrated an increase in cell adhesion toward the end of the experiment at 72 h. The application of the bio-coating has successfully increased the rate of cell attachment by at least 45.3% upon inoculation and achieved as high as 89.9% faster attachment at 72 hours compared to the pristine control group. Soluble polysaccharides and proteins might be carried along by the cells adhering onto membranes hence resulting in a built up of EPS hydrophobicity (>70% in average on bio-coated membranes) over time as compared with pristine (control) that only recorded an average of approximately 50% hydrophobicity. Interestingly, cells grown on bio-coated membranes accumulated more internally bounded polysaccharides, though bio-coating had no discernible impact on the production of both externally and internally bounded protein. The collective findings of this study reveal the physiological alterations of microalgal biofilms cultured on bio-coated membranes.
    Matched MeSH terms: Biomass
  15. Sundaram T, Rajendran S, Gnanasekaran L, Rachmadona N, Jiang JJ, Khoo KS, et al.
    Bioengineered, 2023 Dec;14(1):2252228.
    PMID: 37661811 DOI: 10.1080/21655979.2023.2252228
    Algae-based biofuel developed over the past decade has become a viable substitute for petroleum-based energy sources. Due to their high lipid accumulation rates and low carbon dioxide emissions, microalgal species are considered highly valuable feedstock for biofuel generation. This review article presented the importance of biofuel and the flaws that need to be overcome to ensure algae-based biofuels are effective for future-ready bioenergy sources. Besides, several issues related to the optimization and engineering strategies to be implemented for microalgae-based biofuel derivatives and their production were evaluated. In addition, the fundamental studies on the microalgae technology, experimental cultivation, and engineering processes involved in the development are all measures that are commendably used in the pre-treatment processes. The review article also provides a comprehensive overview of the latest findings about various algae species cultivation and biomass production. It concludes with the most recent data on environmental consequences, their relevance to global efforts to create microalgae-based biomass as effective biofuels, and the most significant threats and future possibilities.
    Matched MeSH terms: Biomass
  16. Taer E, Yanti N, Padang E, Apriwandi A, Zulkarnain Z, Haryanti NH, et al.
    J Sci Food Agric, 2023 Dec;103(15):7411-7423.
    PMID: 37431642 DOI: 10.1002/jsfa.12846
    BACKGROUND: Porous carbon electrode (PCE) is identified as a highly suitable electrode material for commercial application due to its production process, which is characterized by simplicity, cost-effectiveness and environmental friendliness. PCE was synthesized using torch ginger (Etlingera elatior (Jack) R.M. Smith) leaves as the base material. The leaves were treated with different concentrations of ZnCl2 , resulting in a supercapacitor cell electrode with unique honeycomb-like three-dimensional (3D) morphological pore structure. This PCE comprises nanofibers from lignin content and volatile compounds from aromatic biomass waste.

    RESULTS: From the characterization of physical properties, PCE-0.3 had an impressive amorphous porosity, wettability and 3D honeycomb-like structural morphology with a pore framework consisting of micropores and mesopores. According to the structural advantages of 3D hierarchical pores such as interconnected honeycombs, PCE-0.3 as supercapacitor electrode had a high specific capacitance of up to 285.89 F g-1 at 1 A. Furthermore, the supercapacitor exhibited high energy and power density of 21.54 Wh kg-1 and 161.13 W kg-1 , respectively, with a low internal resistance of 0.059 Ω.

    CONCLUSION: The results indicated that 3D porous carbon materials such as interconnected honeycombs derived from the aromatic biomass of torch ginger leaves have significant potential for the development of sustainable energy storage devices. © 2023 Society of Chemical Industry.

    Matched MeSH terms: Biomass
  17. Kiehbadroudinezhad M, Hosseinzadeh-Bandbafha H, Karimi K, Madadi M, Chisti Y, Peng W, et al.
    Sci Total Environ, 2023 Nov 15;899:165751.
    PMID: 37499830 DOI: 10.1016/j.scitotenv.2023.165751
    Life cycle assessment was used to evaluate the environmental impacts of phytoplanktonic biofuels as possible sustainable alternatives to fossil fuels. Three scenarios were examined for converting planktonic biomass into higher-value commodities and energy streams using the alga Scenedesmus sp. and the cyanobacterium Arthrospira sp. as the species of interest. The first scenario (Sc-1) involved the production of biodiesel and glycerol from the planktonic biomass. In the second scenario (Sc-2), biodiesel and glycerol were generated from the planktonic biomass, and biogas was produced from the residual biomass. The process also involved using a catalyst derived from snail shells for biodiesel production. The third scenario (Sc-3) was similar to Sc-2 but converted CO2 from the biogas upgrading to methanol, which was then used in synthesizing biodiesel. The results indicated that Sc-2 and Sc-3 had a reduced potential (up to 60 % less) for damaging human health compared to Sc-1. Sc-2 and Sc-3 had up to 61 % less environmental impact than Sc-1. Sc-2 and Sc-3 reduced the total cumulative exergy demand by up to 44 % compared to Sc-1. In conclusion, producing chemicals and utilities within the biorefinery could significantly improve environmental sustainability, reduce waste, and diversify revenue streams.
    Matched MeSH terms: Biomass
  18. Leong WH, Lim JW, Rawindran H, Liew CS, Lam MK, Ho YC, et al.
    Chemosphere, 2023 Nov;341:139953.
    PMID: 37634592 DOI: 10.1016/j.chemosphere.2023.139953
    Life cycle assessments of microalgal cultivation systems are often conducted to evaluate the sustainability and feasibility factors of the entire production chain. Unlike widely reported conventional microalgal cultivation systems, the present work adopted a microalgal-bacterial cultivation approach which was upscaled into a pilot-scale continuous photobioreactor for microalgal biomass production into biodiesel from wastewater resources. A multiple cradle-to-cradle system ranging from microalgal biomass-to-lipid-to-biodiesel was evaluated to provide insights into the energy demand of each processes making up the microalgae-to-biodiesel value chain system. Energy feasibility studies revealed positive NER values (4.95-8.38) for producing microalgal biomass but deficit values for microalgal-to-biodiesel (0.14-0.23), stemming from the high energy input requirements in the downstream processes for converting biomass into lipid and biodiesel accounting to 88-90% of the cumulative energy demand. Although the energy balance for microalgae-to-biodiesel is in the deficits, it is comparable with other reported biodiesel production case studies (0.12-0.40). Nevertheless, the approach to using microalgal-bacterial cultivation system has improved the overall energy efficiency especially in the upstream processes compared to conventional microalgal cultivation systems. Energy life cycle assessments with other microalgal based biofuel systems also proposed effective measures in increasing the energy feasibility either by utilizing the residual biomass and less energy demanding downstream extraction processes from microalgal biomass. The microalgal-bacterial cultivation system is anticipated to offer both environmental and economic prospects for upscaling by effectively exploiting the low-cost nutrients from wastewaters via bioconversion into valuable microalgal biomass and biodiesel.
    Matched MeSH terms: Biomass
  19. Segaran TC, Azra MN, Handayani KS, Lananan F, Xu J
    Mar Environ Res, 2023 Nov;192:106216.
    PMID: 37891025 DOI: 10.1016/j.marenvres.2023.106216
    Seaweed has garnered increasing interest due to its capacity to mitigate climate change by curbing carbon emissions from agriculture, as well as its potential to serve as a supplement or alternative for dietary, livestock feed, or fuel source production. Moreover, seaweed is regarded as one of the earliest plant forms to have evolved on Earth. Owing to the extensive body of literature available and the uncertainty surrounding the future trajectory of seaweed research under evolving climate conditions, this review scrutinizes the structure, dynamics, and progression of the literature pertaining to seaweed and climate change. This analysis is grounded in the Web of Science Core Collection database, augmented by CiteSpace software. Furthermore, we discuss the productivity and influence of individual researchers, research organizations, countries, and scientific journals. To date, there have been 8047 articles published globally (after a series of filters and exclusions), with a notable upswing in publication frequency since 2018. The USA, China, and Australia are among the leading countries contributing to this research area. Our findings reveal that current research on seaweed and climate change encompasses 13 distinct research clusters, including "marine heatwave", "temperate estuary", "ocean acidification", and "macroalgal bloom". The most frequently cited keywords are "climate change", "biomass", "community", and "photosynthesis". The seaweed species most commonly referenced in relation to climate change include Gracilaria sp., Sargassum sp., Ecklonia maxima, and Macrocystis pyrifera. These results provide valuable guidance for shaping the direction of specialized topics concerning marine biodiversity under shifting climate conditions. We propose that seaweed production may be compromised during prolonged episodes of reduced water availability, emphasizing the need to formulate strategies to guarantee its continued viability. This article offers fresh perspectives on the analysis of seaweed research in the context of impending climate change.
    Matched MeSH terms: Biomass
  20. Zhu J, Cai Y, Wakisaka M, Yang Z, Yin Y, Fang W, et al.
    Sci Total Environ, 2023 Oct 20;896:165200.
    PMID: 37400020 DOI: 10.1016/j.scitotenv.2023.165200
    Microalgae have been recognized as emerging cell factories due to the high value-added bio-products. However, the balance between algal growth and the accumulation of metabolites is always the main contradiction in algal biomass production. Hence, the security and effectiveness of regulating microalgal growth and metabolism simultaneously have drawn substantial attention. Since the correspondence between microalgal growth and reactive oxygen species (ROS) level has been confirmed, improving its growth under oxidative stress and promoting biomass accumulation under non-oxidative stress by exogenous mitigators is feasible. This paper first introduced ROS generation in microalgae and described the effects of different abiotic stresses on the physiological and biochemical status of microalgae from these aspects associated with growth, cell morphology and structure, and antioxidant system. Secondly, the role of exogenous mitigators with different mechanisms in alleviating abiotic stress was concluded. Finally, the possibility of exogenous antioxidants regulating microalgal growth and improving the accumulation of specific products under non-stress conditions was discussed.
    Matched MeSH terms: Biomass
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links