Displaying publications 21 - 40 of 51 in total

Abstract:
Sort:
  1. Musa SF, Yeat TS, Kamal LZM, Tabana YM, Ahmed MA, El Ouweini A, et al.
    J Sci Food Agric, 2018 Feb;98(3):1197-1207.
    PMID: 28746729 DOI: 10.1002/jsfa.8573
    BACKGROUND: Green synthesis of silver nanoparticles (AgNPs) has become widely practiced worldwide. In this study, AgNPs were synthesized using a hot-water extract of the edible mushroom Pleurotus sajor-caju. The product, PSC-AgNPs, was characterized by using UV-visible spectra, dynamic light scattering analysis, transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectrometry. To assess its antifungal activity against Candida albicans, gene transcription and protein expression analyses were conducted for CaICL1 and its product, ICL, using real-time quantitative polymerase chain reaction and western blot, respectively.

    RESULTS: PSC-AgNPs with an average particle size of 11.68 nm inhibited the growth of the pathogenic yeast C. albicans. Values for minimum inhibitory concentration and minimum fungicidal concentration were 250 and 500 mg L-1 , respectively. TEM images revealed that the average particle size of PSC-AgNPs was 16.8 nm, with the values for zeta potential and the polydispersity index being -8.54 mV and 0.137, respectively. XRD and FTIR spectra showed PSC-AgNPs to have a face-centered cubic crystalline structure. The polysaccharides and amino acid residues present in P. sajor-caju extract were found to be involved in reducing Ag+ to AgNP. Both CaICL1 transcription and ICL protein expression were found to be suppressed in the cells treated with PSC-AgNPs as compared with the control.

    CONCLUSION: Our PSC-AgNP preparation makes for a promising antifungal agent that can downregulate isocitrate lyase. © 2017 Society of Chemical Industry.

    Matched MeSH terms: Candida albicans/drug effects*
  2. Munusamy K, Vadivelu J, Tay ST
    Rev Iberoam Micol, 2018 03 12;35(2):68-72.
    PMID: 29544734 DOI: 10.1016/j.riam.2017.07.001
    BACKGROUND: Biofilm is known to contribute to the antifungal resistance of Candida yeasts. Aureobasidin A (AbA), a cyclic depsipeptide targeting fungal sphingolipid biosynthesis, has been shown to be effective against several Candida species.

    AIMS: The aim of this study was to investigate Candida biofilm growth morphology, its biomass, metabolic activity, and to determine the effects of AbA on the biofilm growth.

    METHODS: The biofilm forming ability of several clinical isolates of different Candida species from our culture collection was determined using established methods (crystal violet and XTT assays). The determination of AbA planktonic and biofilm MICs was performed based on a micro-broth dilution method. The anti-biofilm effect of AbA on Candida albicans was examined using field emission scanning electron microscope (FESEM) analysis.

    RESULTS: A total of 35 (29.7%) of 118 Candida isolates were regarded as biofilm producers in this study. Candida parapsilosis was the largest producer, followed by Candida tropicalis and C. albicans. Two morphological variants of biofilms were identified in our isolates, with 48.6% of the isolates showing mainly yeast and pseudohyphae-like structures, while the remaining ones were predominantly filamentous forms. The biofilm producers were divided into two populations (low and high), based on the ability in producing biomass and their metabolic activity. Candida isolates with filamentous growth, higher biomass and metabolic activity showed lower AbA MIC50 (at least fourfold), compared to those exhibiting yeast morphology, and lower biomass and metabolic activity. The observation of filament detachment and the almost complete removal of biofilm from AbA-treated C. albicans biofilm in FESEM analysis suggests an anti-biofilm effect of AbA.

    CONCLUSIONS: The variability in the growth characteristics of Candida biofilm cultures affects susceptibility to AbA, with higher susceptibility noted in biofilm cultures exhibiting filamentous form and high biomass/metabolic activity.

    Matched MeSH terms: Candida albicans/drug effects
  3. Mollataghi A, Coudiere E, Hadi AH, Mukhtar MR, Awang K, Litaudon M, et al.
    Fitoterapia, 2012 Mar;83(2):298-302.
    PMID: 22119096 DOI: 10.1016/j.fitote.2011.11.009
    Phytochemical investigation of Beilschmiedia alloiophylla has resulted in the isolation of one new alkaloid, 2-hydroxy-9-methoxyaporphine (1), and ten known natural products, laurotetanine (2), liriodenine (3), boldine (4), secoboldine (5), isoboldine (6), asimilobine (7), oreobeiline (8), 6-epioreobeiline (9), β-amyrone (10), and (S)-3-methoxynordomesticine (11). Chemical studies on the bark of B. kunstleri afforded compounds 2 and 4 along with one bisbenzylisoquinoline alkaloid, N-dimethylphyllocryptine (12). Structures of compounds 1-12 were elucidated on the basis of spectroscopic methods. All of these isolates were evaluated for their anti-acetylcholinesterase (AChE), anti-α-glucosidase, anti-leishmanial and anti-fungal activities. Compounds 1-12 exhibited strong to moderate bioactivities in aforementioned bioassays.
    Matched MeSH terms: Candida albicans/drug effects
  4. Mohammed AAM, Suaifan GARY, Shehadeh MB, Okechukwu PN
    Eur J Med Chem, 2020 Sep 15;202:112513.
    PMID: 32623216 DOI: 10.1016/j.ejmech.2020.112513
    Herein we report the design, synthesis and biological evaluation of structurally modified ciprofloxacin, norfloxacin and moxifloxacin standard drugs, featuring amide functional groups at C-3 of the fluoroquinolone scaffold. In vitro antimicrobial testing against various Gram-positive bacteria, Gram-negative bacteria and fungi revealed potential antibacterial and antifungal activity. Hybrid compounds 9 (MIC 0.2668 ± 0.0001 mM), 10 (MIC 0.1358 ± 00025 mM) and 13 (MIC 0.0898 ± 0.0014 mM) had potential antimicrobial activity against a fluoroquinolone-resistant Escherichia coli clinical isolate, compared to ciprofloxacin (MIC 0.5098 ± 0.0024 mM) and norfloxacin (MIC 0.2937 ± 0.0021 mM) standard drugs. Interestingly, compound 10 also exerted potential antifungal activity against Candida albicans (MIC 0.0056 ± 0.0014 mM) and Penicillium chrysogenum (MIC 0.0453 ± 0.0156 mM). Novel derivatives and standard fluoroquinolone drugs exhibited near-identical cytotoxicity levels against L6 muscle cell-line, when measured using the MTT assay.
    Matched MeSH terms: Candida albicans/drug effects
  5. Matejczyk M, Ofman P, Juszczuk-Kubiak E, Świsłocka R, Shing WL, Kesari KK, et al.
    Ecotoxicol Environ Saf, 2024 Jun 01;277:116383.
    PMID: 38663192 DOI: 10.1016/j.ecoenv.2024.116383
    Vanillic acid (4-hydroxy-3-methoxybenzoic acid) (VA) is a natural benzoic acid derivative commonly found in herbs, rice, maize, and some fruits and vegetables. However, due to the wide use of VA in various industrial sectors, its presence in the environment might harm living organisms. This study evaluated the toxicity of VA and its isomers, iso-VA and orto-VA. Firstly, the antimicrobial effect of VA and its isomers iso-VA and orto-VA (in doses of 1000; 100, 10, 1; 0.1; 0.01 mg/L) against Escherichia coli, Sarcina spp., Enterobacter homaechei, Staphylococcus aureus and Candida albicans were identified. The toxic effect and protein degradation potential of VA and its isomers were determined using E. coli grpE:luxCDABE and lac:luxCDABE biosensor strains. However, the genotoxicity and oxidative stress generation were assessed with the E. coli recA:luxCDABE biosensor and E. coli strain. The results showed that VA, iso-VA, and orto-VA exhibited antimicrobial activity against all tested bacterial strains. However, VA's antimicrobial effect differed from iso-VA and orto-VA. Similar toxic, genotoxic, and oxidative stress-inducing effects were observed for VA and its isomers. Each compound exhibited toxicity, cellular protein degradation, and genotoxic activity against E. coli grpE:luxCDABE, E. coli lac:luxCDABE, and E. coli recA:luxCDABE strains. Analysis of reactive oxygen species (ROS) generation within E. coli cells highlighted oxidative stress as a contributing factor to the toxicity and genotoxicity of VA and its isomers. While the findings suggest potential applications of VA compounds as food preservatives, their presence in the environment raises concerns regarding the risks posed to living organisms due to their toxic and genotoxic characteristics.
    Matched MeSH terms: Candida albicans/drug effects
  6. Low CF, Chong PP, Yong PV, Lim CS, Ahmad Z, Othman F
    J Appl Microbiol, 2008 Dec;105(6):2169-77.
    PMID: 19120662 DOI: 10.1111/j.1365-2672.2008.03912.x
    The aims of the present study were to determine whether Allium sativum (garlic) extract has any effect on the morphology transformation of Candida albicans, and to investigate whether it could alter the gene expression level of SIR2, a morphogenetic control gene and SAP4, a gene encoding secreted aspartyl proteinase.
    Matched MeSH terms: Candida albicans/drug effects*
  7. Liu M, Huang P, Wang Q, Ren B, Oyeleye A, Liu M, et al.
    J Antibiot (Tokyo), 2017 05;70(5):715-717.
    PMID: 28074054 DOI: 10.1038/ja.2016.160
    Matched MeSH terms: Candida albicans/drug effects
  8. Ling JTS, Roberts CJ, Billa N
    AAPS PharmSciTech, 2019 Mar 05;20(3):136.
    PMID: 30838459 DOI: 10.1208/s12249-019-1346-7
    Surface-modified nanostructured lipid carriers (NLC) represent a promising mode of drug delivery used to enhance retention of drugs at absorption site. Formulated chitosan-coated amphotericin-B-loaded NLC (ChiAmp NLC) had a size of 394.4 ± 6.4 nm, encapsulation and loading efficiencies of 86.0 ± 3% and 11.0 ± 0.1% respectively. Amphotericin-B release from NLCs was biphasic with no changes in physical properties upon exposure to simulated gastrointestinal conditions. Antifungal properties of Amphotericin-B and ChiAmpB NLC were comparable but ChiAmpB NLC was twice less toxic to red blood cells and ten times safer on HT-29 cell lines. In vitro mucoadhesion data were observed ex vivo, where ChiAmpB NLC resulted in higher retention within the small intestine compared to the uncoated formulation. The data strongly offers the possibility of orally administering a non-toxic, yet effective Amphotericin-B nanoformulation for the treatment of systemic fungal infections.
    Matched MeSH terms: Candida albicans/drug effects
  9. Lim CS, Wong WF, Rosli R, Ng KP, Seow HF, Chong PP
    J Basic Microbiol, 2009 Dec;49(6):579-83.
    PMID: 19810039 DOI: 10.1002/jobm.200900035
    Candida albicans is capable of undergoing yeast-hypha transition to attain pathogenicity in humans. In this study, we investigated the differential expression of CaSIR2 via quantitative real-time PCR (qPCR), during yeast-hypha transition with and without the presence of 2-dodecanol. SIR2 transcript levels were found to be significantly enhanced after hyphal induction as compared to the yeast form. This study found that 2-dodecanol is able to inhibit hyphal development and block SIR2 up-regulation, even in hyphal-inducing growth conditions. We suggest that SIR2 may be involved in Candida albicans quorum-sensing and serum-induced yeast-hyphae transition via the Ras1-cAMP-Efg1 signalling cascade.
    Matched MeSH terms: Candida albicans/drug effects*
  10. Lee LH, Cheah YK, Mohd Sidik S, Ab Mutalib NS, Tang YL, Lin HP, et al.
    World J Microbiol Biotechnol, 2012 May;28(5):2125-37.
    PMID: 22806035 DOI: 10.1007/s11274-012-1018-1
    The present study aimed to isolate actinobacteria from soil samples and characterized them using molecular tools and screened their secondary metabolites for antimicrobial activities. Thirty-nine strains from four different location of Barrientos Island, Antarctica using 12 types of isolation media was isolated. The isolates were preceded to screening of secondary metabolites for antimicrobial and antifungal activities. Using high-throughput screening methods, 38% (15/39) of isolates produced bioactive metabolites. Approximately 18% (7/39), 18% (7/39), 10% (4/39) and 2.5% (1/39) of isolates inhibited growth of Candida albicans ATCC 10231(T), Staphylococcus aurues ATCC 51650(T), methicillin-resistant Staphylococcus aurues (MRSA) ATCC BAA-44(T) and Pseudomonas aeruginosa ATCC 10145(T), respectively. Molecular characterization techniques like 16S rRNA analysis, Enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR), Random amplified polymorphic DNA (RAPD) and composite analyses were used to characterize the actinobacteria strains. Analysis of 16S rRNA sequences is still one of the most powerful methods to determine higher taxonomic relationships of Actinobacteria. Both RAPD and ERIC-PCR fingerprinting have shown good discriminatory capability but RAPD proved to be better in discriminatory power than ERIC-PCR. Our results demonstrated that composite analysis of both fingerprinting generally increased the discrimination ability and generated best clustering for actinobacteria strains in this study.
    Matched MeSH terms: Candida albicans/drug effects
  11. Latha LY, Darah I, Jain K, Sasidharan S
    Eur Rev Med Pharmacol Sci, 2011 May;15(5):543-9.
    PMID: 21744750
    Vernonia (V.) cinerea Less (Asteraceae) have many therapeutic uses in the practice of traditional medicine. The methanol extract of V cinerea, was screened for antiyeast activity against pathogenic yeast Candida albicans.
    Matched MeSH terms: Candida albicans/drug effects*
  12. Kumar S, Narasimhan B, Lim SM, Ramasamy K, Mani V, Shah SAA
    Mini Rev Med Chem, 2019;19(7):609-621.
    PMID: 30526456 DOI: 10.2174/1389557519666181210162413
    BACKGROUND: A series of 6, 6'-(1,4-phenylene)bis(4-(4-bromophenyl)pyrimidin-2-amine) derivatives has been synthesized by Claisen-Schmidt condensation and its chemical structures was confirmed by FT-IR, 1H/13C-NMR spectral and elemental analyses. The molecular docking study was carried out to find the interaction between active bis-pyrimidine compounds with CDK-8 protein. The in vitro antimicrobial potential of the synthesized compounds was determined against Gram-positive and Gram-negative bacterial species as well fungal species by tube dilution technique. Antimicrobial results indicated that compound 11y was found to be most potent one against E. coli (MICec = 0.67 µmol/mL) and C. albicans (MICca = 0.17 µmol/mL) and its activity was comparable to norfloxacin (MIC = 0.47 µmol/mL) and fluconazole (MIC = 0.50 µmol/mL), respectively.

    CONCLUSION: Anticancer screening of the synthesized compounds using Sulforhodamine B (SRB) assay demonstrated that compounds 2y (IC50 = 0.01 µmol/mL) and 4y (IC50= 0.02 µmol/mL) have high antiproliferative potential against human colorectal carcinoma cancer cell line than the reference drug (5- fluorouracil) and these compounds also showed best dock score with better potency within the ATP binding pocket and may also be used lead for rational drug designing.

    Matched MeSH terms: Candida albicans/drug effects
  13. Klaus A, Wan-Mohtar WAAQI, Nikolić B, Cvetković S, Vunduk J
    World J Microbiol Biotechnol, 2021 Jan 04;37(1):17.
    PMID: 33394203 DOI: 10.1007/s11274-020-02980-6
    Four types of mycelial extracts were derived from the airlift liquid fermentation (ALF) of Pleurotus flabellatus, namely exopolysaccharide (EX), endopolysaccharide (EN), hot water (WE), and hot alkali (AE) extracts. Such extracts were screened for their active components and biological potential. EN proved to be most effective in inhibition of lipid peroxidation (EC50 = 1.71 ± 0.02 mg/mL) and in Cupric ion reducing antioxidant capacity (CUPRAC) assay (EC50 = 2.91 ± 0.01 mg TE/g). AE exhibited most pronounced ability to chelate ferrous ions (EC50 = 4.96 ± 0.08 mg/mL) and to scavenge ABTS radicals (EC50 = 3.36 ± 0.03 mg TE/g). β-glucans and total phenols contributed most to the chelating ability and quenching of ABTS radicals. Inhibition of lipid peroxidation correlated best with total glucans, total proteins, and β-glucans. Total proteins contributed most to CUPRAC antioxidant capacity. Antifungal effect was determined against Candida albicans ATCC 10231 (MIC: 0.019-0.625 mg/mL; MFC: 0.039-2.5 mg/mL), and towards C. albicans clinical isolate (MIC and MFC: 10.0-20.0 mg/mL). Comparison of cytotoxicity against colorectal carcinoma HCT 116 cells (IC50: 1.8 ± 0.3-24.6 ± 4.2 mg/mL) and normal lung MRC-5 fibroblasts (IC50: 17.0 ± 4.2-42.1 ± 6.1 mg/mL) showed that EN, and especially AE possess selective anticancer activity (SI values 3.41 and 9.44, respectively). Slight genotoxicity was observed only for AE and EX, indicating the low risk concerning this feature. Notable antioxidative and anticandidal activities, selective cytotoxicity against colorectal carcinoma cells, and absence/low genotoxicity pointed out that ALF-cultivated P. flabellatus mycelium could be considered as a valuable source of bioactive substances.
    Matched MeSH terms: Candida albicans/drug effects
  14. Khodavandi A, Alizadeh F, Harmal NS, Sidik SM, Othman F, Sekawi Z, et al.
    FEMS Microbiol Lett, 2011 Feb;315(2):87-93.
    PMID: 21204918 DOI: 10.1111/j.1574-6968.2010.02170.x
    The efficacy of allicin compared with fluconazole in alleviating systemic Candida albicans infections was evaluated both in vitro and in vivo through a systemic candidiasis mouse model. Determination of in vitro minimum inhibitory concentrations (MICs) for different C. albicans isolates revealed that both allicin and fluconazole showed different MICs that ranged from 0.05 to 12.5 μg mL(-1) and 0.25 to 16 μg mL(-1) , respectively. A time-kill study showed a significant effect of allicin (P<0.01) against C. albicans, comparable to that of fluconazole. Scanning electron microscopy observation revealed that, similar to fluconazole, allicin produced structural destruction of C. albicans cell surface at low MIC and lysis or puncture at high MIC concentrations. Treatment of BALB/c mice systemically infected with C. albicans showed that although the allicin treatment (at 5 mg kg(-1) day(-1) ) was slightly less efficacious than fluconazole treatment in terms of the fungal load reduction and host survival time, it was still effective against C. albicans in terms of mean survival time, which increased from 8.4 to 15.8 days. These results demonstrate the efficacy of anticandidal effects of allicin both in vitro and in an animal model of candidiasis and affirm the potential of allicin as an adjuvant therapy to fluconazole.
    Matched MeSH terms: Candida albicans/drug effects*
  15. Kamaliah MD, Bhajan MA, Dzarr GA
    PMID: 16124446
    We present an interesting and rare case of a diabetic patient who developed extensive unilateral emphysematous pyelonephritis (EPN) which was caused by fungal infection. The diagnosis was confirmed on computed tomography (CT) scan of the abdomen. Repeated urine cultures grew Candida albicans but no other organisms were isolated. The patient remained febrile and unwell despite parenteral broad spectrum antibiotics and antifungal treatment. She underwent nephrectomy and then made a good clinical recovery.
    Matched MeSH terms: Candida albicans/drug effects
  16. Jothy SL, Zakariah Z, Chen Y, Sasidharan S
    Molecules, 2012 Jun 07;17(6):6997-7009.
    PMID: 22678414 DOI: 10.3390/molecules17066997
    Cassia fistula seeds have many therapeutic uses in traditional medicine practice. The present investigation was undertaken to demonstrate the anticandidal activity of the C. fistula seed extract at ultra-structural level through transmission electron microscope (TEM) and scanning electron microscope (SEM) observations. The effect of seed extract on the growth profile of the Candida albicans was examined via time-kill assays and in vivo efficacy of the extract was tested in an animal model. In addition, the anticandidal effect of seed extract was further evaluated by microscopic observations using SEM and TEM to determine any major alterations in the ultrastructure of C. albicans. The complete inhibition of C. albicans growth was shown by C. fistula seed extract at 6.25 mg/mL concentration. The time-kill assay suggested that C. fistula seed extract had completely inhibited the growth of C. albicans and also exhibited prolonged anti-yeast activity. The SEM and TEM observations carried out to distinguish the metamorphosis in the morphology of control and C. fistula seed extract-treated C. albicans cells revealed the notable effect on the outer cell wall and cytoplasmic content of the C. albicans and complete collapse of yeast cell exposed to seed extract at concentration 6.25 mg/mL at 36 h. The in vitro time-kill study performed using the leaf extract at 1/2, 1 or 2 times of the MIC significantly inhibited the yeast growth with a noticeable drop in optical density (OD) of yeast culture, thus confirming the fungicidal effect of the extract on C. albicans. In addition, in vivo antifungal activity studies on candidiasis in mice showed a 6-fold decrease in C. albicans in kidneys and blood samples in the groups of animals treated with the extract (2.5 g/kg body weight). The results suggested that the C. fistula seed extract possessed good anticandidal activity and is a potential candidate for the development of anticandidal agents.
    Matched MeSH terms: Candida albicans/drug effects
  17. Jothy SL, Zakaria Z, Chen Y, Lau YL, Latha LY, Shin LN, et al.
    Molecules, 2011 Sep 05;16(9):7583-92.
    PMID: 21894090 DOI: 10.3390/molecules16097583
    BACKGROUND AND OBJECTIVE: Cassia fistula L belongs to the family Leguminosae, and it is one of the most popular herbal products in tropical countries. C. fistula seeds have been used as a herbal medicine and have pharmacological activity which includes anti-bacterial, anti-fungal, and antioxidant properties. The goal of this study was to identify compounds from C. fistula seeds which are responsible for anti-Candida albicans activity using bioassay-directed isolation.

    RESULTS: The preliminary phytochemical screening of the plant seed revealed the presence of anthraquinones, flavonoids, saponins, tannins and terpenoids. The isolation of active compounds was carried out in four steps: multiple extractions, fractionation using column chromatography and purification using preparative thin-layer chromatography (TLC) and liquid chromatography/mass spectrometry (LC/MS). The structure of separated compounds was determined on the basis of mass spectrometry data. One compound was identified is roseanone.

    CONCLUSIONS: The MS analysis on the active fraction from seed extract of C. fistula confirmed the presence of roseanone with antiyeast activity.

    Matched MeSH terms: Candida albicans/drug effects
  18. Hussein-Al-Ali SH, El Zowalaty ME, Kura AU, Geilich B, Fakurazi S, Webster TJ, et al.
    Biomed Res Int, 2014;2014:651831.
    PMID: 24900976 DOI: 10.1155/2014/651831
    Nystatin is a tetraene diene polyene antibiotic showing a broad spectrum of antifungal activity. In the present study, we prepared a nystatin nanocomposite (Nyst-CS-MNP) by loading nystatin (Nyst) on chitosan (CS) coated magnetic nanoparticles (MNPs). The magnetic nanocomposites were characterized by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetry analysis (TGA), vibrating sample magnetometer (VSM), and scanning electron microscopy (SEM). The XRD results showed that the MNPs and nanocomposite are pure magnetite. The FTIR analysis confirmed the binding of CS on the surface of the MNPs and also the loading of Nyst in the nanocomposite. The Nyst drug loading was estimated using UV-Vis instrumentation and showing a 14.9% loading in the nanocomposite. The TEM size image of the MNPs, CS-MNP, and Nyst-CS-MNP was 13, 11, and 8 nm, respectively. The release profile of the Nyst drug from the nanocomposite followed a pseudo-second-order kinetic model. The antimicrobial activity of the as-synthesized Nyst and Nyst-CS-MNP nanocomposite was evaluated using an agar diffusion method and showed enhanced antifungal activity against Candida albicans. In this manner, this study introduces a novel nanocomposite that can decrease fungus activity on-demand for numerous medical applications.
    Matched MeSH terms: Candida albicans/drug effects
  19. Hussain MA, Ahmed D, Anwar A, Perveen S, Ahmed S, Anis I, et al.
    Int Microbiol, 2019 Jun;22(2):239-246.
    PMID: 30810990 DOI: 10.1007/s10123-018-00043-3
    Silver nanoparticles (SN) have been recently developed as a new class of antimicrobial agents against numerous pathogenic microorganisms. SN have also been used as efficient drug delivery systems and have been linked with increasing drug potency. Here, we demonstrated the enhanced antifungal efficacy of nystatin (NYT) and fluconazole (FLU) after conjugation with SN. The antifungal bioactivity of NYT- and FLU-coated SN was evaluated against Candida albicans ATCC 10231 and Aspergillus brasiliensis ATCC 16404 by the agar tube dilution method. The aim of this study was to determine and compare the antifungal efficacy of NYT and FLU with their SN and, finally, the combination of both nanoparticles as NYT-SN + FLU-SN against pathogenic fungi. The results indicated that all test samples showed a dose-dependent response against tested fungi. SN significantly enhanced the antifungal effects of NYT and FLU as compared to drugs alone. We observed a remarkable increase in the percent inhibition of both fungi (90-100%) when treated with a combination of both nanoparticles NYT-SN + FLU-SN at 200 μg/mL only. Furthermore, the morphological modifications occurred at the surface of fungal species were also analyzed by atomic force microscopy (AFM) and scanning electron microscopy (SEM). While tested against primary human cell line, all SN showed negligible cytotoxicity. Hence, these results suggest that the combination of SN with NYT and FLU may have clinical implications in the treatment of fungal infections. However, in vivo studies are needed before recommending the use of these nanoparticles safely in clinical situations.
    Matched MeSH terms: Candida albicans/drug effects*
  20. Greco G, Di Piazza S, Chan J, Zotti M, Hanna R, Gheno E, et al.
    Photodiagnosis Photodyn Ther, 2020 Mar;29:101575.
    PMID: 31614222 DOI: 10.1016/j.pdpdt.2019.10.010
    BACKGROUND: A large number of systemic diseases can be linked to oral candida pathogenicity. The global trend of invasive candidiasis has increased progressively and is often accentuated by increasing Candida albicans resistance to the most common antifungal medications. Photodynamic therapy (PDT) is a promising therapeutic approach for oral microbial infections. A new formulation of 5-aminolevulinic acid (5%ALA) in a thermosetting gel (t) (5%ALA-PTt) was patented and recently has become available on the market. However, its antimicrobial properties, whether mediated or not by PDT, are not yet known. In this work we characterised them.

    METHODS: We isolated a strain of C. albicans from plaques on the oral mucus membrane of an infected patient. Colonies of this strain were exposed for 1 24 h, to 5%ALA-PTt, 5%ALA-PTt buffered to pH 6.5 (the pH of the oral mucosa) (5%ALA-PTtb) or not exposed (control). The 1 h-exposed samples were also irradiated at a wavelength of 630 nm with 0.14 watts (W) and 0.37 W/cm2 for 7 min at a distance of <1 mm.

    RESULTS AND CONCLUSION: The 5% ALA-PTt preparation was shown to be effective in reducing the growth of biofilm and inoculum of C. albicans. This effect seems to be linked to the intrinsic characteristics of 5%ALA-TPt, such acidic pH and the induction of free radical production. This outcome was significantly enhanced by the effect of PDT at relatively short incubation and irradiation times, which resulted in growth inhibition of both treated biofilm and inoculum by ∼80% and ∼95%, respectively.

    Matched MeSH terms: Candida albicans/drug effects*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links