Displaying publications 21 - 40 of 133 in total

Abstract:
Sort:
  1. Cheah SC, Lai SL, Lee ST, Hadi AH, Mustafa MR
    Molecules, 2013 Jul 24;18(8):8764-78.
    PMID: 23887718 DOI: 10.3390/molecules18088764
    In the present study, we investigated the effects of panduratin A (PA), isolated from Boesenbergia rotunda, on apoptosis and chemoinvasion in A549 human non-small cell lung cancer cells. Activation of the executioner procaspase-3 by PA was found to be dose-dependent. Caspase-3 activity was significantly elevated at the 5 µg/mL level of PA treatment and progressed to a maximal level. However, no significant elevated level was detected on procaspase-8. These findings suggest that PA activated caspase-3 but not caspase-8. Numerous nuclei of PA treated A549 cells stained brightly by anti-cleaved PARP antibody through High Content Screening. This result further confirmed that PA induced apoptotic cell death was mediated through activation of caspase-3 and eventually led to PARP cleavage. Treatment of A549 cells with PA resulted in a strong inhibition of NF-κB activation, which was consistent with a decrease in nuclear levels of NF-κB/p65 and NF-κB/p50 and the elevation of p53 and p21. Besides that, we also showed that PA significantly inhibited the invasion of A549 cells in a dose-dependent manner through reducing the secretion of MMP-2 of A549 cells gelatin zymography assay. Our findings not only provide the effects of PA, but may also be important in the design of therapeutic protocols that involve targeting of either p53 or NF-κB.
    Matched MeSH terms: Caspase 3
  2. Chew MM, Gan SY, Khoo AS, Tan EL
    BMC Cancer, 2010;10:574.
    PMID: 20964870 DOI: 10.1186/1471-2407-10-574
    Nasopharyngeal carcinoma (NPC) is a type of neoplasm that is highly prevalent in East Asia and Africa with Epstein-Barr virus (EBV), genetic, and dietary factors implicated as possible aetiologic factors. Previous studies suggested the association of certain cytokines with the invasion and metastatic properties of NPC. The present study examined the roles of EBV latent membrane protein-1 (LMP1), interleukin-6 (IL-6), interleukin-10 (IL-10), transforming growth factor-beta 1 (TGF-β1) and laminin in the regulation of matrix-metalloproteinases (MMPs) and vascular endothelial growth factor (VEGF) in NPC. The effects of these factors on bmi-1, an oncogene, and ngx6, a tumour suppressor gene, were also investigated.
    Matched MeSH terms: Caspase 3/metabolism
  3. Chong HZ, Rahmat A, Yeap SK, Md Akim A, Alitheen NB, Othman F, et al.
    PMID: 22471785 DOI: 10.1186/1472-6882-12-35
    Strobilanthes crispus has been traditionally used as antidiabetic, anticancer, diuretic, antilytic and laxative agent. However, cytotoxicity and antiproliferative effect of S. crispus is still unclear.
    Matched MeSH terms: Caspase 3/metabolism
  4. Dahmardeh N, Shabani M, Basiri M, Kalantaripour TP, Asadi-Shekaari M
    Malays J Med Sci, 2019 Jul;26(4):28-38.
    PMID: 31496891 DOI: 10.21315/mjms2019.26.4.4
    Background: There is a meaningful necessity for a targeted therapy of essential tremor (ET), as medications have not been developed specifically for ET. For nearly a century, many drugs have been applied in the treatment of tremor but the drug treatment of ET remains still unknown. Some potential therapeutic factors such fingolimod (FTY720) can be effectively used to treat ET in animals. In the present research, the effect of FTY720, the immunomodulatory sphingosine 1-phosphate (S1P) analog, on degeneration of cerebellar and olivary neurons induced by harmaline in male rats was investigated.

    Methods: The animals were allotted into control dimethyl sulfoxide (DMSO), saline + harmaline [30 mg/kg, intraperitoneally, (i.p.)], harmaline + FTY720 (1 mg/kg, i.p, 1 h and 24 h before harmaline injection) groups (n = 10). The cerebellum and inferior olive nucleus (ION) were studied for neuronal degeneration using immunohistochemistry (IHC) and ultrastructural study by transmission electron microscopy (TEM) techniques.

    Results: Harmaline caused neuronal cell loss, caspase-3 mediated apoptosis, astrocytosis and ultrastructural changes in cerebellar Purkinje cells and inferior olive neurons. FTY720 exhibited neuroprotective effects on cerebellar Purkinje cells and inferior olivary neurons.

    Conclusion: These results suggest that FTY720 has potential efficacy for prevention of ET neurodegeneration and astrocytosis induced by harmaline in male rats.

    Matched MeSH terms: Caspase 3
  5. Dyari HRE, Rawling T, Chen Y, Sudarmana W, Bourget K, Dwyer JM, et al.
    FASEB J, 2017 12;31(12):5246-5257.
    PMID: 28798154 DOI: 10.1096/fj.201700033R
    A saturated analog of the cytochrome P450-mediated ω-3-17,18-epoxide of ω-3-eicosapentaenoic acid (C20E) activated apoptosis in human triple-negative MDA-MB-231 breast cancer cells. This study evaluated the apoptotic mechanism of C20E. Increased cytosolic cytochrome c expression and altered expression of pro- and antiapoptotic B-cell lymphoma-2 proteins indicated activation of the mitochondrial pathway. Caspase-3 activation by C20E was prevented by pharmacological inhibition and silencing of the JNK and p38 MAP kinases (MAPK), upstream MAPK kinases MKK4 and MKK7, and the upstream MAPK kinase kinase apoptosis signal-regulating kinase 1 (ASK1). Silencing of the death receptor TNF receptor 1 (TNFR1), but not Fas, DR4, or DR5, and the adapters TRADD and TNF receptor-associated factor 2, but not Fas-associated death domain, prevented C20E-mediated apoptosis. B-cell lymphoma-2 homology 3-interacting domain death agonist (Bid) cleavage by JNK/p38 MAPK linked the extrinsic and mitochondrial pathways of apoptosis. In further studies, an antibody against the extracellular domain of TNFR1 prevented apoptosis by TNF-α but not C20E. These findings suggest that C20E acts intracellularly at TNFR1 to activate ASK1-MKK4/7-JNK/p38 MAPK signaling and to promote Bid-dependent mitochondrial disruption and apoptosis. Inin vivostudies, tumors isolated from C20E-treated nu/nu mice carrying MDA-MB-231 xenografts showed increased TUNEL staining and decreased Ki67 staining, reflecting increased apoptosis and decreased proliferation, respectively. ω-3-Epoxy fatty acids like C20E could be incorporated into treatments for triple-negative breast cancers.-Dyari, H. R. E., Rawling, T., Chen, Y., Sudarmana, W., Bourget, K., Dwyer, J. M., Allison, S. E., Murray, M. A novel synthetic analogue of ω-3 17,18-epoxyeicosatetraenoic acid activates TNF receptor-1/ASK1/JNK signaling to promote apoptosis in human breast cancer cells.
    Matched MeSH terms: Caspase 3/metabolism
  6. El Habbash AI, Mohd Hashim N, Ibrahim MY, Yahayu M, Omer FAE, Abd Rahman M, et al.
    PeerJ, 2017;5:e3460.
    PMID: 28740747 DOI: 10.7717/peerj.3460
    Natural medicinal products possess diverse chemical structures and have been an essential source for drug discovery. Therefore, in this study, α-mangostin (AM) is a plant-derived compound was investigated for the apoptotic effect on human cervical cancer cells (HeLa). The cytotoxic effects of AM on the viability of HeLa and human normal ovarian cell line (SV40) were evaluated by using MTT assay. Results showed that AM inhibited HeLa cells viability at concentration- and time-dependent manner with IC50 value of 24.53 ± 1.48 µM at 24 h. The apoptogenic effects of AM on HeLa were assessed using fluorescence microscopy analysis. The effect of AM on cell proliferation was also studied through clonogenic assay. ROS production evaluation, flow cytometry (cell cycle) analysis, caspases 3/7, 8, and 9 assessment and multiple cytotoxicity assays were conducted to determine the mechanism of cell apoptosis. This was associated with G2/M phase cell cycle arrest and elevation in ROS production. AM induced mitochondrial apoptosis which was confirmed based on the significant increase in the levels of caspases 3/7 and 9 in a dose-dependent manner. Furthermore, the MMP disruption and increased cell permeability, concurrent with cytochrome c release from the mitochondria to the cytosol provided evidence that AM can induce apoptosis via mitochondrial-dependent pathway. AM exerted a remarkable antitumor effect and induced characteristic apoptogenic morphological changes on HeLa cells, which indicates the occurrence of cell death. This study reveals that AM could be a potential antitumor compound on cervical cancer in vitro and can be considered for further cervical cancer preclinical and in vivo testing.
    Matched MeSH terms: Caspase 3
  7. Farghadani R, Seifaddinipour M, Rajarajeswaran J, Abdulla MA, Mohd Hashim NB, Khaing SL, et al.
    PeerJ, 2019;7:e7686.
    PMID: 31608167 DOI: 10.7717/peerj.7686
    Breast cancer is the most frequently diagnosed cancer among women worldwide. Recently, increasing attention has been paid to the anticancer effects of transition metal complexes of indole Schiff bases. β-diiminato ManganeseIII complex has shown promising cell cycle arrest and apoptosis induction against MCF-7 and MDA-MB-231 breast cancer cells. In this study, time- and dose- dependent inhibitory activity were evaluated using MTT assay after 48 h and 72 h exposure time. In addition, median effect analysis was conducted according to Chou-Talalay method to investigate whether MnIII complex has synergistic effect in combination with chemotherapeutic drugs on inhibiting breast cancer cell growth. The molecular mechanisms underlying its potent antiproliferative effect was determined through bioluminescent caspase-3/7, -8 and -9 activity assays and quantitative expression analysis of cell cycle- and apoptosis-related genes. Furthermore, safety evaluation of MnIII complex was assessed through the acute oral toxicity test in in vivo model. The MTT assay results revealed that it potently reduced the viability of MCF-7 (IC50 of 0.63 ± 0.07 µg/mL for 48 h and 0.39 ± 0.08 µg/mL for 72 h) and MDA-MB-231 (1.17 ± 0.06 µg/mL for 48 h, 1.03 ± 0.15 µg/mL for 72 h) cells in dose- and time-dependent manner. Combination treatment also enhanced the cytotoxic effects of doxorubicin but not tamoxifen on inhibiting breast cancer cell growth. The involvement of intrinsic and extrinsic pathway in apoptosis induction was exhibited through the increased activity of caspase-9 and caspase-8, respectively, leading to enhanced downstream executioner caspase-3/7 activity in treated MCF-7 and MDA-MB-231 cells. In addition, gene expression analysis revealed that MnIII complex exerts its antiproliferative effect via up-and down-regulation of p21 and cyclin D1, respectively, along with increased expression of Bax/Bcl-2 ratio, TNF-α, initiator caspase-8 and -10 and effector caspase-3 in MCF-7 and MDA-MB-231 cells. However, the results did not show increased caspase-8 activity in treated MCF-7 cells. Furthermore, in vivo acute oral toxicity test revealed no signs of toxicity and mortality in treated animal models compared to the control group. Collectively, the promising inhibitory effect and molecular and mechanistic evidence of antiproliferative activity of MnIII complex and its safety characterization have demonstrated that it may have therapeutic value in breast cancer treatment worthy of further investigation and development.
    Matched MeSH terms: Caspase 3
  8. Foo JB, Yazan LS, Tor YS, Armania N, Ismail N, Imam MU, et al.
    PMID: 24947113 DOI: 10.1186/1472-6882-14-197
    Dillenia suffruticosa root dichloromethane extract (DCM-DS) has been reported to exhibit strong cytotoxicity towards breast cancer cells. The present study was designed to investigate the cell cycle profile, mode of cell death and signalling pathways of DCM-DS-treated human caspase-3 deficient MCF-7 breast cancer cells.
    Matched MeSH terms: Caspase 3/deficiency*; Caspase 3/genetics; Caspase 3/metabolism
  9. Giribabu N, Kumar KE, Rekha SS, Muniandy S, Salleh N
    PMID: 25104050 DOI: 10.1186/1472-6882-14-291
    We hypothesized that C. borivilianum root, known to improve male reproductive performance, prevents impairment in characteristics, morphology and elevation of oxidative stress in sperm of diabetics. We therefore investigated the effect of aqueous root extract of C. borivilianum on these parameters in diabetic rat model.
    Matched MeSH terms: Caspase 3/metabolism
  10. Giribabu N, Karim K, Kilari EK, Salleh N
    J Ethnopharmacol, 2017 Jun 09;205:123-137.
    PMID: 28483637 DOI: 10.1016/j.jep.2017.05.002
    ETHNOPHARMACOLOGICAL RELEVANCE: Phylanthus niruri has been used to treat ailments related to the urogenital organs. In this study, this herb was hypothesized to help to ameliorate kidney disease in diabetes mellitus (DM).

    AIMS: To investigate P. niruri leaves aqueous extract (PN) effects on kidney functions, histopathological changes and levels of oxidative stress, inflammation, fibrosis, apoptosis and proliferation in DM.

    METHODS: PN was orally administered to streptozotocin-nicotinamide-induced male diabetic rats for 28 days. At the end of the treatment, fasting blood glucose (FBG) and kidney functions were measured. Kidney somatic index, histopathological changes and levels of RAGE, Nrf2, oxidative stress markers (TBARS, SOD, CAT and GPx), inflammatory markers (NFkβ-p65, Ikk-β, TNF-α, IL-1β and IL-6), apoptosis markers (caspase-3, caspase-9 and Bax), fibrosis markers (TGF-β1, VEGF and FGF-1) and proliferative markers (PCNA and Ki-67) were determined by biochemical assays, qPCR, Western blotting, immunohistochemistry or immunofluorescence.

    RESULTS: Administration of PN helps to maintain near normal FBG, creatinine clearance (CCr), blood urea nitrogen (BUN), BUN/Cr ratio, serum electrolytes, uric acid and urine protein levels in DM. Decreased RAGE, TBARS and increased Nrf2, SOD-1, CAT and GPx-1 were observed in PN-treated diabetic rat kidneys. Expression of inflammatory, fibrosis and apoptosis markers in the kidney reduced but expression of proliferative markers increased following PN treatment. Lesser histopathological changes were observed in the kidney of PN-treated diabetic rats.

    CONCLUSION: PN helps to preserve near normal kidney function and prevents histopathological changes via ameliorating oxidative stress, inflammation, fibrosis and apoptosis while enhancing proliferation of the kidney in DM.

    Matched MeSH terms: Caspase 3
  11. Gurunanselage Don RAS, Yap MKK
    Biomed Pharmacother, 2019 Feb;110:918-929.
    PMID: 30572196 DOI: 10.1016/j.biopha.2018.12.023
    Arctium lappa L. is a perennial herb traditionally consumed to improve well-being. It has been widely reported for its antioxidant properties; however, very little is known for its exact mechanisms underlying the anticancer activity. This study aimed to investigate the mechanisms of anticancer action for different A. lappa root extracts. Arctium lappa root was extracted with ethanol, hexane and ethyl acetate, then examined for in vitro anticancer activity against cancerous HeLa, MCF-7, Jurkat cell lines and non-cancerous 3T3 cell lines. Induction of apoptosis was determined by cellular morphological changes, mitochondrial membrane potential (ΔΨm), caspase-3/7 activity and DNA fragmentation. The active compounds present in the most potent root extracts were identified by LC-ESI-MS. Among all the extracts, ethyl acetate root extract has the highest potency with IC50 of 102.2 ± 42.4 μg/ml, followed by ethanolic root extract in Jurkat T cells, at 24 h. None of the extracts were cytotoxic against 3T3 cells, suggesting that the extracts were selective against cancerous cells only. Both ethyl acetate and ethanolic root extracts exhibited significant morphological changes in Jurkat T cells, including the detachment from adjacent cells, appearance of apoptotic bodies and cells shrinkage. The extracts treated cells also displayed an increase in caspase-3/7 activity and alteration in mitochondrial membrane potential. Only ethyl acetate root extract at IC50 induced DNA fragmentation in Jurkat T cells. LC-ESI-MS analysis of the extract revealed the presence of 8 compounds, of which only 6 compounds with various biological activities reported. These findings suggest that the ethyl acetate extract of A. lappa had strong anticancer potential and induced intrinsic apoptosis via loss of ΔΨm and activation of caspase-3/7 This study can provide new insight to the discovery of new promising lead compound in chemopreventive and chemotherapeutic strategies.
    Matched MeSH terms: Caspase 3/metabolism*
  12. Hafez EN, Awadallah FM, Ibrahim SA, Amin MM, El-Nawasera NZ
    Trop Biomed, 2020 Mar 01;37(1):89-102.
    PMID: 33612721
    Toxocara canis is a major parasite that infects many animals with high risk of human infections. This study aims at assessing the immunization with gamma radiationattenuated infective stage on rats challenged with non-irradiated dose. Level of vaccine protection was evaluated in liver and lung regarding parasitological, histopathological, biochemical and molecular parameters. Fifty rats were enrolled in three groups: group A (10 rats) as normal control; group B (20 rats) subdivided into subgroup B1 (infected control) and subgroup B2 infected then challenged after 14 days with the same dose of infection (challenged infected control); and group C (20 rats) subdivided into subgroup C1 vaccinated with a dose of 800 gray (Gy) gamma-radiated infective eggs (vaccine control) and subgroup C2 vaccinated then challenged on 14th day with same number of infective eggs (vaccinated-challenged). Tissues were stained with Haematoxylin and Eosin (H and E) for histopathological studies. Biochemical studies through detection of nitric oxide (NO) and Caspase-3 were conducted. Extent of DNA damage by Comet assay was assessed. Vaccinated-challenged subgroup revealed a marked reduction in larvae in tissues with mild associated histological changes. In addition there was accompanied reduction of NO, Casepase-3 level and DNA damage compared to the control infected group. It could be concluded that vaccination of rats with a dose of 800Gy gamma radiation-attenuated infective stage improves immune response to challenge infection and drastically reduces the morbidity currently seen.
    Matched MeSH terms: Caspase 3/analysis
  13. Hajrezaie M, Paydar M, Moghadamtousi SZ, Hassandarvish P, Gwaram NS, Zahedifard M, et al.
    ScientificWorldJournal, 2014;2014:540463.
    PMID: 24737979 DOI: 10.1155/2014/540463
    Metal-based drugs with extensive clinical applications hold great promise for the development of cancer chemotherapeutic agents. In the last few decades, Schiff bases and their complexes have become well known for their extensive biological potential. In the present study, we examined the antiproliferative effect of a copper (II) complex on HT-29 colon cancer cells. The Cu(BrHAP)2 Schiff base compound demonstrated a potent antiproliferative effect in HT-29 cells, with an IC50 value of 2.87  μg/ml after 72 h of treatment. HT-29 cells treated with Cu (II) complexes underwent apoptosis death, as exhibited by a progressive elevation in the proportion of the G1 cell population. At a concentration of 6.25  μg/ml, the Cu(BrHAP)2 compound caused significant elevation in ROS production following perturbation of mitochondrial membrane potential and cytochrome c release, as assessed by the measurement of fluorescence intensity in stained cells. Furthermore, the activation of caspases 3/7 and 9 was part of the Cu (II) complex-induced apoptosis, which confirmed the involvement of mitochondrial-mediated apoptosis. Meanwhile, there was no significant activation of caspase-8. Taken together, these results imply that the Cu(BrHAP)2 compound is a potential candidate for further in vivo and clinical colon cancer studies to develop novel chemotherapeutic agents derived from metal-based agents.
    Matched MeSH terms: Caspase 3/metabolism
  14. Har CH, Keong CK
    Asia Pac J Clin Nutr, 2005;14(4):374-80.
    PMID: 16326644
    The effects of tocotrienols on murine liver cell viability and their apoptotic events were studied over a dose range of 0-32 microg mL(-1). Normal murine liver cells (BNL CL.2) and murine liver cancer cells (BNL 1ME A.7R.1) were treated with tocotrienols (T(3)), alpha tocopherol (alpha-T) and the chemo drug, Doxorubicin (Doxo, as a positive control). Cell viability assay showed that T(3) significantly (P < or = 0.05) lowered the percentage of BNL 1ME A.7R.1 cell viability in a dose-responsive manner (8-16 microg mL(-1)), whereas T did not show any significant (P>0.05) inhibition in cell viability with increasing treatment doses of 0-16 microg mL(-1). The IC(50) for tocotrienols were 9.8, 8.9, 8.1, 9.7, 8.1 and 9.3 microg mL(-1) at 12, 24, 36, 48, 60 and 72 hours respectively. Early apoptosis was detected 6 hours following T(3) treatment of BNL 1ME A.7R.1 liver cancer cells, using Annexin V-FITC fluorescence microscopy assay for apoptosis, but none were observed for the non-treated liver cancer cells at the average IC(50) of 8.98 microg mL(-1) tocotrienols for liver cancer cells. Several apoptotic bodies were detected in BNL 1ME A.7R.1 liver cancer cells at 6 hours post-treatment with tocotrienols (8.98 microg mL(-1)) using Acridine Orange/Propidium Iodide fluorescence assay. However, only a couple of apoptotic bodies were seen in the non-treated liver cancer cells and the BNL CL.2 normal liver cells. Some mitotic bodies were also observed in the T(3)-treated BNL 1ME A.7R.1 liver cancer cells but were not seen in the untreated BNL 1ME A.7R.1 cells and the BNL CL.2 liver cells. Following T(3)-treatment (8.98 microg mL(-1)) of the BNL 1ME A.7R.1 liver cancer cells, 24.62%, 25.53% and 44.90% of the cells showed elevated active caspase 3 activity at 9, 12 and 24 hours treatment period, respectively. DNA laddering studies indicated DNA fragmentation occurred in the T(3)-treated liver cancer cells, BNL 1ME A.7R.1 but not in non-treated liver cancer cells and the T(3)-treated and non-treated normal liver cells. These results suggest that tocotrienols were able to reduce the cell viability in the murine liver cancer cells at a dose of 8-32 microg mL(-1) and that this decrease in percentage cell viability may be due to apoptosis.
    Matched MeSH terms: Caspase 3
  15. Haron AS, Syed Alwi SS, Saiful Yazan L, Abd Razak R, Ong YS, Zakarial Ansar FH, et al.
    PMID: 30186351 DOI: 10.1155/2018/1549805
    Thymoquinone (TQ), a bioactive compound found in Nigella sativa, cannot be orally consumed due to its lipophilicity. In order to overcome this low bioavailability, TQ is loaded into a colloidal drug carrier known as a nanostructured lipid carrier (NLC). This study aims to determine the antiproliferative effects of TQ and TQ-NLC on liver cancer cells integrated with the hepatitis B genome, Hep3B. The Hep3B was treated with TQ or TQ-NLC for 24, 48, and 72 hours via MTT assay. The results confirm that TQ or TQ-NLC inhibited the growth of Hep3B at IC50 <16.7 μM for 72 hours. TQ was also found to induce cell cycle arrest at the G1 checkpoint while TQ-NLC induced non-phase-specific cell cycle arrest. Further analysis using Annexin V staining confirmed the apoptotic induction of TQ or TQ-NLC via activation of caspases-3/7. In ROS management, TQ acted as a prooxidant (increased the level of ROS), while TQ-NLC acted as an antioxidant (reduced the level of ROS). Molecular analysis demonstrated that the GSH system and the Nrf2/Keap1 signaling pathway in Hep3B influenced the differential responses of the cells towards TQ or TQ-NLC. Hence, this study demonstrated that TQ and TQ-NLC have in vitro anticancer effects on the Hep3B.
    Matched MeSH terms: Caspase 3
  16. Hazalin NA, Lim SM, Cole AL, Majeed AB, Ramasamy K
    Anticancer Drugs, 2013 Sep;24(8):852-61.
    PMID: 23764760 DOI: 10.1097/CAD.0b013e3283635a47
    There is growing interest in the discovery of bioactive metabolites from endophytes as an alternative source of therapeutics. Identification of their therapeutic targets is essential in understanding the underlying mechanisms and enhancing the resultant therapeutic effects. As such, bioactive compounds produced by endophytic fungi from plants at the National Park, Pahang, Malaysia, were investigated. Five known compounds were identified using LC-UV-MS-NMR and they include trichodermol, 7-epi-brefeldin A, (3R,4S)-4-hydroxymellein, desmethyl-lasiodiplodin and cytochalasin D. The present study went on to investigate the potential anticancer effects of these compounds and the corresponding molecular mechanisms of the lead compound against human breast adenocarcinoma, MCF-7. For the preliminary screening, the cytotoxicity and apoptotic effects of these compounds against MCF-7 were examined. The compounds were also tested against noncarcinogenic hepatocytes (WRL68). The differential cytotoxicity was then determined using the MTT assay. Desmethyl-lasiodiplodin was found to suppress the growth of MCF-7, yielding an inhibitory concentration (IC50) that was seven-fold lower than that of the normal cells. The cytotoxic effect of desmethyl-lasiodiplodin was accompanied by apoptosis. Subsequent analysis demonstrated increased expression levels of caspase 3, c-myc and p53. Further, desmethyl-lasiodiplodin resulted in inhibition of monocyte chemotactic protein (MCP)-3, a cytokine involved in cell survival and metastasis. Hence, this study proposed that desmethyl-lasiodiplodin inhibited growth and survival of MCF-7 through the induction of apoptosis. This anticancer effect is mediated, in part, by upregulation of apoptotic genes and downregulation of MCP-3. As desmethyl-lasiodiplodin elicited minimal impact against normal hepatocytes, our findings also imply its potential use as a specific apoptotic agent in breast cancer treatment.
    Matched MeSH terms: Caspase 3/genetics; Caspase 3/metabolism
  17. He L, Gong H, Zhang J, Zhong C, Huang Y, Zhang C, et al.
    Saudi J Biol Sci, 2016 Jul;23(4):531-41.
    PMID: 27298588 DOI: 10.1016/j.sjbs.2016.02.021
    The effects of differences in smoke concentration and exposure duration in Sprague Dawley rats to determine variation in type and severity of the testis apoptosis were evaluated. The daily dosages were 10, 20 and 30 non-filter cigarettes for a period of 2, 4, 6, 8 and 12 weeks. Mainstream smoke exposure suppressed body weight gain in all regimens. A dose-related increase in plasma nicotine concentration was observed in smoke-exposed groups for 4, 6, 8 and 12 week regimens. Histopathological examination of the exposed groups showed disturbances in the stages of spermatogenesis, tubules atrophying and these appeared to be dose-related. Cytoplasmic caspase-3 immunostaining was detected both in Sertoli cells and germ cells in smoke-exposure groups. An increase in TUNEL-positive cells of testicular cells was observed after 6 weeks of cigarette exposure. The results indicate that cigarette exposure concentration and duration have interaction effect to induce apoptosis in the rat testes.
    Matched MeSH terms: Caspase 3
  18. Hossan MS, Chan ZY, Collins HM, Shipton FN, Butler MS, Rahmatullah M, et al.
    Cancer Lett, 2019 07 01;453:57-73.
    PMID: 30930233 DOI: 10.1016/j.canlet.2019.03.034
    Natural products possess a significant role in anticancer therapy and many currently-used anticancer drugs are of natural origin. Cerberin (CR), a cardenolide isolated from the fruit kernel of Cerbera odollam, was found to potently inhibit cancer cell growth (GI50 values 3/7 activation, in addition to reduced Bcl-2 and Mcl-1 expression. CR potently inhibited PI3K/AKT/mTOR signalling depleting polo-like kinase 1 (PLK-1), c-Myc and STAT-3 expression. Additionally, CR significantly increased the generation of reactive oxygen species (ROS) producing DNA double strand breaks. Preliminary in silico biopharmaceutical assessment of CR predicted >60% bioavailability and rapid absorption; doses of 1-10 mg/kg CR were predicted to maintain efficacious unbound plasma concentrations (>GI50 value). CR's potent and selective anti-tumour activity, and its targeting of key signalling mechanisms pertinent to tumourigenesis support further preclinical evaluation of this cardiac glycoside.
    Matched MeSH terms: Caspase 3
  19. Hosseinzadeh A, Bahrampour Juybari K, Kamarul T, Sharifi AM
    J Physiol Biochem, 2019 Jun;75(2):153-162.
    PMID: 30796627 DOI: 10.1007/s13105-019-00666-8
    The high glucose concentration is able to disturb chondrocyte homeostasis and contribute to OA pathogenesis. This study was designed to investigate the protective effects of atorvastatin (ATO) on high glucose (HG)-mediated oxidative stress and mitochondrial apoptosis in C28I2 human chondrocytes. The protective effect of ATO (0.01 and 0.1 μM) on HG (75 mM)-induced oxidative stress and apoptosis was evaluated in C28I2 cells. The effects of ATO on HG-induced intracellular ROS production and lipid peroxidation were detected and the protein expression levels of Bax, Bcl-2, caspase-3, total and phosphorylated JNK and P38 MAPKs were analyzed by Western blotting. The mRNA expression levels of antioxidant enzymes including heme oxygenase-1, NAD(P)H quinine oxidoreductase, glutathione S-transferase-P1, catalase, superoxide dismutase-1, glutathione peroxidase-1, -3, -4 were evaluated by reverse transcription-polymerase chain reaction. Pretreatment with ATO remarkably increased the gene expression levels of antioxidant enzymes and reduced HG-induced elevation of ROS, lipid peroxidation, Bax/Bcl-2 ratio, caspase-3 activation, and JNK and P38 phosphorylation. Atorvastatin could considerably reduce HG-induced oxidative stress and mitochondrial apoptosis through increasing the expression of antioxidant enzymes. Atorvastatin may be considered as a promising agent to prevent high glucose-induced cartilage degradation in OA patients.
    Matched MeSH terms: Caspase 3/metabolism
  20. Huang TT, Chen CM, Lan YW, Lin SS, Choo KB, Chong KY
    Int J Mol Sci, 2022 Nov 28;23(23).
    PMID: 36499211 DOI: 10.3390/ijms232314884
    E7050 is a potent inhibitor of c-Met receptor tyrosine kinase and has potential for cancer therapy. However, the underlying molecular mechanism involved in the anti-cancer property of E7050 has not been fully elucidated. The main objective of this study was to investigate the anti-tumor activity of E7050 in multidrug-resistant human uterine sarcoma MES-SA/Dx5 cells in vitro and in vivo, and to define its mechanisms. Our results revealed that E7050 reduced cell viability of MES-SA/Dx5 cells, which was associated with the induction of apoptosis and S phase cell cycle arrest. Additionally, E7050 treatment significantly upregulated the expression of Bax, cleaved PARP, cleaved caspase-3, p21, p53 and cyclin D1, while it downregulated the expression of survivin and cyclin A. On the other hand, the mechanistic study demonstrated that E7050 inhibited the phosphorylation of c-Met, Src, Akt and p38 in HGF-stimulated MES-SA/Dx5 cells. Further in vivo experiments showed that treatment of athymic nude mice carrying MES-SA/Dx5 xenograft tumors with E7050 remarkably suppressed tumor growth. E7050 treatment also decreased the expression of Ki-67 and p-Met, and increased the expression of cleaved caspase-3 in MES-SA/Dx5 tumor sections. Therefore, E7050 is a promising drug that can be developed for the treatment of multidrug-resistant uterine sarcoma.
    Matched MeSH terms: Caspase 3/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links