MATERIALS AND METHODS: Subgingival plaque samples were collected with sterile curette and subjected to deoxyribonucleic acid (DNA) extraction and subsequent PCR for detection of P. gingivalis.
RESULTS: Porphyromonas gingivalis was detected in 60% of patients of group II (pocket depth up to 5 mm), and in 93.33% of patients of group III (pocket depth more than 5 mm). One periodontally healthy subject in group I (probing depth < 3 mm) showed the presence of P. gingivalis.
CONCLUSION: Detection frequency of bacterium increased significantly with increase in probing pocket depth (PPD), loss of attachment (LOA), and gingival index (GI).
CLINICAL SIGNIFICANCE: Porphyromonas gingivalis is strongly associated with chronic periodontitis and its detection frequency positively correlates with the severity of periodontal destruction.
MATERIAL AND METHODS: Using an Oragene® RNA kit, the total RNA was purified from the saliva of 10 patients with chronic periodontitis and 10 patients without chronic periodontitis. The quantity and quality of the total RNA was determined, and a measure of gene expression via cDNA was undertaken using the Affymetrix microarray system. The microarray profiling result was further validated by real-time quantitative polymerase chain reaction.
RESULTS: Spectrophotometric analysis showed the total RNA purified from each participant ranged from 0.92 μg/500 μL to 62.85 μg/500 μL. There was great variability in the quantity of total RNA obtained from the 2 groups in the study with a mean of 10.21 ± 12.71 μg/500 μL for the periodontitis group and 15.97 ± 23.47 μg/500 μL for the control group. Further the RNA purity (based on the A260 /A280 ratio) for the majority of participants (9 periodontitis and 6 controls) were within the acceptable limits for downstream analysis (2.0 ± 0.1). The study samples, showed 2 distinct bands at 23S (3800 bp) and 16S (1500 bp) characteristic of bacterial rRNA. Preliminary microarray analysis was performed for 4 samples (P2, P6, H5 and H9). The percentage of genes present in each of the 4 samples was not consistent with about 1.8%-18.7% of genes being detected. Quantitative real-time polymerase chain reaction confirmed that the total RNA purified from each sample was mainly bacterial RNA (Uni 16S) with minimal human mRNA.
CONCLUSION: This study showed that minimal amounts of human RNA were able to be isolated from the saliva of patients with periodontitis as well as controls. Further work is required to enhance the extraction process of human mRNA from saliva if the salivary transcriptome is to be used in determining individual patient susceptibility.
Objective: To assess the periodontal status of pre-dialysis CKD patients in Hospital Universiti Sains Malaysia.
Methods: A total of 46 pre-dialysis CKD patients who attended the nephrology clinic at Hospital Universiti Sains Malaysia were enrolled in this study. Periodontal examination was performed using the periodontal probing depth (PPD), clinical attachment loss (CAL) and plaque index.
Results: The majority of the CKD patients were Malay (95.7%) and 80.4% were males. The mean age of the patients was 58.5 years. Using PPD measurement, 37 (74.0%) of the patients had mild periodontitis, 9 (20.0%) had moderate periodontitis and 3 (6.0%) had no periodontitis. Based on CAL measurement, 12 (26%) patients had mild periodontitis, 29 (63.0%) had moderate periodontitis and 5 (11%) had severe periodontitis. The mean (standard deviation [SD]) value of mild and moderate-to-severe periodontitis by PPD measurement were 4.26 (0.26) and 5.24 (0.36), respectively. The mean of mild and moderate-to-severe periodontitis by CAL measurement were 2.66 (0.62) and 4.98 (0.73), respectively. There was no correlation between the periodontal parameters and estimated glomerular filtration rate (PPD: r = -0.160, P = 0.914; CAL: r = -0.135, P = 0.372; plaque index: r = 0.005, P = 0.974).
Conclusion: This study revealed a greater prevalence and severity of chronic periodontitis among CKD patients. Thus, the periodontal health of CKD patients' needs to be screened and monitored.
MATERIALS AND METHODS: Forty chronic periodontitis patients completed this study and received periodontal treatment comprising scaling and root planing plus ultrasonic debridement. Clinical data were recorded at baseline, 6 weeks (R1) after treatment completion (full-mouth or quadrant-scaling and root planing) and 25 weeks after baseline (R2). Serum samples were taken at each time point and cytokines concentrations determined by ELISA.
RESULTS: Following treatment, statistically significant reductions were noted in clinical parameters. However, IL-17A and IL-17E concentrations were significantly greater than baseline values before- and after-adjusting for smoking. The IL-17A:IL-17E ratio was lower at R1 and R2. Serum IL-6 and TNF levels were significantly lower at R1 only. Also exclusively at R1, serum IL-17A and IL-17E correlated positively with clinical parameters, while the IL-17A:IL-17E ratio correlated negatively with probing pocket depth and clinical attachment.
CONCLUSION: Increased serum IL-17E and a reduced IL-17A:IL-17E ratio may be indicative and/or a consequence of periodontal therapy. Therefore, the role of IL-17E in periodontal disease progression and the healing process is worthy of further investigation.
CLINICAL RELEVANCE: IL-17E may be a valuable biomarker to monitor the healing process following periodontal treatment as increased IL-17E levels and a reduced IL-17A:IL-17E ratio could reflect clinical improvements post-therapy. Therefore, monitoring serum IL-17E might be useful to identify individuals who require additional periodontal treatment.
Aims: The objective of this study is to investigate if the subgingival plaque biofilm resistance can be reduced using doxycycline in the presence of low-intensity electric field (bioelectric effect).
Settings and Design: The study was an in vitro microbiological study.
Materials and Methods: Subgingival plaque samples from chronic periodontitis patients were collected to grow subgingival plaque biofilms on hydroxyapatite disks. Hydroxyapatite disks with the plaque biofilms from each patient were divided into four groups: (i) No intervention - control, (ii) current alone - CU; (iii) doxycycline - AB, and (iv) combined treatment - CU + AB. After respective treatments, the disks were anaerobically incubated for 48 h, the biofilm was dispersed and subcultured and colony-forming unit/mL was estimated in all the four groups.
Statistical Analysis: Statistical analysis was done using Mann-Whitney and Kruskal-Wallis tests for intergroup comparisons. T-test was done to assess the difference in current flow between the groups CU and CU + AB.
Results: All the three treatment modalities showed antibacterial effect. Application of current alone resulted in reduced bacterial growth than control group. Doxycycline alone resulted in reduction in bacterial counts better than control and current alone groups. The combination treatment showed greatest inhibition of bacterial colonies.
Conclusion: The ability of doxycycline antibiotic in inhibiting plaque biofilm was significantly enhanced by application of a weak electric field (5 volts for 2 min).
OBJECTIVES: To assess the effects of systemic antimicrobials as an adjunct to SRP for the non-surgical treatment of patients with periodontitis.
SEARCH METHODS: Cochrane Oral Health's Information Specialist searched the following databases to 9 March 2020: Cochrane Oral Health's Trials Register, CENTRAL, MEDLINE, and Embase. The US National Institutes of Health Ongoing Trials Register ClinicalTrials.gov and the World Health Organization International Clinical Trials Registry Platform were searched for ongoing trials.
SELECTION CRITERIA: We included randomized controlled trials (RCTs) which involved individuals with clinically diagnosed untreated periodontitis. Trials compared SRP with systemic antibiotics versus SRP alone/placebo, or with other systemic antibiotics.
DATA COLLECTION AND ANALYSIS: We selected trials, extracted data, and assessed risk of bias in duplicate. We estimated mean differences (MDs) for continuous data, with 95% confidence intervals (CIs). We assessed the certainty of the evidence using GRADE.
MAIN RESULTS: We included 45 trials conducted worldwide involving 2664 adult participants. 14 studies were at low, 8 at high, and the remaining 23 at unclear overall risk of bias. Seven trials did not contribute data to the analysis. We assessed the certainty of the evidence for the 10 comparisons which reported long-term follow-up (≥ 1 year). None of the studies reported data on antimicrobial resistance and patient-reported quality of life changes. Amoxicillin + metronidazole + SRP versus SRP in chronic/aggressive periodontitis: the evidence for percentage of closed pockets (MD -16.20%, 95% CI -25.87 to -6.53; 1 study, 44 participants); clinical attachment level (CAL) (MD -0.47 mm, 95% CI -0.90 to -0.05; 2 studies, 389 participants); probing pocket depth (PD) (MD -0.30 mm, 95% CI -0.42 to -0.18; 2 studies, 389 participants); and percentage of bleeding on probing (BOP) (MD -8.06%, 95% CI -14.26 to -1.85; 2 studies, 389 participants) was of very low certainty. Only the results for closed pockets and BOP showed a minimally important clinical difference (MICD) favouring amoxicillin + metronidazole + SRP. Metronidazole + SRP versus SRP in chronic/aggressive periodontitis: the evidence for percentage of closed pockets (MD -12.20%, 95% CI -29.23 to 4.83; 1 study, 22 participants); CAL (MD -1.12 mm, 95% CI -2.24 to 0; 3 studies, 71 participants); PD (MD -1.11 mm, 95% CI -2.84 to 0.61; 2 studies, 47 participants); and percentage of BOP (MD -6.90%, 95% CI -22.10 to 8.30; 1 study, 22 participants) was of very low certainty. Only the results for CAL and PD showed an MICD favouring the MTZ + SRP group. Azithromycin + SRP versus SRP for chronic/aggressive periodontitis: we found no evidence of a difference in percentage of closed pockets (MD 2.50%, 95% CI -10.19 to 15.19; 1 study, 40 participants); CAL (MD -0.59 mm, 95% CI -1.27 to 0.08; 2 studies, 110 participants); PD (MD -0.77 mm, 95% CI -2.33 to 0.79; 2 studies, 110 participants); and percentage of BOP (MD -1.28%, 95% CI -4.32 to 1.76; 2 studies, 110 participants) (very low-certainty evidence for all outcomes). Amoxicillin + clavulanate + SRP versus SRP for chronic periodontitis: the evidence from 1 study, 21 participants for CAL (MD 0.10 mm, 95% CI -0.51 to 0.71); PD (MD 0.10 mm, 95% CI -0.17 to 0.37); and BOP (MD 0%, 95% CI -0.09 to 0.09) was of very low certainty and did not show a difference between the groups. Doxycycline + SRP versus SRP in aggressive periodontitis: the evidence from 1 study, 22 participants for CAL (MD -0.80 mm, 95% CI -1.49 to -0.11); and PD (MD -1.00 mm, 95% CI -1.78 to -0.22) was of very low certainty, with the doxycycline + SRP group showing an MICD in PD only. Tetracycline + SRP versus SRP for aggressive periodontitis: we found very low-certainty evidence of a difference in long-term improvement in CAL for the tetracycline group (MD -2.30 mm, 95% CI -2.50 to -2.10; 1 study, 26 participants). Clindamycin + SRP versus SRP in aggressive periodontitis: we found very low-certainty evidence from 1 study, 21 participants of a difference in long-term improvement in CAL (MD -1.70 mm, 95% CI -2.40 to -1.00); and PD (MD -1.80 mm, 95% CI -2.47 to -1.13) favouring clindamycin + SRP. Doxycycline + SRP versus metronidazole + SRP for aggressive periodontitis: there was very low-certainty evidence from 1 study, 27 participants of a difference in long-term CAL (MD 1.10 mm, 95% CI 0.36 to 1.84); and PD (MD 1.00 mm, 95% CI 0.30 to 1.70) favouring metronidazole + SRP. Clindamycin + SRP versus metronidazole + SRP for aggressive periodontitis: the evidence from 1 study, 26 participants for CAL (MD 0.20 mm, 95% CI -0.55 to 0.95); and PD (MD 0.20 mm, 95% CI -0.38 to 0.78) was of very low certainty and did not show a difference between the groups. Clindamycin + SRP versus doxycycline + SRP for aggressive periodontitis: the evidence from 1 study, 23 participants for CAL (MD -0.90 mm, 95% CI -1.62 to -0.18); and PD (MD -0.80 mm, 95% CI -1.58 to -0.02) was of very low certainty and did not show a difference between the groups. Most trials testing amoxicillin, metronidazole, and azithromycin reported adverse events such as nausea, vomiting, diarrhoea, mild gastrointestinal disturbances, and metallic taste. No serious adverse events were reported.
AUTHORS' CONCLUSIONS: There is very low-certainty evidence (for long-term follow-up) to inform clinicians and patients if adjunctive systemic antimicrobials are of any help for the non-surgical treatment of periodontitis. There is insufficient evidence to decide whether some antibiotics are better than others when used alongside SRP. None of the trials reported serious adverse events but patients should be made aware of the common adverse events related to these drugs. Well-planned RCTs need to be conducted clearly defining the minimally important clinical difference for the outcomes closed pockets, CAL, PD, and BOP.
METHODS: Five specialist periodontal clinics in the Ministry of Health represented the public sector in providing clinical and cost data for this study. Newly-diagnosed periodontitis patients (N = 165) were recruited and followed up for one year of specialist periodontal care. Direct and indirect costs from the societal viewpoint were included in the cost analysis. They were measured in 2012 Ringgit Malaysia (MYR) and estimated from the societal perspective using activity-based and step-down costing methods, and substantiated by clinical pathways. Cost of dental equipment, consumables and labour (average treatment time) for each procedure was measured using activity-based costing method. Meanwhile, unit cost calculations for clinic administration, utilities and maintenance used step-down approach. Patient expenditures and absence from work were recorded via diary entries. The conversion from MYR to Euro was based on the 2012 rate (1€ = MYR4).
RESULTS: A total of 2900 procedures were provided, with an average cost of MYR 2820 (€705) per patient for the study year, and MYR 376 (€94) per outpatient visit. Out of this, 90% was contributed by provider cost and 10% by patient cost; 94% for direct cost and 4% for lost productivity. Treatment of aggressive periodontitis was significantly higher than for chronic periodontitis (t-test, P = 0.003). Higher costs were expended as disease severity increased (ANOVA, P = 0.022) and for patients requiring surgeries (ANOVA, P