The conventional practice in enhancing the larvae growths is by co-digesting the low-cost organic wastes with palatable feeds for black soldier fly larvae (BSFL). In circumventing the co-digestion practice, this study focused the employment of exo-microbes in a form of bacterial consortium powder to modify coconut endosperm waste (CEW) via fermentation process in enhancing the palatability of BSFL to accumulate more larval lipid and protein. Accordingly, the optimum fermentation condition was attained by inoculating 0.5 wt% of bacterial consortium powder into CEW for 14-21 days. The peaks of BSFL biomass gained and growth rate were initially attained whilst feeding the BSFL with optimum fermented CEW. These were primarily attributed by the lowest energy loss via metabolic cost, i.e., as high as 22% of ingested optimum fermented CEW was effectively bioconverted into BSFL biomass. The harvested BSFL biomass was then found containing about 40 wt% of lipid, yielding 98% of fatty acid methyl esters of biodiesel upon transesterification. Subsequently, the protein content was also analyzed to be 0.32 mg, measured from 20 harvested BSFL with a corrected-chitin of approximately 8%. Moreover, the waste reduction index which represents the BSFL valorization potentiality was recorded at 0.31 g/day 20 BSFL. The benefit of fermenting CEW was lastly unveiled, accentuating the presence of surplus acid-producing bacteria. Thus, it was propounded the carbohydrates in CEW were rapidly hydrolysed during fermentation, releasing substantial organic acids and other nutrients to incite the BSFL assimilation into lipid for biodiesel and protein productions simultaneously.
The anaerobic decomposition of coconut endosperm waste (CEW), residue derived from cooking, has been insidiously spewing greenhouse gasses. Thus, the bioconversion of CEW via in situ fermentation by exo-microbes from commercial Rid-X and subsequent valorization by black soldier fly larvae (BSFL) was the primary objective of the current study to gain sustainable larval lipid and protein. Accordingly, various concentrations of exo-microbes were separately homogenized with CEW to perform fermentation amidst feeding to BSFL. It was found that 2.50% of exo-microbes was the threshold amount entailed to assuage competition between exo-microbes and BSFL for common nutrients. The presence of remnant nutrients exuded from the fermentation using 2.50% of exo-microbes was confirmed to promote BSFL growth measured as maximum larval weight gained and growth rate. Although the BSFL could accumulate the highest protein (16 mg/larva) upon feeding with CEW containing 2.50% of exo-microbes, more lipid (13 mg/larva) was stored in employing 0.10% of exo-microbes because of minimum loss to metabolic processes while prolonging the BSFL in its 5th instar stage.
This experimental research was conducted to study the combined effect of agricultural by-product wastes on the properties of concrete. The coconut shell ash (CSA) was utilized to substitute cement content ranging from 0 to 20% by weight of total binder and sugarcane bagasse ash (SCBA) to substitute fine aggregates (FA) ranging from 0 to 40% by weight of total FA. In this regard, a total of 300 concrete specimens (cylinders and cubes) were prepared using 1:1.5:3 mix proportions with a 0.52 water-binder ratio. The study investigated the workability, density, permeability, and mechanical properties in terms of compressive and splitting tensile strengths. Additionally, the total embodied carbon for all mix proportions was calculated. It was observed that with an increase in CSA and SCBA contents, the workability, density, and permeability reduced significantly. Due to CSA and SCBA being pozzolanic materials, a gain in compressive and splitting tensile strengths was observed for certain concrete mixes, after which the strength decreased. The increase in embodied carbon of SCBA increased the total embodied carbon of concrete; however, it can be said that C15S40 which consists of 15% CSA and 40% SCBA is the optimum mix that achieved 28.75 MPa and 3.05 MPa compressive and tensile strength, respectively, a reduction of 4% total embodied carbon.
Searching for green and ecofriendly solvents to replace classical solvents for industrial scale extraction of coconut oil is of great interest. To explore these possibilities, this study performed comprehensive comparative analyses of lipid profiles and phytosterol compositions in coconut oils obtained by extraction with n-hexane, absolute ethyl alcohol, deep eutectic solvent/n-hexane, dimethyl carbonate (DME) and cyclopentyl methyl ether (CPME) using a foodomics approach. Results indicated that CPME (64.23 g/100 g dry matter) and DME (65.64 g/100 g dry matter) showed comparable capacity for total lipid extraction of total lipids to classical solvents (63.5-65.66 g/100 g dry matter). Considering the phytosterol yield, CPME (644.26 mg/kg) exhibited higher selectivity than other solvents (535.64-622.13 mg/kg). No significant difference was observed in the fatty acid composition of coconut oil by the different solvents assayed. Additionally, total 468 lipid molecules were identified in the samples. For glycerolipid and sphingolipid, the five solvents showed comparable extraction capabilities. However, CPME exhibited higher extraction efficiency of polar lipids (glycerophospholipid and saccharolipid) than other solvents. Overall, these results may be a useful guide for the application of green solvents in industrial production of coconut oil.
The effects of steam explosion (SE) pretreatment on the structural properties of lignin isolated from coconut husk (CH) biomass via soda pulping were investigated in this work. The isolated SE lignin was classified as dilute acid impregnation SE lignin (ASEL), water impregnation SE lignin (WSEL), and 2-naphthol impregnation SE lignin (NSEL). The various types of functional groups isolated from SE lignin were characterized and compared using a variety of complementary analyses: FTIR spectroscopy, NMR spectroscopy, GPC chromatography, HPAEC-PAD chromatography and thermal analyses. It was revealed that ASEL has the highest solid recovery with 55.89 % yield as well as the highest sugars content compared to WSEL (45.66 % yield) and NSEL (49.37 % yield). Besides, all isolated SE lignin contain a significant quantity of non-condensed G-type and S-type units but less amount of H-type units as supported by previous research. The SE lignin produced lignin with higher molecular weight (Mw ASEL: 72725 g mol-1 > Mw WSEL: 13112 g mol-1 > Mw NSEL: 6891 g mol-1) seems to influence the success of the synthesis reaction of phenolic resins. Because of the large variances in the physicochemical properties of SE lignin polymers, their structural properties were increased toward numerous alternative techniques in lignin-based applications.
Multifunctional and sustainable packaging biofilms felicitous to changeable conditions are in large demand as substitutes to petroleum-derived synthetic films. Macroalgae with noticeable film-formation, abundant, low-cost, and edible properties is a promising bioresource for sustainable and eco-friendly packaging materials. However, the poor hydrophobicity and mechanical properties of sustainable macroalgae biofilms seriously impede their practical applications. Herein, lignin nanoparticles (LNPs) produced by a sustainable approach from black liquor of coconut fiber waste were incorporated in the macroalgae matrix to improve the water tolerance and mechanical characteristics of the biofilms. The effect of different LNPs loadings on the performance of biofilms, such as physical, morphological, surface roughness, structural, water resistance, mechanical, and thermal behaviors, were systematically evaluated and found to be considerably improved. Biofilm with 6 % LNPs presented the optimum enhancement in most ultimate performances. The optimized biofilm exhibited great hydrophobic features with a water contact angle of over 100° and high enhancement in the tensile strength of >60 %. This study proposes a facile and sustainable approach for designing and developing LNPs-macroalgae biofilms with excellent and multifunctional properties for sustainable high-performance packaging materials.
Influences of irrigation frequency on the growth and flowering of chrysanthemum grown under restricted root volume were tested. Chrysanthemum cuttings (Chrysanthemum morifolium "Reagan White") were grown in seedling tray which contained coconut peat in volumes of 73 and 140 cm(3). Plants were irrigated with drip irrigation at irrigation frequencies of 4 (266 mL), 6 (400 mL), and 8 (533 mL) times/day to observe their growth and flowering performances. There was interaction between irrigation frequency and substrate volume on plant height of chrysanthemum. Plants grown in 140 cm(3) substrates and irrigated 6 times/day produced the tallest plant of 109.25 cm. Plants irrigated 6 and 8 times/day had significantly higher level of phosphorus content in their leaves than those plants irrigated 4 times/day. The total leaf area, number of internodes, leaf length, and leaf width of chrysanthemums grown in 140 cm(3) substrate were significantly higher than those grown in 73 cm(3) substrate. The numbers of flowers were affected by both irrigation frequencies and substrate volumes. Chrysanthemums irrigated 8 times/day had an average of 19.56 flowers while those irrigated 4 times/day had an average of 16.63 flowers. Increasing irrigation frequency can improve the growth and flowering of chrysanthemums in small substrate volumes.
In this paper, the ability of coconut bunch waste (CBW), an agricultural waste available in large quantity in Malaysia, to remove basic dye (methylene blue) from aqueous solution by adsorption was studied. Batch mode experiments were conducted at 30 degrees C to study the effects of pH and initial concentration of methylene blue (MB). Equilibrium adsorption isotherms and kinetics were investigated. The experimental data were analyzed by the Langmuir, Freundlich and Temkin models of adsorption. The adsorption isotherm data were fitted well to Langmuir isotherm and the monolayer adsorption capacity was found to be 70.92 mg/g at 30 degrees C. The kinetic data obtained at different concentrations have been analyzed using a pseudo-first-order, pseudo-second-order equation and intraparticle diffusion equation. The experimental data fitted very well the pseudo-second-order kinetic model.
A 246-nt variant of Coconut cadang-cadang viroid (CCCVd) has been identified and described from oil palms with orange spotting symptoms in Malaysia. Compared with the 246-nt form of CCCVd from coconut, the oil palm variant substituted C(31)→U in the pathogenicity domain and G(70)→C in the central conserved domain. This is the first sequence reported for a 246-nt variant of CCCVd in oil palms expressing orange spotting symptoms.
In this study, chars from coconut pith (CP) were prepared aiming for superior adsorption towards elemental mercury (Hg(o)). The yield, proximate analysis, textural characteristics, surface functional groups and elemental composition analyses of the chars produced at pyrolysis temperature of 300 °C, 500 °C, 700 °C and 900 °C were compared. The surface area, pore volume, ash and carbon content of chars increased, while the yield and moisture content decreased with increasing pyrolysis temperatures. The changing of physical and chemical properties of the chars produced at variety pyrolysis temperature was much effect on the Hg(o) adsorption performance and definitely provides important information on the Hg(o) adsorption mechanism. The highest Hg(o) adsorption capacity was observed for CP900 (6067.49 μg/g), followed by CP700 (2395.98 μg/g), CP500 (289.76 μg/g), CP300 (1.68 μg/g), and CP (0.73 μg/g). The equilibrium data were well described by the Freundlich adsorption isotherm model. The pseudo-second order best described the kinetic data of the Hg(o) adsorption onto CP and CP300. For chars produced at higher pyrolysis temperature, however, the pseudo-zero order and pseudo-second order fitted well for the adsorption and breakthrough regions, respectively. The Hg(o) adsorption capacity of chars obtained from high pyrolysis temperature of CP significantly outperformed the commercial activated carbon (Darco KB-B) as well as superior to chars reported in the literature indicating the CP can be used as a precursor for preparation of chars as elemental mercury adsorbents.
Lignin was extracted from coconut husk via alkaline pulping, either Kraft or soda. The isolated lignin samples were classified as hydroxy-benzaldehyde, vanillin, and syringaldehyde type according to Fourier-transform Infrared Spectroscopy, 1H and 13C Nuclear Magnetic Resonance (NMR) spectra. Soda lignin (SL) showed higher thermal stability and glass transition temperature (Tg) than Kraft lignin (KL) as proven by thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), respectively. The soda-lignin-phenol-glyoxal (SLPG) resins with the optimum percentage of lignin substitution at 30% showed improved solid content and gel time in comparison to 30% of Kraft-lignin-phenol-glyoxal (KLPG) and phenol-glyoxal (PG) resin. The good mechanical properties in SLPG is due to the higher amount of molecular weight as well as higher phenolic and G-type unit in lignin that improve the properties of 30% SLPG adhesive. Moreover, the addition of layered double hydroxides (LDH) as reinforced filler up to 15%-30% SLPG adhesive blend shows a great performance (especially mechanical properties) as compared to 30% SLPG adhesive alone.
Composition, physicochemical properties and enzyme inactivation kinetics of coconut water were compared between immature (IMC), mature (MC) and overly-mature coconuts (OMC). Among the samples studied, pH, turbidity and mineral contents for OMC water was the highest, whereas water volume, titratable acidity, total soluble solids and total phenolics content for OMC water were the lowest. Maturity was found to affect sugar contents. Sucrose content was found to increase with maturity, and the reverse trend was observed for fructose and glucose. Enzyme activity assessment showed that polyphenol oxidase (PPO) in all samples was more heat resistant than peroxidase (POD). Compared to IMC and MC, PPO and POD from OMC water showed the lowest thermal resistance, with D83.3°C=243.9s (z=27.9°C), and D83.3°C=129.9s (z=19.5°C), respectively.
Radiographic contrast medium is primarily used to enhance the contrast of the internal structure in diagnostic imaging. However, the adverse reactions of administration of contrast media have become a great concern and challenge since it can affect the life of patient. Even though some safety
measurements have been highlighted by several studies, still, the occurrence of adverse effects of contrast media is one of the issues in medical imaging. There are several similar properties between the young coconut water and contrast media used in radiography. Thus, the objective of this research was to investigate whether the young coconut water be used as an alternative to contrast media.
Mating compatibility and restriction analyses of Internal Transcribed Spacer (ITS) regions were performed to determine the relations between Ganoderma boninense, the most common species associated with basal stem rot in oil palm and Ganoderma isolates from infected oil palm, two ornamental palms, sealing wax palm (Cyrtostachys renda) and MacArthur palm (Ptychosperma macarthurii), an isolate from coconut stump (Cocos nucifera), Ganoderma miniatocinctum, Ganoderma zonatum and Ganoderma tornatum. The results showed that G. boninense was compatible with Ganoderma isolates from oil palm, G. miniatocinctum and G. zonatum, Ganoderma isolates from sealing wax palm, MacArthur palm and coconut stump. G. boninense was not compatible with G. tornatum. Therefore, the results suggested that the G. boninense, G. miniatocinctum, G. zonatum, and Ganoderma isolates from oil palm, ornamental palms and coconut stump could represent the same biological species. In performing a restriction analysis of the ITS regions, variations were observed in which five haplotypes were generated from the restriction patterns. An unweighted pair-group method with arithmetic averages (UPGMA) cluster analysis showed that all the Ganoderma isolates were grouped into five primary groups, and the similarity values of the isolates ranged from 97% to 100%. Thus, a restriction analysis of the ITS regions showed that G. boninense and the Ganoderma isolates from other palm hosts were closely related. On the basis of the mating compatibility test and the restriction analysis of the ITS regions performed in this study, a diverse group of Ganoderma species from oil palm and other palm hosts are closely related, except for G. tornatum and Ganoderma isolates from tea and rubber.
Virgin Coconut Oils (VCO) were prepared from fresh-dry (grated coconut route), chilling and thawing, enzymatic and fermentation method in this study. All of the VCO produced conformed physicochemically to the standards established by the Asian and Pacific Coconut Community (APCC) and Codex Alimentarius Commission. The highest FA (fatty acid) is lauric acid in all of the VCO and ranged from 46.36 – 48.42 %, while the principal TAG (triacylglycerol) is LaLaLa (La: Lauric) with 17.94 – 19.83 % of the total TAG. Tocopherol analysis showed the presence of beta, gamma and delta tocopherols at low levels. In all, the physicochemical, FA and TAG analyses of the VCO extracted from different methods showed some significant differences, while the tocopherol content does not differ significantly among the different types of extraction methods used.
Biocellulose (BC), produced by Acetobacter xylinum (0416), was carried out using three types of medium
composition under static surface culture. The media used in this experiment included CWHSM (Coconut
water in Hestrin-Schramm medium), CM (Complex medium) and HSM (Hestrin-Schramm medium).
CWHSM and CM used coconut water from agro-waste as the main source of sugar. The fermentation
was conducted for 12 days and the results of BC dry weight, cell entrapped, pH medium and productivity
were evaluated and compared. The results show that CWHSM is the most suitable medium for BC
production with a productivity of up to 0.044 g l
-1
day
-1
.
The present study was conducted to investigate the effect of oyster mushroom (Pleurotus sajorcaju,
PSC) addition to partially replace coconut milk powder on nutritional composition and
sensory values of Herbal Seasoning (HS). This study evaluates the nutritional composition,
dietary fibre and sensory acceptance of HS that processed using six different formulations
with different levels of PSC powder, namely 0% (A), 20% (B), 40% (C), 60% (D), 80% (E)
and 100% (F). The use of PSC powder substantially brought down the fat content of HS.
The fat content of PSC-based HS was ranged from 13.82±0.84% to 8.16±0.74%. The protein
content showed an increasing trend in line with increasing of PSC powder ranging from 7%
to 12%.Substitution of coconut milk powder with PSC powder resulted in significantly higher
(p0.05).The panels preferred HS formulated with PSC powder since its
enhance colour and viscosity attributes of the products. In brief, HS formulated with more than
40% PSC powder is recommended since it has significant nutrients and palatably accepted by
sensorial panellists.
The purpose of this study is to compare the tensile strength between additional polystyrene into coconut meat husk reinforced fiber composite. Composite were produced by using hand layup technique. It is seen that with the additional of polystyrene into the coconut meat husk reinforced polyester composites showed the increment tensile strength value compared to the non-added polystyrene which indicates that effective stress transfer between the fiber, matrix and polystyrene.
As we know, drinking young coconut water and eating the tender meat give many benefit
to the body for its nutritious value rather than its taste; but do we realize that it requires a
dangerous tasks in processing it. The process of trimming requires skills which only can
be obtained by those who run the work daily. Thus, a portable apparatus which has the
capabilities of reducing the hazardous tasks and fasten the time consumed for processing
the young coconut fruit has been proposed and developed. The development of the product
begins with collecting and analyzing the data of 30 young coconut fruits. Then, it is followed
by designing the whole product at main and component level. The conceptual design is
done initially using freehand sketching technique. Next, the 3D solid modeling relies
totally on the CATIA V5R19 software. Finally, a complete details drawing is produced
using CAD software. In this work, the design focuses on the blade slicing and punch bit
head to reduce the hazardous tasks during processing of the young coconut. The blade is
designed to allow the slicing movement to be maneuvered during the husk removal process.
Meanwhile, the puncher has replaced the usage of chopper in creating an opening at the top
of the endocarp. Thus, the device developed will reduce the hazardous task by eliminating
the chopping process and replacing it with the slicing process. Therefore, the tendency to
get caught in accidental injury during the chopping process can be significantly reduced.
In this study, solid coconut waste and CaO/PVA was used as raw material and catalyst respectively to produce biodiesel through in situ transesterification. Both, raw material and catalyst were packed in a packed bed reactor. The reaction was fixed for 3 h and the mixing was kept constant at 350 rpm. The highest biodiesel yield of 95% was obtained at reaction temperature of 61 °C with catalyst loading (CaO/PVA) of 2.29 wt% and methanol to solid ratio of 12:1. CaO-waste derived catalyst has been successfully proven to be utilized as heterogeneous base catalyst for the production of biodiesel from solid coconut waste.