METHODS: This was a retrospective cohort study of confirmed dengue patients who were warded in Kuala Lumpur Hospital between December 2014 and January 2015. CK, AST, ALT, hematocrit, platelet count, WBC and serum albumin were taken upon ward admission and repeated at timed intervals. Composite indices based on admission AST and ALT were analyzed. Correlation coefficients and coefficients of determination were computed.
RESULTS: Among the 365 cases reviewed, twenty-two (6%) patients had severe dengue. AST and ALT were found to be good at identification of severe dengue. The AST2/ALT composite index was the most accurate (AUC 0.83; 95% CI 0.73 - 0.93). Optimal cutoff was 402 with a sensitivity of 59.1% (95% CI: 36.4 - 79.3%) and specificity of 92.4% (95% CI: 89.1 - 95.0%). Modified cutoff of 653 had a sensitivity of 40.9% (95% CI: 20.7 - 63.7%) and specificity of 97.4% (95% CI: 95.1 - 98.8%). Our analyses also suggested that several underlying biological processes represented by biomarkers tested were unrelated despite occurring in the same disease entity. Also, markers of plasma leakage were discordant and AST was likely hepatic in origin.
CONCLUSIONS: The composite index AST2/ALT may be used as a marker for identification of severe dengue based on admission AST and ALT, with two choices of cutoff values, 402 and 653. AST is most likely of liver origin and CK does not provide additional value.
MATERIAL AND METHODS: Forty-eight subjects (23 complicated mTBI [cmTBI] patients, 12 uncomplicated mTBI [umTBI] patients, and 13 controls) underwent magnetic resonance imaging scan with additional single voxel spectroscopy sequence. Magnetic resonance imaging scans for patients were done at an average of 10 hours (standard deviation 4.26) post injury. The single voxel spectroscopy adjacent to side of injury and noninjury regions were analysed to obtain absolute concentrations and ratio relative to creatine of the neurometabolites. One-way analysis of variance was performed to compare neurometabolite concentrations of the three groups, and a correlation study was done between the neurometabolite concentration and Glasgow Coma Scale.
RESULTS: Significant difference was found in ratio of N-acetylaspartate to creatine (NAA/Cr + PCr) (χ2(2) = 0.22, P
METHODS: 1H-MRS utilising the Single-Voxel Spectroscopy (SVS) technique was performed using a 3.0Tesla MRI on 45 optic radiations (15 from healthy subjects, 15 from mild glaucoma patients, and 15 from severe glaucoma patients). A standardised Volume of Interest (VOI) of 20 × 20 × 20 mm was placed in the region of optic radiation. Mild and severe glaucoma patients were categorised based on the Hodapp-Parrish-Anderson (HPA) classification. Mean and multiple group comparisons for metabolite concentration and metabolite concentration ratio between glaucoma grades and healthy subjects were obtained using one-way ANOVA.
RESULTS: The metabolite concentration and metabolite concentration ratio between the optic radiations of glaucoma patients and healthy subjects did not demonstrate any significant difference (p > 0.05).
CONCLUSION: Our findings show no significant alteration of metabolite concentration associated with neurodegeneration that could be measured by single-voxel 1H-MRS in optic radiation among glaucoma patients.
KEY POINTS: • Glaucoma disease has a neurodegenerative component. • Metabolite changes have been observed in the neurodegenerative process in the brain. • Using SVS, no metabolite changes in optic radiation were attributed to glaucoma.