Displaying publications 21 - 40 of 118 in total

Abstract:
Sort:
  1. Tan GL
    J Hum Ergol (Tokyo), 1996 Jun;25(1):49-62.
    PMID: 9551132 DOI: 10.11183/jhe1972.25.38
    The analyses of a few tasks were carried out in an electronics factory. The main objectives are to identify the ergonomic and biomechanical hazards of problem work tasks, to analyze each task systematically in order to evaluate the workers' exposures to the risk factors of force, posture pressure and repetition and to make recommendations to reduce the risks and hazards. The methodology includes objective measures--detailed analysis by going through training manuals, job description and production records. Subjective measures include interviewing the operator and supervisors informally, the operators were also required to fill in a structured questionnaire. The paper concludes by making recommendations to reduce the ergonomic hazards by engineering solutions, redesign or administrative controls or the implementation of procedures.
    Matched MeSH terms: Electronics*
  2. Taha BA, Addie AJ, Kadhim AC, Azzahran AS, Haider AJ, Chaudhary V, et al.
    Mikrochim Acta, 2024 Apr 08;191(5):250.
    PMID: 38587660 DOI: 10.1007/s00604-024-06314-3
    Rapid technological advancements have created opportunities for new solutions in various industries, including healthcare. One exciting new direction in this field of innovation is the combination of skin-based technologies and augmented reality (AR). These dermatological devices allow for the continuous and non-invasive measurement of vital signs and biomarkers, enabling the real-time diagnosis of anomalies, which have applications in telemedicine, oncology, dermatology, and early diagnostics. Despite its many potential benefits, there is a substantial information vacuum regarding using flexible photonics in conjunction with augmented reality for medical purposes. This review explores the current state of dermal augmented reality and flexible optics in skin-conforming sensing platforms by examining the obstacles faced thus far, including technical hurdles, demanding clinical validation standards, and problems with user acceptance. Our main areas of interest are skills, chiroptical properties, and health platform applications, such as optogenetic pixels, spectroscopic imagers, and optical biosensors. My skin-enhanced spherical dichroism and powerful spherically polarized light enable thorough physical inspection with these augmented reality devices: diabetic tracking, skin cancer diagnosis, and cardiovascular illness: preventative medicine, namely blood pressure screening. We demonstrate how to accomplish early prevention using case studies and emergency detection. Finally, it addresses real-world obstacles that hinder fully realizing these materials' extraordinary potential in advancing proactive and preventative personalized medicine, including technical constraints, clinical validation gaps, and barriers to widespread adoption.
    Matched MeSH terms: Electronics
  3. Sun C, Zhang X, Lee WG, Tu Y, Li H, Cai X, et al.
    J Orthop Surg Res, 2020 Aug 05;15(1):297.
    PMID: 32758250 DOI: 10.1186/s13018-020-01823-2
    BACKGROUND: The infrapatellar fat pad (IPFP) or Hoffa's fat pad is often resected during total knee arthroplasty in order to improve visibility. However, the management of the IPFP during total knee arthroplasty (TKA) is the subject of an ongoing debate that has no clear consensus. The purpose of this review was to appraise if resection of the IPFP affects clinical outcomes.

    METHODS: We conducted a meta-analysis to identify relevant randomized controlled trials involving infrapatellar fat pad resection and infrapatellar fat pad preservation during total knee arthroplasty in electronic databases, including Web of Science, Embase, PubMed, Cochrane Controlled Trials Register, Cochrane Library, Highwire, CBM, CNKI, VIP, and Wanfang database, up to March 2020.

    RESULTS: Nine randomized controlled trials, involving 783 TKAs (722 patients), were included in the systematic review. Outcome measures included patellar tendon length (PTL), Insall-Salvati ratio (ISR), rate of anterior knee pain, Knee Society Scores (KSS), and knee range of motion. The meta-analysis identified a trend toward the shortening of the patellar tendon with IPFP resection at 6 months (P = 0.0001) and 1 year (P = 0.001). We found no statistical difference in ISR (P = 0.87), rate of anterior knee pain within 6 months (p = 0.45) and 1 year (p = 0.38), KSS at 1 year (p = 0.77), and knee range of motion within 6 months (p = 0.61) and 1 year (0.46).

    CONCLUSION: Based on the available level I evidence, we were unable to conclude that one surgical technique of IPFP can definitively be considered superior over the other. More adequately powered and better-designed randomized controlled trial (RCT) studies with long-term follow-up are required to produce evidence-based guidelines regarding IPFP resection.

    Matched MeSH terms: Electronics
  4. Sreeramareddy CT, Shroff SM, Gunjal S
    Subst Abuse Treat Prev Policy, 2023 Aug 29;18(1):51.
    PMID: 37644524 DOI: 10.1186/s13011-023-00558-7
    BACKGROUND: Nicotine dependence, factors associated with dependence, and self-reported side effects among people who use e-cigarettes are scarce in developing countries.

    METHODS: A sample of 302 persons who currently use e-cigarettes was recruited from discussion forums on Reddit, Facebook, and the forum 'lowyat'. The online Google form survey collected data on demographics, e-cigarette use, and the reasons, for cigarette smoking, Fagerstorm Test for Nicotine Dependence adapted for e-cigarettes (eFTND), and side effects experienced.

    RESULTS: The mean age was 25.5 years (6.5), 60.6% were males and 86% had higher education. About 47% were using e-cigarettes only, 27.8% were currently using dual products (both electronic and conventional cigarettes), and 25.2% had also smoked cigarettes in the past. 'Less harmful than cigarettes' (56.3%), 'because I enjoy it' (46.7%), and 'it has a variety of flavors (40.4%) were the common reasons for e-cigarette use. The mean eFTND score was 3.9 (SD = 2.2), with a median of four side effects (IQR 3-6), sore or dry mouth/throat (41.4%), cough 33.4%, headache (20.5%), dizziness (16.2%) were commonly reported side effects. eFTND score and side effects were higher among persons using dual products. By multiple linear regression analysis, males (β = 0.56 95% CI 0.45, 1.05, p = 0.033), dual-use (β = 0.95 95% CI 0.34, 1.56, p 

    Matched MeSH terms: Electronics
  5. Souadia Z, Bouhemadou A, Bin-Omran S, Khenata R, Al-Douri Y, Al Essa S
    J Mol Graph Model, 2019 07;90:77-86.
    PMID: 31031219 DOI: 10.1016/j.jmgm.2019.04.008
    Structural parameters, electronic structure and optical properties of the dialkali metal monotelluride M2Te (M = Li, Na, K and Rb) compounds in the cubic antifluorite structure were investigated via ab initio calculations using the all electron linearized augmented plane wave approach based on density functional theory with and without including spin-orbit coupling (SOC). The exchange-correlation interactions were described within the PBEsol version of the generalized gradient approximation and Tran-Blaha modified Becke-Johnson potential (TB-mBJ). Optimized equilibrium lattice parameters are in excellent accordance with existing measured ones. Computed energy band dispersions show that the studied compounds are large band gap materials. Inclusion of SOC reduces the band gap value compared to the corresponding one calculated without including SOC. Determination of the energy band character and interatomic bonding nature are performed using the densities of states diagrams and charge density distribution map. Linear optical function spectra are predicted for a wide energy range and the origin of the dielectric function spectrum peaks are determined.
    Matched MeSH terms: Electronics/methods
  6. Sivarajan S, Mani SA, John J, Fayed MMS, Kook YA, Wey MC
    Korean J Orthod, 2021 Jan 25;51(1):55-74.
    PMID: 33446621 DOI: 10.4041/kjod.2021.51.1.55
    Objective: To systematically review studies on canine agenesis prevalence in different populations and continents, based on the jaw, sex, location, and associated dental anomalies.

    Methods: Electronic and hand searches of English literature in PubMed, Web of Science, Scopus, OpenGrey, and Science Direct were conducted, and the authors were contacted when necessary. Observational studies (population-based, hospital/clinic-based, and cross-sectional) were included. For study appraisal and synthesis, duplicate selection was performed independently by two reviewers. Study quality was assessed using a modified Strengthening the Reporting of Observational Studies in Epidemiology checklist, with main outcome of prevalence of canine agenesis.

    Results: The global population prevalence of canine agenesis was 0.30% (0.0-4.7%), highest in Asia (0.54%), followed by Africa (0.33%), and the least in Europe and South America (0.19% in both continents). Canine agenesis was more common in the maxilla (88.57%), followed by both maxilla and mandible (8.57%), and the least common was mandible-only presentation (2.86%). The condition was more common in females (female:male ratio = 1.23), except in Asia (female:male ratio = 0.88) and Africa (female:male ratio = 1). In Asia, unilateral agenesis was almost twice as prevalent as bilateral, but in Europe, the bilateral form was more common.

    Conclusions: The overall prevalence of canine agenesis is 0.30%, with the highest prevalence in Asia, followed by Africa, Europe, and South America. The condition is more common in the maxilla than the mandible, and in females than males (except in Asia and Africa), with unilateral agenesis being more common in Asia and the bilateral form showing a greater prevalence in Europe.

    Matched MeSH terms: Electronics
  7. Sidhu P, Shankargouda S, Dicksit DD, Mahdey HM, Muzaffar D, Arora S
    J Endod, 2016 Apr;42(4):622-5.
    PMID: 26850688 DOI: 10.1016/j.joen.2015.12.027
    INTRODUCTION: Use of mobile phone has been prohibited in many hospitals to prevent interference with medical devices. Electromagnetic radiation emitted from cellular phones might interfere with electronic working length determination. The purpose of this in vitro study was to evaluate the effect of a smart phone (Samsung Galaxy Note Edge) on working length determination of electronic apex locators (EALs) Propex II and Rootor.

    METHODS: Fifteen intact, non-carious single-rooted teeth were decoronated at the cementoenamel junction. Visually, working length was determined by using a #15 K-file under stereomicroscope (×20). The effect of cellular phones on electronic working length (EWL) was determined under 2 experimental settings: (1) in a closed room with poor signal strength and (2) in a polyclinic set up with good signal strength and 5 conditions: (1) electronically, without cellular phone in room; (2) electronically, with cellular phone in physical contact with EAL; (3) electronically, with mobile phone in physical contact with EAL and in calling mode for a period of 25 seconds; (4) electronically, mobile phone placed at a distance of 40 cm from the EAL; and (5) electronically, mobile phone placed at a distance of 40 cm and in calling mode for a period of 25 seconds. The EWL was measured 3 times per tooth under each condition. Stability of the readings was scored from 1 to 3: (1) good stability, (2) stable reading after 1 attempt, and (3) stable reading after 2 attempts. The data were compared by using analysis of variance.

    RESULTS: The EWL measurements were not influenced by the presence of cellular phone and could be determined under all experimental conditions.

    CONCLUSIONS: Within the limitations of this study, it can be concluded that mobile phones do not interfere with the EWL determination.

    Matched MeSH terms: Electronics, Medical/instrumentation*
  8. Shokrani MR, Khoddam M, Hamidon MN, Kamsani NA, Rokhani FZ, Shafie SB
    ScientificWorldJournal, 2014;2014:963709.
    PMID: 24782680 DOI: 10.1155/2014/963709
    This paper presents a new type diode connected MOS transistor to improve CMOS conventional rectifier's performance in RF energy harvester systems for wireless sensor networks in which the circuits are designed in 0.18  μm TSMC CMOS technology. The proposed diode connected MOS transistor uses a new bulk connection which leads to reduction in the threshold voltage and leakage current; therefore, it contributes to increment of the rectifier's output voltage, output current, and efficiency when it is well important in the conventional CMOS rectifiers. The design technique for the rectifiers is explained and a matching network has been proposed to increase the sensitivity of the proposed rectifier. Five-stage rectifier with a matching network is proposed based on the optimization. The simulation results shows 18.2% improvement in the efficiency of the rectifier circuit and increase in sensitivity of RF energy harvester circuit. All circuits are designed in 0.18 μm TSMC CMOS technology.
    Matched MeSH terms: Electronics/methods
  9. Shchelkanov MY, Tabakaeva Moskvina TV, Kim EM, Derunov DA, Galkina IV
    Trop Biomed, 2020 Sep 01;37(3):778-782.
    PMID: 33612790 DOI: 10.47665/tb.37.3.778
    Canine demodicosis is a common skin disorder with multiple risk factors, including age and breed predisposition. There is relatively limited information about the risk factors for canine demodicosis in large canine populations. This retrospective case-control study was conducted by searching the electronic records of dogs with skin lesions for the presence of Demodex mites in skin scrapings. Diagnosis of demodicosis was based on the presence of skin lesions and mites in skin scrapings. Multivariate analysis was conducted using logistic regression analysis to estimate the relative risk and odds ratio of variables hypothesized to influence the risk of canine demodicosis, such as age, sex, breed, season, and parasitic infection. The results of multivariate logistic regression analysis showed a positive correlation between the dogs' age and demodicosis. Dogs older than three years, as well as puppies, had a high risk of demodicosis (P0.05). Breeds with the greatest association (odds ratio) with demodicosis included the American Staffordshire Terrier (OR=0.9) and Moscow Watchdog (OR=0.2). The presence of intestinal parasites, such as Diphyllobothrium latum, was significantly associated with demodicosis.
    Matched MeSH terms: Electronics
  10. Senthilpari C, Diwakar K, Singh AK
    Recent Pat Nanotechnol, 2009;3(1):61-72.
    PMID: 19149756
    The paper discuss the design of 1-bit full adder circuit using Shannon theorem. This proposed full adder circuit is used as one of the circuit component for implementation of Non- Restoring and Restoring divider circuits. The proposed adder and divider schematics are designed by using DSCH2 CAD tool and their layouts are generated by Microwind 3 VLSI CAD tool. The divider circuits are designed by using standard CMOS 0.35 microm feature size and corresponding power supply 3.5 V. The parameters analyses are carried out by BSIM 4 analysis. We have compared the simulated results of the Shannon based divider circuit with CPL and CMOS adder cell based divider circuits. We have further compared the results with published results and observed that the proposed adder cell based divider circuit dissipates lower power, gives faster response, lower latency, low EPI and high throughput.
    Matched MeSH terms: Electronics/instrumentation*
  11. Sathian B, Asim M, Banerjee I, Roy B, Pizarro AB, Mancha MA, et al.
    Nepal J Epidemiol, 2021 Mar;11(1):959-982.
    PMID: 33868742 DOI: 10.3126/nje.v11i1.36163
    Background: To date, there is no comprehensive systematic review and meta-analysis to assess the suitability of COVID-19 vaccines for mass immunization. The current systematic review and meta-analysis was conducted to evaluate the safety and immunogenicity of novel COVID-19 vaccine candidates under clinical trial evaluation and present a contemporary update on the development and implementation of a potential vaccines.

    Methods: For this study PubMed, MEDLINE, and Embase electronic databases were used to search for eligible studies on the interface between novel coronavirus and vaccine design until December 31, 2020.

    Results: We have included fourteen non-randomized and randomized controlled phase I-III trials. Implementation of a universal vaccination program with proven safety and efficacy through robust clinical evaluation is the long-term goal for preventing COVID-19. The immunization program must be cost-effective for mass production and accessibility. Despite pioneering techniques for the fast-track development of the vaccine in the current global emergency, mass production and availability of an effective COVID-19 vaccine could take some more time.

    Conclusion: Our findings suggest a revisiting of the reported solicited and unsolicited systemic adverse events for COVID-19 candidate vaccines. Hence, it is alarming to judiciously expose thousands of participants to COVID-19 candidate vaccines at Phase-3 trials that have adverse events and insufficient evidence on safety and effectiveness that necessitates further justification.

    Matched MeSH terms: Electronics
  12. Sathasivam, Saratha, Mustafa Mamat, Mohd Shareduwan Mohd Kasihmuddin, Mohd. Asyraf Mansor
    MyJurnal
    Clonal selection algorithm and discrete Hopfield neural network are extensively employed for solving higher-order optimization problems ranging from the constraint satisfaction problem to complex pattern recognition. The modified clonal selection algorithm is a comprehensive and less iterative immune-inspired searching algorithm, utilized to search for the correct combination of instances for Very large-scale integrated (VLSI) circuit structure. In this research, the VLSI circuit framework consists of Boolean 3-Satisfiability instances with the different complexities and number of transistors are considered. Hence, a hybrid modified clonal selection algorithm with discrete Hopfield neural network is well developed to optimize the configuration of VLSI circuits with different number of electronic components such as transistors as the instances. Therefore, the performance of the developed hybrid model was assessed experimentally with the standard models, HNNVLSI-3SATES and HNNVLSI-3SATGA in term of circuit accuracy, sensitivity, robustness and runtime to complete the verification process. The results have demonstrated the developed model, HNNVLSI-3SATCSA produced a minimum error (consistently approaching 0), better accuracy (more than 80%) and faster computational time (less than 125 seconds) against changes in the complexity in term of the number of transistors. Furthermore, the developed hybrid model is able to minimize the computational burden and configurational noises for the variant of VLSI circuits.
    Matched MeSH terms: Electronics
  13. Samsudin MFR, Ullah H, Tahir AA, Li X, Ng YH, Sufian S
    J Colloid Interface Sci, 2021 Mar 15;586:785-796.
    PMID: 33198982 DOI: 10.1016/j.jcis.2020.11.003
    Herein, we performed an encyclopedic analysis on the photoelectrocatalytic hydrogen production of BiVO4/g-C3N4 decorated with reduced graphene oxide (RGO) or graphene quantum dots (GQDs). The differences between RGO and GQDs as an electron mediator was revealed for the first time in the perspective of theoretical DFT analysis and experimental validation. It was found that the incorporation of GQDs as an electron mediator promotes better photoelectrocatalytic hydrogen performance in comparison to the RGO. The addition of GQD can significantly improve the activity by 25.2 and 75.7% in comparison to the BiVO4/RGO/g-C3N4 and binary composite samples, respectively. Correspondingly, the BiVO4/GQD/g-C3N4 attained the highest photocurrent density of 19.2 mA/cm2 with an ABPE of 0.57% without the presence of any sacrificial reagents. This enhancement is stemming from the low photocharge carrier transfer resistance which was further verified via DFT study. The DFT analysis revealed that the BiVO4/GQD/g-C3N4 sample shared their electronic cloud density through orbital hybridization while the BiVO4/RGO/g-C3N4 sample show less mutual sharing. Additionally, the charge redistribution of the GQDs-composite at the heterostructure interface articulates a more stable and stronger heterojunction than the RGO-composite. Notably, this study provides new insights on the effect of different carbonaceous materials (RGO and GQDs) which are often used as an electron mediator to enhance photocatalytic activity.
    Matched MeSH terms: Electronics
  14. Sagadevan S, Chowdhury ZZ, Johan MRB, Aziz FA, Roselin LS, Podder J, et al.
    J Nanosci Nanotechnol, 2019 Nov 01;19(11):7139-7148.
    PMID: 31039868 DOI: 10.1166/jnn.2019.16666
    In this work, a simple, co-precipitation technique was used to prepare un-doped, pure tin oxide (SnO₂). As synthesized SnO₂ nanoparticles were doped with Cu2+ ions. Detailed characterization was carried out to observe the crystalline phase, morphological features and chemical constituents with opto-electrical and magnetic properties of the synthesized nanoparticles (NPs). X-ray diffraction analysis showed the existence of crystalline, tetragonal structure of SnO₂. Both the sample synthesized here showed different crystalline morphology. The band gap energy (Eg) of the synthesized sample was estimated and it was found to decrease from 3.60 to 3.26 eV. The band gap energy reduced due to increase in Cu2+ dopant amount inside the SnO₂ lattice. Optical properties were analyzed using absorption spectra and Photoluminescence (PL) spectra. It was observed that Cu2+ ions incorporated SnO₂ NPs exhibited more degradation efficiencies for Rhodamine B (RhB) dye compared to un-doped sample under UV-Visible irradiation. The dielectric characteristics of un-doped, pure and Cu2+ incorporated SnO₂ nanoparticles were studied at different frequency region under different temperatures. The ac conductivity and impedance analysis of pure and Cu2+ incorporated SnO₂ nanoparticles was also studied. The magnetic properties of the synthesized samples were analysed. Both the sample showed ferromagnetic properties. The research indicated that the Cu2+ ions doping can make the sample a promising candidate for using in the field of optoelectronics, magneto electronics, and microwave devices.
    Matched MeSH terms: Electronics
  15. Roy S, Ramiah H, Reza AW, Lim CC, Ferrer EM
    PLoS One, 2016;11(7):e0158954.
    PMID: 27391136 DOI: 10.1371/journal.pone.0158954
    Micro-electro mechanical system (MEMS) based oscillators are revolutionizing the timing industry as a cost effective solution, enhanced with more features, superior performance and better reliability. The design of a sustaining amplifier was triggered primarily to replenish MEMS resonator's high motion losses due to the possibility of their 'system-on-chip' integrated circuit solution. The design of a sustaining amplifier observing high gain and adequate phase shift for an electrostatic clamp-clamp (C-C) beam MEMS resonator, involves the use of an 180nm CMOS process with an unloaded Q of 1000 in realizing a fixed frequency oscillator. A net 122dBΩ transimpedance gain with adequate phase shift has ensured 17.22MHz resonant frequency oscillation with a layout area consumption of 0.121 mm2 in the integrated chip solution, the sustaining amplifier draws 6.3mW with a respective phase noise of -84dBc/Hz at 1kHz offset is achieved within a noise floor of -103dBC/Hz. In this work, a comparison is drawn among similar design studies on the basis of a defined figure of merit (FOM). A low phase noise of 1kHz, high figure of merit and the smaller size of the chip has accredited to the design's applicability towards in the implementation of a clock generative integrated circuit. In addition to that, this complete silicon based MEMS oscillator in a monolithic solution has offered a cost effective solution for industrial or biomedical electronic applications.
    Matched MeSH terms: Electronics, Medical*
  16. Rasool N, Ikram HM, Rashid A, Afzal N, Hashmi MA, Khan MN, et al.
    Turk J Chem, 2020;44(5):1410-1422.
    PMID: 33488240 DOI: 10.3906/kim-1911-51
    In the current research work, a facile synthesis of a series of novel thiophene-based derivatives of 5-bromothiophene-2-carboxylic acid ( 1 ) have been synthesized. All analogs ( 5a - 5e , 10a - 10f ) were obtained from the coupling reaction of 5-bromothiophene-2-carboxylic acid ( 1 ) and different arylboronic acids with moderate-to-good yields under controlled and optimal conditions. The structures of the newly synthesized compounds were characterized through spectral analysis and their spasmolytic activity, and most of the compounds exhibited potentially good spasmolytic effect. Among the synthesized analogs, compound phenethyl 5-(3,4-dichlorophenyl)thiophene-2-carboxylate ( 10d ) particular showed an excellent spasmolytic effect with an EC 50 value of 1.26. All of the compounds were also studied for their structural and electronic properties by density functional theory (DFT) calculations. Through detailed insight into frontier molecular orbitals of the compounds and their different reactivity descriptors, it was found that the compounds 10c and 5c are the most reactive, while 10a is the most stable in the series. Furthermore, compounds 10c and 5c showed a very good NLO response with the highest β values.
    Matched MeSH terms: Electronics
  17. Rahman MM, Islam MS, Wong HY, Alam T, Islam MT
    Sensors (Basel), 2019 Jun 10;19(11).
    PMID: 31185676 DOI: 10.3390/s19112634
    In this paper, a defected ground-structured antenna with a stub-slot configuration is proposed for future 5G wireless applications. A simple stub-slot configuration is used in the patch antenna to get the dual band frequency response in the 5G mid-band and the upper unlicensed frequency region. Further, a 2-D double period Electronic band gap (EBG) structure has been implemented as a defect in the metallic ground plane to get a wider impedance bandwidth. The size of the slots and their positions are optimized to get a considerably high impedance bandwidth of 12.49% and 4.49% at a passband frequency of 3.532 GHz and 6.835 GHz, respectively. The simulated and measured realized gain and reflection coefficients are in good agreement for both operating bandwidths. The overall antenna structure size is 33.5 mm × 33.5 mm. The antenna is fabricated and compared with experimental results. The proposed antenna shows a stable radiation pattern and high realized gain with wide impedance bandwidth using the EBG structure, which are necessary for the requirements of IoT applications offered by 5G technology.
    Matched MeSH terms: Electronics
  18. Rahman LF, Reaz MB, Yin CC, Ali MA, Marufuzzaman M
    PLoS One, 2014;9(10):e108634.
    PMID: 25299266 DOI: 10.1371/journal.pone.0108634
    The cross-coupled circuit mechanism based dynamic latch comparator is presented in this research. The comparator is designed using differential input stages with regenerative S-R latch to achieve lower offset, lower power, higher speed and higher resolution. In order to decrease circuit complexity, a comparator should maintain power, speed, resolution and offset-voltage properly. Simulations show that this novel dynamic latch comparator designed in 0.18 µm CMOS technology achieves 3.44 mV resolution with 8 bit precision at a frequency of 50 MHz while dissipating 158.5 µW from 1.8 V supply and 88.05 µA average current. Moreover, the proposed design propagates as fast as 4.2 nS with energy efficiency of 0.7 fJ/conversion-step. Additionally, the core circuit layout only occupies 0.008 mm2.
    Matched MeSH terms: Electronics, Medical/instrumentation
  19. Phoon WO
    Family Practitioner, 1984;7:44-47.
    Matched MeSH terms: Electronics
  20. Periasamy V, Rizan N, Al-Ta'ii HM, Tan YS, Tajuddin HA, Iwamoto M
    Sci Rep, 2016 07 20;6:29879.
    PMID: 27435636 DOI: 10.1038/srep29879
    The discovery of semiconducting behavior of deoxyribonucleic acid (DNA) has resulted in a large number of literatures in the study of DNA electronics. Sequence-specific electronic response provides a platform towards understanding charge transfer mechanism and therefore the electronic properties of DNA. It is possible to utilize these characteristic properties to identify/detect DNA. In this current work, we demonstrate a novel method of DNA-based identification of basidiomycetes using current-voltage (I-V) profiles obtained from DNA-specific Schottky barrier diodes. Electronic properties such as ideality factor, barrier height, shunt resistance, series resistance, turn-on voltage, knee-voltage, breakdown voltage and breakdown current were calculated and used to quantify the identification process as compared to morphological and molecular characterization techniques. The use of these techniques is necessary in order to study biodiversity, but sometimes it can be misleading and unreliable and is not sufficiently useful for the identification of fungi genera. Many of these methods have failed when it comes to identification of closely related species of certain genus like Pleurotus. Our electronics profiles, both in the negative and positive bias regions were however found to be highly characteristic according to the base-pair sequences. We believe that this simple, low-cost and practical method could be useful towards identifying and detecting DNA in biotechnology and pathology.
    Matched MeSH terms: Electronics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links