Displaying publications 21 - 40 of 890 in total

Abstract:
Sort:
  1. Duong CN, Ra JS, Cho J, Kim SD, Choi HK, Park JH, et al.
    Chemosphere, 2010 Jan;78(3):286-93.
    PMID: 19931116 DOI: 10.1016/j.chemosphere.2009.10.048
    The effects of treatment processes on estrogenicity were evaluated by examining estradiol equivalent (EEQ) concentrations in influents and effluents of sewage treatment plants (STPs) located along Yeongsan and Seomjin rivers in Korea. The occurrence and distribution of estrogenic chemicals were also estimated for surface water in Korea and compared with seven other Asian countries including Laos, Cambodia, Vietnam, China, Indonesia, Thailand and Malaysia. Target compounds were nonylphenol (NP), octylphenol (OP), bisphenol A (BPA), estrone (E1), 17beta-estradiol (E2), 17alpha-ethynylestradiol (EE2) and genistein (Gen). Water samples were pretreated and analyzed by liquid-liquid extraction (LLE) and gas chromatography/mass spectrometry (GC/MS). The results showed that the treatment processes of Korean STPs were sufficient to reduce the estrogenic activity of municipal wastewater. The concentrations of phenolic xenoestrogens (i.e., NP, OP and BPA) in samples of Yeongsan and Seomjin rivers were smaller than those reported by previous studies in Korea. In most samples taken from the seven Asian countries, the presence of E2 and EE2 was a major contributor toward estrogenic activity. The EEQ concentrations in surface water samples of the seven Asian countries were at a higher level in comparison to that reported in European countries, America and Japan. However, further studies with more sampling frequencies and sampling areas should be carried out for better evaluation of the occurrence and distribution of estrogenic compounds in these Asian countries.
    Matched MeSH terms: Environmental Monitoring
  2. Sim CH, Yusoff MK, Shutes B, Ho SC, Mansor M
    J Environ Manage, 2008 Jul;88(2):307-17.
    PMID: 17467147
    Putrajaya Wetlands in Malaysia, a 200ha constructed wetland system consisting of 24 cells, was created in 1997-1998 to treat surface runoff caused by development and agricultural activities from an upstream catchment before entering Putrajaya Lake (400ha). It was designed for stormwater treatment, flood control and amenity use. The water quality improvement performance of a section of the wetland cells is described. The nutrient removal performance was 82.11% for total nitrogen, 70.73% for nitrate-nitrogen and 84.32% for phosphate, respectively, along six wetland cells from Upper North UN6 to UN1 from April to December 2004. Nutrient removal in pilot scale tank systems, simulating a constructed wetland and planted with examples of common species at Putrajaya, the Common Reed Phragmites karka and Tube Sedge Lepironia articulata, and the capacity of these species to retain nutrients in above and below-ground plant biomass and substrate is reported. The uptake of nutrients by the Common Reed and Tube Sedge from the pilot tank system was 42.1% TKN; 28.9% P and 17.4% TKN; 26.1% P, respectively. The nutrient uptake efficiency of the Common Reed was higher in above-ground than in below-ground tissue. The results have implications for plant species selection in the design of constructed wetlands in Malaysia and for optimizing the performance of these systems.
    Matched MeSH terms: Environmental Monitoring
  3. Eguchi A, Isobe T, Ramu K, Tue NM, Sudaryanto A, Devanathan G, et al.
    Chemosphere, 2013 Mar;90(9):2365-71.
    PMID: 23149186 DOI: 10.1016/j.chemosphere.2012.10.027
    In Asian developing countries, large amounts of municipal wastes are dumped into open dumping sites each day without adequate management. This practice may cause several adverse environmental consequences and increase health risks to local communities. These dumping sites are contaminated with many chemicals including brominated flame retardants (BFRs) such as polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecanes (HBCDs). BFRs may be released into the environment through production processes and through the disposal of plastics and electronic wastes that contain them. The purpose of this study was to elucidate the status of BFR pollution in municipal waste dumping sites in Asian developing countries. Soil samples were collected from six open waste dumping sites and five reference sites in Cambodia, India, Indonesia, Malaysia, and Vietnam from 1999 to 2007. The results suggest that PBDEs are the dominant contaminants in the dumping sites in Asian developing countries, whereas HBCD contamination remains low. Concentrations of PBDEs and HBCDs ranged from ND to 180 μg/kg dry wt and ND to 1.4 μg/kg dry wt, respectively, in the reference sites and from 0.20 to 430 μg/kg dry wt and ND to 2.5 μg/kg dry wt, respectively, in the dumping sites. Contamination levels of PBDEs in Asian municipal dumping sites were comparable with those reported from electronic waste dismantling areas in Pearl River delta, China.
    Matched MeSH terms: Environmental Monitoring
  4. Dada AC, Ahmad A, Usup G, Heng LY, Hamid R
    Environ Monit Assess, 2013 Sep;185(9):7427-43.
    PMID: 23417753 DOI: 10.1007/s10661-013-3110-x
    We report the first study on the occurrence of high-level aminoglycoside-resistant (HLAR) Enterococci in coastal bathing waters and beach sand in Malaysia. None of the encountered isolates were resistant to high levels of gentamicin (500 μg/mL). However, high-level resistance to kanamycin (2,000 μg/mL) was observed in 14.2 % of tested isolates, the highest proportions observed being among beach sand isolates. High-level resistance to kanamycin was higher among Enterococcus faecalis and Enterococcus faecium than Enterococcus spp. Chi-square analysis showed no significant association between responses to tested antibiotics and the species allocation or source of isolation of all tested Enterococci. The species classification of encountered Enterococci resistance to vancomycin was highest among Enterococcus spp. (5.89 %) followed by E. faecium (4.785) and least among E. faecalis. A total of 160 isolates were also tested for virulence characteristics. On the whole, caseinase production was profoundly highest (15.01 %) while the least prevalent virulence characteristic observed among tested beach Enterococci was haemolysis of rabbit blood (3.65 %). A strong association was observed between the source of isolation and responses for each of caseinase (C = 0.47, V = 0.53) and slime (C = 0.50, V = 0.58) assays. Analysis of obtained spearman's coefficient showed a strong correlation between caseinase and each of the slime production (p = 0.04), gelatinase (p = 0.0035) and haemolytic activity on horse blood (p = 0.004), respectively. Suggestively, these are the main virulent characteristics of the studied beach Enterococci. Our findings suggest that recreational beaches may contribute to the dissemination of Enterococci with HLAR and virulence characteristics.
    Matched MeSH terms: Environmental Monitoring
  5. Sinang SC, Poh KB, Shamsudin S, Sinden A
    Bull Environ Contam Toxicol, 2015 Oct;95(4):542-7.
    PMID: 26248788 DOI: 10.1007/s00128-015-1620-7
    Toxic cyanobacteria blooms are increasing in magnitude and frequency worldwide. However, this issue has not been adequately addressed in Malaysia. Therefore, this study aims to better understand eutrophication levels, cyanobacteria diversity, and microcystin concentrations in ten Malaysian freshwater lakes. The results revealed that most lakes were eutrophic, with total phosphorus and total chlorophyll-a concentrations ranging from 15 to 4270 µg L(-1) and 1.1 to 903.1 µg L(-1), respectively. Cyanobacteria were detected in all lakes, and identified as Microcystis spp., Planktothrix spp., Phormidium spp., Oscillatoria spp., and Lyngbya spp. Microcystis spp. was the most commonly observed and most abundant cyanobacteria recorded. Semi-quantitative microcystin analysis indicated the presence of microcystin in all lakes. These findings illustrate the potential health risk of cyanobacteria in Malaysia freshwater lakes, thus magnifying the importance of cyanobacteria monitoring and management in Malaysian waterways.
    Matched MeSH terms: Environmental Monitoring
  6. Ramachandran S, Patel TR, Colbo MH
    Ecotoxicol Environ Saf, 1997 Mar;36(2):183-8.
    PMID: 9126437
    Three species of tropical estuarine invertebrates were exposed to copper sulfate and cadmium chloride to investigate their potential as test specimens for sediment toxicity assays in the South-east Asian regions. The larvae of the reef sea urchin (Diadema setosum), the oyster (Crassostrea iradalei), and the mud crab (Scylla seratta Forskall) were used in the 48-hr assays with copper and cadmium as reference toxicants. In addition the sea urchin were tested for end point measurements at different stages of the larval development and a 60-min sperm bioassay. The study revealed that the sea urchin first cleavage, which is an assay end point and which takes place about 1 hr after fertilization, was the most sensitive stage for both toxicants, with copper being more toxic than cadmium. Sensitivity comparisons between the three invertebrate larvae revealed the mud crab zoea larvae to be most sensitive for cadmium with an LC50 value of 0.078 microgram/ml, while the sea urchin was more sensitive for copper, with EC50 values of 0.01 microgram/ml at the first cleavage stage and 0.04 microgram/ml at the pluteus larva stage. All the invertebrates tested gave responses that made them suitable test organisms for metal bioassays in the tropical estuarine environment.
    Matched MeSH terms: Environmental Monitoring
  7. Mohd Isha NS, Mohd Kusin F, Ahmad Kamal NM, Syed Hasan SNM, Molahid VLM
    Environ Geochem Health, 2021 May;43(5):2065-2080.
    PMID: 33392897 DOI: 10.1007/s10653-020-00784-z
    This paper attempts to evaluate the mineralogical and chemical composition of sedimentary limestone mine waste alongside its mineral carbonation potential. The limestone mine wastes were recovered as the waste materials after mining and crushing processes and were analyzed for mineral, major and trace metal elements. The major mineral composition discovered was calcite (CaCO3) and dolomite [CaMg(CO3)2], alongside other minerals such as bustamite [(Ca,Mn)SiO3] and akermanite (Ca2MgSi2O7). Calcium oxide constituted the greatest composition of major oxide components of between 72 and 82%. The presence of CaO facilitated the transformation of carbon dioxide into carbonate form, suggesting potential mineral carbonation of the mine waste material. Geochemical assessment indicated that mean metal(loid) concentrations were found in the order of Al > Fe > Sr > Pb > Mn > Zn > As > Cd > Cu > Ni > Cr > Co in which Cd, Pb and As exceeded some regulatory guideline values. Ecological risk assessment demonstrated that the mine wastes were majorly influenced by Cd as being classified having moderate risk. Geochemical indices depicted that Cd was moderately accumulated and highly enriched in some of the mine waste deposited areas. In conclusion, the limestone mine waste material has the potential for sequestering CO2; however, the presence of some trace metals could be another important aspect that needs to be considered. Therefore, it has been shown that limestone mine waste can be regarded as a valuable feedstock for mineral carbonation process. Despite this, the presence of metal(loid) elements should be of another concern to minimize potential ecological implication due to recovery of this waste material.
    Matched MeSH terms: Environmental Monitoring
  8. Lee CW, Ng AY, Bong CW, Narayanan K, Sim EU, Ng CC
    Water Res, 2011 Feb;45(4):1561-70.
    PMID: 21146847 DOI: 10.1016/j.watres.2010.11.025
    Using the size fractionation method, we measured the decay rates of Escherichia coli, Salmonella Typhi and Vibrio parahaemolyticus in the coastal waters of Peninsular Malaysia. The size fractions were total or unfiltered, <250 μm, <20 μm, <2 μm, <0.7 μm, <0.2 μm and <0.02 μm. We also carried out abiotic (inorganic nutrients) and biotic (bacterial abundance, production and protistan bacterivory) measurements at Port Dickson, Klang and Kuantan. Klang had highest nutrient concentrations whereas both bacterial production and protistan bacterivory rates were highest at Kuantan. We observed signs of protist-bacteria coupling via the following correlations: Protistan bacterivory-Bacterial Production: r = 0.773, df = 11, p < 0.01; Protist-Bacteria: r = 0.586, df = 12, p < 0.05. However none of the bacterial decay rates were correlated with the biotic variables measured. E. coli and Salmonella decay rates were generally higher in the larger fraction (>0.7 μm) than in the smaller fraction (<0.7 μm) suggesting the more important role played by protists. E. coli and Salmonella also decreased in the <0.02 μm fraction and suggested that these non-halophilic bacteria did not survive well in seawater. In contrast, Vibrio grew well in seawater. There was usually an increase in Vibrio after one day incubation. Our results confirmed that decay or loss rates of E. coli did not match that of Vibrio, and also did not correlate with Salmonella decay rates. However E. coli showed persistence where its decay rates were generally lower than Salmonella.
    Matched MeSH terms: Environmental Monitoring
  9. Yuen FK
    Noise Health, 2014 Nov-Dec;16(73):427-36.
    PMID: 25387540 DOI: 10.4103/1463-1741.144429
    Environmental noise remains a complex and fragmented interplay between industrialization, population growth, technological developments, and the living environment. Next to the circulatory diseases and cancer, noise pollution has been cited as the third epidemic cause of psychological and physiological disorders internationally. A reliable and firm relationship between the cumulative health implications with the traffic annoyance and occupational noise has been established. This agenda has called for an integrated, coordinated, and participatory approach to the reliable protection of noise interference. Despite several fragmented policies, legislation and global efforts have been addressed; the noise pollution complaints have been traditionally neglected in developing countries, especially in Malaysia. This paper was undertaken to postulate an initial platform to address the dynamic pressures, gigantic challenges, and tremendous impacts of noise pollution scenario in Malaysia. The emphasis is speculated on the traffic interference and assessment of industrial and occupational noise. The fundamental importance of noise monitoring and modeling is proposed. Additionally, the confronting conservation program and control measure for noise pollution control are laconically elucidated.
    Matched MeSH terms: Environmental Monitoring
  10. Cheng Z, Li HH, Wang HS, Zhu XM, Sthiannopkao S, Kim KW, et al.
    Environ Res, 2016 Oct;150:423-30.
    PMID: 27372065 DOI: 10.1016/j.envres.2016.06.011
    Phthalate esters are used in a wide variety of consumer products, and human exposure to this class of compounds is widespread. Nevertheless, studies on dietary exposure of human to phthalates are limited. In this study, to assess the daily intakes of phthalate esters and the possible adverse health impacts, different food samples were collected from three areas of Cambodia, one of the poorest countries in the world. The ∑phthalate ester concentrations in Kampong Cham, Kratie and Kandal provinces ranged from 0.05 to 2.34 (median 0.88) μgg(-1), 0.19-1.65 (median 0.86) μgg(-1) and 0.24-3.05 (median 0.59) μgg(-1) wet weight (ww), respectively. Di-2-Ethylhexyl phthalate (DEHP) and diisobutyl phthalate (DiBP) were the predominant compounds among all foodstuffs. The estimated daily intake (EDI) of phthalate esters for the general population in Kampong Cham, Kratie and Kandal was 34.3, 35.6 and 35.8μgkg(-1) bw d(-1), respectively. The dietary daily intake of DEHP, benzylbutyl phthalate (BBP) and di-n-butyl phthalate (DBP) in Kampong Cham, Kratie and Kandal were below the tolerable daily intakes (TDI) imposed by the European Food Safety Authority (EFSA) and reference doses (RfD) imposed by The United States Environmental Protection Agency (USEPA). Rice contributed the greatest quantity of DEHP to the daily intake in Cambodia so may deserve further exploration. To our knowledge, this is the first study to investigate the occurrence and the daily intakes of phthalate esters in Cambodia.
    Matched MeSH terms: Environmental Monitoring
  11. Zhou F, Cui J, Zhou J, Yang J, Li Y, Leng Q, et al.
    Sci Total Environ, 2018 Aug 15;633:776-784.
    PMID: 29602116 DOI: 10.1016/j.scitotenv.2018.03.217
    Atmospheric deposition nitrogen (ADN) increases the N content in soil and subsequently impacts microbial activity of soil. However, the effects of ADN on paddy soil microbial activity have not been well characterized. In this study, we studied how red paddy soil microbial activity responses to different contents of ADN through a 10-months ADN simulation on well managed pot experiments. Results showed that all tested contents of ADN fluxes (27, 55, and 82kgNha-1 when its ratio of NH4+/NO3--N (RN) was 2:1) enhanced the soil enzyme activity and microbial biomass carbon and nitrogen and 27kgNha-1 ADN had maximum effects while comparing with the fertilizer treatment. Generally, increasing of both ADN flux and RN (1:2, 1:1 and 2:1 with the ADN flux of 55kgNha-1) had similar reduced effects on microbial activity. Furthermore, both ADN flux and RN significantly reduced soil bacterial alpha diversity (p<0.05) and altered bacterial community structure (e.g., the relative abundances of genera Dyella and Rhodoblastus affiliated to Proteobacteria increased). Redundancy analysis demonstrated that ADN flux and RN were the main drivers in shaping paddy soil bacteria community. Overall, the results have indicated that increasing ADN flux and ammonium reduced soil microbial activity and changed the soil bacterial community. The finding highlights how paddy soil microbial community response to ADN and provides information for N management in paddy soil.
    Matched MeSH terms: Environmental Monitoring
  12. Wahab MIA, Razak WMAA, Sahani M, Khan MF
    Sci Total Environ, 2020 Feb 10;703:135535.
    PMID: 31767333 DOI: 10.1016/j.scitotenv.2019.135535
    This study aimed to assess the concentrations and health effect of trace metals [cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), nickel (Ni), and zinc (Zn)] on the road dust of selected locations in the city of Kuala Lumpur. Sampling was conducted thrice at four locations, namely, Tun Razak Road, Raja Abdullah Road, Tunku Abdul Rahman (TAR) Road, and Ayer Molek Road. The concentrations of trace metals in road dust were analyzed by inductively coupled plasma mass spectrometry. TAR Road presented the highest Cd, Cu, Ni, and Pb contents compared with the other roads. The pollution level of trace metals in road dust was assessed by pollution index and pollution load index (PLI), showing that all studied locations were highly contaminated except Ayer Molek Road. Based on the PLI value, the sequence of pollution in descending order is as follows: TAR Road > Raja Abdullah Road > Tun Razak Road > Ayer Molek Road. Health risk assessment was performed to assess the health effects of carcinogenic and noncarcinogenic pollutants caused by the exposure to trace metals in road dust on adults and children. Based on the integrated hazard index values for children at all locations, >1 indicates a possible noncarcinogenic effect. All incremental lifetime cancer risk values for adult and children at all locations are within acceptable limits and are considered safe.
    Matched MeSH terms: Environmental Monitoring
  13. Mohd Nawawee NS, Abu Bakar NF, Zulfakar SS
    PMID: 31766289 DOI: 10.3390/ijerph16224463
    Improper handling, poor hygienic practices, and lack of environmental control affect the safety of street-vended beverages. The objective of this study is to determine the bacterial contamination level of three types of beverages (cordial-based drinks, milk-based drinks, fruit juices) sold by street vendors at Chow Kit, Kuala Lumpur. A total of 31 samples of beverages were analyzed to determine total viable count (TVC), total coliform, Escherichia coli, and Staphylococcus aureus counts via the standard plate count method. The results showed that only 9.7% of the total samples were not contaminated with the tested microorganisms. All milk-based drink samples were positive for TVC and also had the highest average bacterial counts at 5.30 ± 1.11 log Colony Forming Unit/mL (CFU/mL). About 71% of the samples were contaminated with total coliform with the average readings ranging between 4.30 and 4.75 log CFU/mL, whereas 58.1% of the samples were positive with S. aureus, with fruit juices having the highest average reading (3.42 ± 1.15 log CFU/mL). Only one sample (milk-based drink) was E. coli positive. This study showed that the microbiological safety level of street-vended beverages in Chow Kit, Kuala Lumpur was average and needs to be improved. Provision of food safety education and adequate sanitary facilities at vending sites are suggested to increase the safety of food products.
    Matched MeSH terms: Environmental Monitoring
  14. Mahat NA, Muktar NK, Ismail R, Abdul Razak FI, Abdul Wahab R, Abdul Keyon AS
    Environ Sci Pollut Res Int, 2018 Oct;25(30):30224-30235.
    PMID: 30155632 DOI: 10.1007/s11356-018-3033-8
    Contamination of toxic metals in P. viridis mussels has been prevalently reported; hence, health risk assessment for consuming this aquaculture product as well as the surrounding surface seawater at its harvesting sites appears relevant. Since Kampung Pasir Puteh, Pasir Gudang is the major harvesting site in Malaysia, and because the last heavy metal assessment was done in 2009, its current status remains unclear. Herein, flame atomic absorption spectrometry and flow injection mercury/hydride system were used to determine the concentrations of Pb, Cd, Cu and total Hg in P. viridis mussels and surface seawater (January-March 2015), respectively. Significantly higher concentrations of these metals were found in P. viridis mussels (p 
    Matched MeSH terms: Environmental Monitoring
  15. Alam L, Mohamed CA
    Environ Health, 2011 May 20;10:43.
    PMID: 21595985 DOI: 10.1186/1476-069X-10-43
    BACKGROUND: Po²¹⁰ can be accumulated in various environmental materials, including marine organisms, and contributes to the dose of natural radiation in seafood. The concentration of this radionuclide in the marine environment can be influenced by the operation of a coal burning power plant but existing studies regarding this issue are not well documented. Therefore, the aim of this study was to estimate the Po²¹⁰ concentration level in marine organisms from the coastal area of Kapar, Malaysia which is very near to a coal burning power plant station and to assess its impact on seafood consumers.

    METHODS: Concentration of Po²¹⁰ was determined in the edible muscle of seafood and water from the coastal area of Kapar, Malaysia using radiochemical separation and the Alpha Spectrometry technique.

    RESULTS: The activities of Po²¹⁰ in the dissolved phase of water samples ranged between 0.51 ± 0.21 and 0.71 ± 0.24 mBql⁻¹ whereas the particulate phase registered a range of 50.34 ± 11.40 to 72.07 ± 21.20 Bqkg⁻¹. The ranges of Po²¹⁰ activities in the organism samples were 4.4 ± 0.12 to 6.4 ± 0.95 Bqkg⁻¹ dry wt in fish (Arius maculatus), 45.7 ± 0.86 to 54.4 ± 1.58 Bqkg⁻¹ dry wt in shrimp (Penaeus merguiensis) and 104.3 ± 3.44 to 293.8 ± 10.04 Bqkg⁻¹ dry wt in cockle (Anadara granosa). The variation of Po²¹⁰ in organisms is dependent on the mode of their life style, ambient water concentration and seasonal changes. The concentration factors calculated for fish and molluscs were higher than the recommended values by the IAEA. An assessment of daily intake and received dose due to the consumption of seafood was also carried out and found to be 2083.85 mBqday⁻¹person⁻¹ and 249.30 μSvyr⁻¹ respectively. These values are comparatively higher than reported values in other countries. Moreover, the transformation of Po²¹⁰ in the human body was calculated and revealed that a considerable amount of Po²¹⁰ can be absorbed in the internal organs. The calculated values of life time mortality and morbidity cancer risks were 24.8 × 10⁻⁴ and 34 × 10⁻⁴ respectively which also exceeded the recommended limits set by the ICRP.

    CONCLUSIONS: The findings of this present study can be used to evaluate the safety dose uptake level of seafood as well as to monitor environmental health. However, as the calculated dose and cancer risks were found to cross the limit of safety, finding a realistic way to moderate the risk is imperative.

    Matched MeSH terms: Environmental Monitoring
  16. Yusoff FA, Rahman RA, May LH, Budart SB, Sulaiman LH
    Western Pac Surveill Response J, 2015 May 27;6(2):27-31.
    PMID: 26306213 DOI: 10.5365/WPSAR.2015.6.1.012
    In September 2012, 10 cases suspected to be hepatitis A were notified to the Manjung District Health Department. An investigation was conducted to identify the possible mode of transmission, source of the outbreak and to recommend prevention and control measures.
    Matched MeSH terms: Environmental Monitoring
  17. Nazariah SS, Juliana J, Abdah MA
    Glob J Health Sci, 2013 Jul;5(4):93-105.
    PMID: 23777726 DOI: 10.5539/gjhs.v5n4p93
    In the last few years, air within homes have been indicates by various and emerging body as more serious polluted than those outdoor. Prevalence of respiratory inflammation among school children aged 8 and 10 years old attending national primary schools in urban and rural area were conducted in Klang Valley. Two population studies drawn from the questionnaires were used to investigate the association between indoor particulate matter (PM2.5 & PM10) in a home environment and respiratory implication through the understanding of biological responses. Approximately 430 healthy school children of Standard 2 and Standard 5 were selected. Indication of respiratory symptoms using adaptation questionnaire from American Thoracic Society (1978). Sputum sample collection taken for biological analysis. IL-6 then was analyse by using ELISA techniques. Indoor PM2.5 and PM10 were measured using Dust Trak Aerosol Monitor. The mean concentration of PM2.5 (45.38 µg/m3) and PM10 (80.07 µg/m3) in urban home environment is significantly higher compared to those in rural residential area (p=0.001). Similar trend also shows by the prevalence of respiratory symptom. Association were found with PM2.5 and PM10 with the level of IL-6 among school children. A greater exposure to PM2.5 and PM10 are associated with higher expression of IL-6 level suggesting that the concentration of indoor particulate in urban density area significantly influence the health of children.
    Matched MeSH terms: Environmental Monitoring/methods
  18. Futra D, Heng LY, Surif S, Ahmad A, Ling TL
    Sensors (Basel), 2014 Dec 05;14(12):23248-68.
    PMID: 25490588 DOI: 10.3390/s141223248
    In this article a luminescence fiber optic biosensor for the microdetection of heavy metal toxicity in waters based on the marine bacterium Aliivibrio fischeri (A. fischeri) encapsulated in alginate microspheres is described. Cu(II), Cd(II), Pb(II), Zn(II), Cr(VI), Co(II), Ni(II), Ag(I) and Fe(II) were selected as sample toxic heavy metal ions for evaluation of the performance of this toxicity microbiosensor. The loss of bioluminescence response from immobilized A. fischeri bacterial cells corresponds to changes in the toxicity levels. The inhibition of the luminescent biosensor response collected at excitation and emission wavelengths of 287 ± 2 nm and 487 ± 2 nm, respectively, was found to be reproducible and repeatable within the relative standard deviation (RSD) range of 2.4-5.7% (n = 8). The toxicity biosensor based on alginate micropsheres exhibited a lower limit of detection (LOD) for Cu(II) (6.40 μg/L), Cd(II) (1.56 μg/L), Pb(II) (47 μg/L), Ag(I) (18 μg/L) than Zn(II) (320 μg/L), Cr(VI) (1,000 μg/L), Co(II) (1700 μg/L), Ni(II) (2800 μg/L), and Fe(III) (3100 μg/L). Such LOD values are lower when compared with other previous reported whole cell toxicity biosensors using agar gel, agarose gel and cellulose membrane biomatrices used for the immobilization of bacterial cells. The A. fischeri bacteria microencapsulated in alginate biopolymer could maintain their metabolic activity for a prolonged period of up to six weeks without any noticeable changes in the bioluminescence response. The bioluminescent biosensor could also be used for the determination of antagonistic toxicity levels for toxicant mixtures. A comparison of the results obtained by atomic absorption spectroscopy (AAS) and using the proposed luminescent A. fischeri-based biosensor suggests that the optical toxicity biosensor can be used for quantitative microdetermination of heavy metal toxicity in environmental water samples.
    Matched MeSH terms: Environmental Monitoring/instrumentation*
  19. Harun S, Baker A, Bradley C, Pinay G
    Environ Sci Process Impacts, 2016 Jan;18(1):137-50.
    PMID: 26666759 DOI: 10.1039/c5em00462d
    Dissolved organic matter (DOM) was characterised in water samples sampled in the Lower Kinabatangan River Catchment, Sabah, Malaysia between October 2009 and May 2010. This study aims at: (i) distinguishing between the quality of DOM in waters draining palm oil plantations (OP), secondary forests (SF) and coastal swamps (CS) and, (ii) identifying the seasonal variability of DOM quantity and quality. Surface waters were sampled during fieldwork campaigns that spanned the wet and dry seasons. DOM was characterised optically by using the fluorescence Excitation Emission Matrix (EEM), the absorption coefficient at 340 nm and the spectral slope coefficient (S). Parallel Factor Analysis (PARAFAC) was undertaken to assess the DOM composition from EEM spectra and five terrestrial derived components were identified: (C1, C2, C3, C4 and C5). Components C1 and C4 contributed the most to DOM fluorescence in all study areas during both the wet and dry seasons. The results suggest that component C4 could be a significant (and common) PARAFAC signal found in similar catchments. Peak M (C2 and C3) was dominant in all samples collected during wet and dry seasons, which could be anthropogenic in origin given the active land use change in the study area. In conclusion, there were significant seasonal and spatial variations in DOM which demonstrated the effects of land use cover and precipitation amounts in the Kinabatangan catchment.
    Matched MeSH terms: Environmental Monitoring
  20. Mohamad N, Latif MT, Khan MF
    Ecotoxicol Environ Saf, 2016 Feb;124:351-362.
    PMID: 26590697 DOI: 10.1016/j.ecoenv.2015.11.002
    This study aimed to investigate the chemical composition and potential sources of PM10 as well as assess the potential health hazards it posed to school children. PM10 samples were taken from classrooms at a school in Kuala Lumpur's city centre (S1) and one in the suburban city of Putrajaya (S2) over a period of eight hours using a low volume sampler (LVS). The composition of the major ions and trace metals in PM10 were then analysed using ion chromatography (IC) and inductively coupled plasma-mass spectrometry (ICP-MS), respectively. The results showed that the average PM10 concentration inside the classroom at the city centre school (82µg/m(3)) was higher than that from the suburban school (77µg/m(3)). Principal component analysis-absolute principal component scores (PCA-APCS) revealed that road dust was the major source of indoor PM10 at both school in the city centre (36%) and the suburban location (55%). The total hazard quotient (HQ) calculated, based on the formula suggested by the United States Environmental Protection Agency (USEPA), was found to be slightly higher than the acceptable level of 1, indicating that inhalation exposure to particle-bound non-carcinogenic metals of PM10, particularly Cr exposure by children and adults occupying the school environment, was far from negligible.
    Matched MeSH terms: Environmental Monitoring
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links