Displaying publications 21 - 40 of 291 in total

Abstract:
Sort:
  1. Udechukwu BE, Ismail A, Zulkifli SZ, Omar H
    Environ Sci Pollut Res Int, 2015 Mar;22(6):4242-55.
    PMID: 25292304 DOI: 10.1007/s11356-014-3663-4
    Sungai Puloh mangrove estuary supports a large diversity of macrobenthic organisms and provides social benefits to the local community. Recently, it became a major recipient of heavy metals originating from industries in the hinterland as a result of industrialization and urbanization. This study was conducted to evaluate mobility and pollution status of heavy metals (Cd, Cu, Ni, Pb, Zn, and Fe) in intertidal surface sediments of this area. Surface sediment samples were collected based on four different anthropogenic sources. Metals concentrations were analyzed using an atomic absorption spectrophotometer (AAS). Results revealed that the mean concentrations were Zn (1023.68 ± 762.93 μg/g), Pb (78.8 ± 49.61 μg/g), Cu (46.89 ± 43.79 μg/g), Ni (35.54 ± 10.75 μg/g), Cd (0.94 ± 0.29 μg/g), and Fe (7.14 ± 0.94%). Most of the mean values of analyzed metals were below both the interim sediment quality guidelines (ISQG-low and ISQG-high), except for Pb concentration (above ISQG-low) and Zn concentration (above ISQG-high), thus suggesting that Pb and Zn may pose some environmental concern. Cadmium, Pb, and Zn concentrations were above the threshold effect level (TEL), indicating seldom adverse effect of these metals on macrobenthic organisms. Pollution load index (PLI) indicated deterioration and other indices revealed the intertidal surface sediment is moderately polluted with Cd, Pb, and Zn. Therefore, this mangrove area requires urgent attention to mitigate further contamination. Finally, this study will contribute to data sources for Malaysia in establishing her own ISQG since it is a baseline study with detailed contamination assessment indices for surface sediment of intertidal mangrove area.
    Matched MeSH terms: Environmental Monitoring/methods*
  2. Uddin MR, Khandaker MU, Ahmed S, Abedin MJ, Hossain SMM, Al Mansur MA, et al.
    PLoS One, 2024;19(4):e0300878.
    PMID: 38635835 DOI: 10.1371/journal.pone.0300878
    Saltwater intrusion in the coastal areas of Bangladesh is a prevalent phenomenon. However, it is not conducive to activities such as irrigation, navigation, fish spawning and shelter, and industrial usage. The present study analyzed 45 water samples collected from 15 locations in coastal areas during three seasons: monsoon, pre-monsoon, and post-monsoon. The aim was to comprehend the seasonal variation in physicochemical parameters, including water temperature, pH, electrical conductivity (EC), salinity, total dissolved solids (TDS), hardness, and concentrations of Na+, K+, Mg2+, Ca2+, Fe2+, HCO3-, PO43-, SO42-, and Cl-. Additionally, parameters essential for agriculture, such as soluble sodium percentage (SSP), sodium absorption ratio (SAR), magnesium absorption ratio (MAR), residual sodium carbonate (RSC), Kelly's ratio (KR), and permeability index (PI), were examined. Their respective values were found to be 63%, 16.83 mg/L, 34.92 mg/L, 145.44 mg/L, 1.28 mg/L, and 89.29%. The integrated water quality index was determined using entropy theory and principal component analysis (PCA). The resulting entropy water quality index (EWQI) and SAR of 49.56% and 63%, respectively, indicated that the samples are suitable for drinking but unsuitable for irrigation. These findings can assist policymakers in implementing the Bangladesh Deltaplan-2100, focusing on sustainable land management, fish cultivation, agricultural production, environmental preservation, water resource management, and environmental protection in the deltaic areas of Bangladesh. This research contributes to a deeper understanding of seasonal variations in the hydrochemistry and water quality of coastal rivers, aiding in the comprehension of salinity intrusion origins, mechanisms, and causes.
    Matched MeSH terms: Environmental Monitoring/methods
  3. Ting YF, Praveena SM, Aris AZ, Ismail SNS, Rasdi I
    Ecotoxicology, 2017 Dec;26(10):1327-1335.
    PMID: 28975452 DOI: 10.1007/s10646-017-1857-5
    Steroid estrogens such as 17β-Estradiol (E2) and 17α-Ethynylestradiol (EE2) are highly potent estrogens that widely detected in environmental samples. Mathematical modelling such as concentration addition (CA) and estradiol equivalent concentration (EEQ) models are usually associated with measuring techniques to assess risk, predict the mixture response and evaluate the estrogenic activity of mixture. Wastewater has played a crucial role because wastewater treatment plant (WWTP) is the major sources of estrogenic activity in aquatic environment. The aims of this is to determine E2 and EE2 concentrations in six WWTPs effluent, to predict the estrogenic activity of the WWTPs effluent using CA and EEQ models where lastly the effectiveness of two models is evaluated. Results showed that all the six WWTPs effluent had relative high E2 concentration (35.1-85.2 ng/L) compared to EE2 (0.02-1.0 ng/L). The estrogenic activity predicted by CA model was similar among the six WWTPs (105.4 ng/L), due to the similarity of individual dose potency ratio calculated by respective WWTPs. The predicted total EEQ was ranged from 35.1 EEQ-ng/L to 85.3 EEQ-ng/L, explained by high E2 concentration in WWTPs effluent and E2 EEF value that standardized to 1.0 μg/L. The CA model is more effective than EEQ model in estrogenic activity prediction because EEQ model used less data and causes disassociation from the predicted behavior. Although both models predicted relative high estrogenic activity in WWTPs effluent, dilution effects in receiving river may lower the estrogenic response to aquatic inhabitants.
    Matched MeSH terms: Environmental Monitoring/methods*
  4. Ting SC, Ismail AR, Malek MA
    J Environ Manage, 2013 Nov 15;129:260-5.
    PMID: 23968912 DOI: 10.1016/j.jenvman.2013.07.022
    This study aims at developing a novel effluent removal management tool for septic sludge treatment plants (SSTP) using a clonal selection algorithm (CSA). The proposed CSA articulates the idea of utilizing an artificial immune system (AIS) to identify the behaviour of the SSTP, that is, using a sequence batch reactor (SBR) technology for treatment processes. The novelty of this study is the development of a predictive SSTP model for effluent discharge adopting the human immune system. Septic sludge from the individual septic tanks and package plants will be desuldged and treated in SSTP before discharging the wastewater into a waterway. The Borneo Island of Sarawak is selected as the case study. Currently, there are only two SSTPs in Sarawak, namely the Matang SSTP and the Sibu SSTP, and they are both using SBR technology. Monthly effluent discharges from 2007 to 2011 in the Matang SSTP are used in this study. Cross-validation is performed using data from the Sibu SSTP from April 2011 to July 2012. Both chemical oxygen demand (COD) and total suspended solids (TSS) in the effluent were analysed in this study. The model was validated and tested before forecasting the future effluent performance. The CSA-based SSTP model was simulated using MATLAB 7.10. The root mean square error (RMSE), mean absolute percentage error (MAPE), and correction coefficient (R) were used as performance indexes. In this study, it was found that the proposed prediction model was successful up to 84 months for the COD and 109 months for the TSS. In conclusion, the proposed CSA-based SSTP prediction model is indeed beneficial as an engineering tool to forecast the long-run performance of the SSTP and in turn, prevents infringement of future environmental balance in other towns in Sarawak.
    Matched MeSH terms: Environmental Monitoring/methods*
  5. Tham LG, Perumal N, Syed MA, Shamaan NA, Shukor MY
    J Environ Biol, 2009 Jan;30(1):135-8.
    PMID: 20112875
    An inhibitive assay of insecticides using Acetylcholinesterase (AChE) from the local fish Clarias batrachus is reported. AChE was assayed according to the modified method of Ellman. Screening of insecticide and heavy metals showed that carbofuran and carbaryl strongly inhibited C. batrachus AChE. The inhibition concentration (IC) IC50 values (and the 95% confidence interval) for both carbofuran and carbaryl inhibition on C. batrachus AChE at 6.66 (5.97-7.52) and 130.00 (119.3-142.5) microg l(-1), respectively was within the IC50 range of Electrophorus electricus at 6.20 (6.03-6.39) and 133.01 (122.40-145.50) microg l(-1), respectively and were much lower than bovine AChE at 20.94 (19.53-22.58) and 418.80 (390.60-451.60) microg l(-1), respectively. The results showed that C. batrachus have the potential to be used as a cheaper and more readily available source of AChE than other more commercially available sources.
    Matched MeSH terms: Environmental Monitoring/methods*
  6. Teh TL, Rahman NN, Shahadat M, Wong YS, Syakir MI, Omar AK
    Environ Monit Assess, 2016 Jul;188(7):404.
    PMID: 27295186 DOI: 10.1007/s10661-016-5394-0
    The present study deals with possible contamination of the soil by metal ions which have been affecting the environment. The concentrations of metal ions in 14 borehole samples were studied using the ICP-OES standard method. The degree of contamination was determined on the basis of single element pollution index (SEPI), combined pollution index (CPI), soil enrichment factor (SEF), and geo-accumulation index (Igeo). Geo-accumulation indices and contamination factors indicated moderate to strong contaminations for eight boreholes (BL-1, BL-2, BL-6, BL-8, BL-9, BL-10, BL-12, and BL-13) while the rest were extremely contaminated. Among all the boreholes, BL-3 and BL-11 demonstrated the highest level of Cd(II) and Pb(II) which were found the most polluted sites. The level of metal contamination was also compared with other countries. The development, variation, and limitations regarding the regulations of soil and groundwater contamination can be provided as a helpful guidance for the risk assessment of metal ions in developing countries.
    Matched MeSH terms: Environmental Monitoring/methods*
  7. Teh L, Cabanban AS
    J Environ Manage, 2007 Dec;85(4):999-1008.
    PMID: 17204361
    A priori assessments of a site's biophysical and socio-economic capacity for accommodating tourism are less common than tourism impact studies. A priori evaluations can provide a contextual understanding of ecological, economic and socio-cultural forces, which shape the prospects for sustainable tourism development at the host destination, and can avert adverse impacts of tourism. We conduct an a priori assessment of the biophysical environment of Pulau Banggi, in the Malaysian state of Sabah for sustainable tourism development. We characterise baseline conditions of the island's marine biodiversity, seasonality, and infrastructure. We then evaluate how existing biophysical conditions will influence options for sustainable tourism development. In particular, we suggest conditions, if there are any, which constitute a limit to future tourism development in terms of compatibility for recreation and resilience to visitor impacts. We find that the biggest constraint is the lack of adequate water and sanitation infrastructure. Blast fishing, although occurring less than once per hour, can potentially destroy the major attraction for tourists. We conclude that while Pulau Banggi possesses natural qualities that are attractive for ecotourism, financial and institutional support must be made available to provide facilities and services that will enable local participation in environmental protection and enhance prospects for future sustainable tourism.
    Matched MeSH terms: Environmental Monitoring/methods*
  8. Tayeb MA, Ismail BS, Khairiatul-Mardiana J
    Environ Monit Assess, 2017 Oct 11;189(11):551.
    PMID: 29022154 DOI: 10.1007/s10661-017-6236-4
    This study focused on the residue detection of the herbicides triclopyr and glufosinate ammonium in the runoff losses from the Tasik Chini oil palm plantation area and the Tasik Chini Lake under natural rainfall conditions in the Malaysian tropical environment. Triclopyr and glufosinate ammonium are post-emergence herbicides. Both herbicides were foliar-sprayed on 0.5 ha of oil palm plantation plots, which were individualized by an uneven slope of 10-15%. Samples were collected at 1, 3, 7, 15, 30, 45, 60, 90, and 120 days after treatment. The concentrations of both herbicides quickly diminished from those in the analyzed sample by the time of collection. The highest residue levels found in the field surface leachate were 0.031 (single dosage, triclopyr), 0.041 (single dosage, glufosinate ammonium), 0.017 (double dosage, triclopyr), and 0.037 μg/kg (double dosage, glufosinate ammonium). The chromatographic peaks were observed at "0" day treatment (2 h after herbicide application). From the applied active ingredients, the triclopyr and glufosinate losses were 0.025 and 0.055%, respectively. The experimental results showed that both herbicides are less potent than other herbicides in polluting water systems because of their short persistence and strong adsorption onto soil clay particles.
    Matched MeSH terms: Environmental Monitoring/methods*
  9. Tavakoly Sany SB, Hashim R, Rezayi M, Salleh A, Safari O
    Environ Sci Pollut Res Int, 2014 Jan;21(2):813-33.
    PMID: 24142490 DOI: 10.1007/s11356-013-2217-5
    The basic aim of this work is (1) to review and present practically operational requirements for a sustainability assessment of marine environment, such as describing the monitoring process, research approaches, objectives, guidelines, and indicators and (2) to illustrate how physico-chemical and biological indicators can be practically applied, to assess water and sediment quality in marine and coastal environment. These indicators should meet defined criteria for practical usefulness, e.g. they should be simple to understand and apply to managers and scientists with different educational backgrounds. This review aimed to encapsulate that variability, recognizing that meaningful guidance should be flexible enough to accommodate the widely differing characteristics of marine ecosystems.
    Matched MeSH terms: Environmental Monitoring/methods*
  10. Tao H, Al-Hilali AA, Ahmed AM, Mussa ZH, Falah MW, Abed SA, et al.
    Chemosphere, 2023 Mar;317:137914.
    PMID: 36682637 DOI: 10.1016/j.chemosphere.2023.137914
    Heavy metals (HMs) are a vital elements for investigating the pollutant level of sediments and water bodies. The Murray-Darling river basin area located in Australia is experiencing severe damage to increased crop productivity, loss of soil fertility, and pollution levels within the vicinity of the river system. This basin is the most effective primary production area in Australia where agricultural productivity is increased the gross domastic product in the entire mainland. In this study, HMs contaminations are examined for eight study sites selected for the Murray-Darling river basin where the inverse Distance Weighting interpolation method is used to identify the distribution of HMs. To pursue this, four different pollution indices namely the Geo-accumulation index (Igeo), Contamination factor (CF), Pollution load index (PLI), single-factor pollution index (SPLI), and the heavy metal pollution index (HPI) are computed. Following this, the Pearson correlation matrix is used to identify the relationships among the two HM parameters. The results indicate that the conductivity and N (%) are relatively high in respect to using Igeo and PLI indexes for study sites 4, 6, and 7 with 2.93, 3.20, and 1.38, respectively. The average HPI is 216.9071 that also indicates higher level pollution in the Murray-Darling river basin and the highest HPI value is noted in sample site 1 (353.5817). The study also shows that the levels of Co, P, Conductivity, Al, and Mn are mostly affected by HMs and that these indices indicate the maximum HM pollution level in the Murray-Darling river basin. Finally, the results show that the high HM contamination level appears to influence human health and local environmental conditions.
    Matched MeSH terms: Environmental Monitoring/methods
  11. Tao H, Bobaker AM, Ramal MM, Yaseen ZM, Hossain MS, Shahid S
    Environ Sci Pollut Res Int, 2019 Jan;26(1):923-937.
    PMID: 30421367 DOI: 10.1007/s11356-018-3663-x
    Surface and ground water resources are highly sensitive aquatic systems to contaminants due to their accessibility to multiple-point and non-point sources of pollutions. Determination of water quality variables using mathematical models instead of laboratory experiments can have venerable significance in term of the environmental prospective. In this research, application of a new developed hybrid response surface method (HRSM) which is a modified model of the existing response surface model (RSM) is proposed for the first time to predict biochemical oxygen demand (BOD) and dissolved oxygen (DO) in Euphrates River, Iraq. The model was constructed using various physical and chemical variables including water temperature (T), turbidity, power of hydrogen (pH), electrical conductivity (EC), alkalinity, calcium (Ca), chemical oxygen demand (COD), sulfate (SO4), total dissolved solids (TDS), and total suspended solids (TSS) as input attributes. The monthly water quality sampling data for the period 2004-2013 was considered for structuring the input-output pattern required for the development of the models. An advance analysis was conducted to comprehend the correlation between the predictors and predictand. The prediction performances of HRSM were compared with that of support vector regression (SVR) model which is one of the most predominate applied machine learning approaches of the state-of-the-art for water quality prediction. The results indicated a very optimistic modeling accuracy of the proposed HRSM model to predict BOD and DO. Furthermore, the results showed a robust alternative mathematical model for determining water quality particularly in a data scarce region like Iraq.
    Matched MeSH terms: Environmental Monitoring/methods*
  12. Tao H, Jawad AH, Shather AH, Al-Khafaji Z, Rashid TA, Ali M, et al.
    Environ Int, 2023 May;175:107931.
    PMID: 37119651 DOI: 10.1016/j.envint.2023.107931
    This study uses machine learning (ML) models for a high-resolution prediction (0.1°×0.1°) of air fine particular matter (PM2.5) concentration, the most harmful to human health, from meteorological and soil data. Iraq was considered the study area to implement the method. Different lags and the changing patterns of four European Reanalysis (ERA5) meteorological variables, rainfall, mean temperature, wind speed and relative humidity, and one soil parameter, the soil moisture, were used to select the suitable set of predictors using a non-greedy algorithm known as simulated annealing (SA). The selected predictors were used to simulate the temporal and spatial variability of air PM2.5 concentration over Iraq during the early summer (May-July), the most polluted months, using three advanced ML models, extremely randomized trees (ERT), stochastic gradient descent backpropagation (SGD-BP) and long short-term memory (LSTM) integrated with Bayesian optimizer. The spatial distribution of the annual average PM2.5 revealed the population of the whole of Iraq is exposed to a pollution level above the standard limit. The changes in temperature and soil moisture and the mean wind speed and humidity of the month before the early summer can predict the temporal and spatial variability of PM2.5 over Iraq during May-July. Results revealed the higher performance of LSTM with normalized root-mean-square error and Kling-Gupta efficiency of 13.4% and 0.89, compared to 16.02% and 0.81 for SDG-BP and 17.9% and 0.74 for ERT. The LSTM could also reconstruct the observed spatial distribution of PM2.5 with MapCurve and Cramer's V values of 0.95 and 0.91, compared to 0.9 and 0.86 for SGD-BP and 0.83 and 0.76 for ERT. The study provided a methodology for forecasting spatial variability of PM2.5 concentration at high resolution during the peak pollution months from freely available data, which can be replicated in other regions for generating high-resolution PM2.5 forecasting maps.
    Matched MeSH terms: Environmental Monitoring/methods
  13. Tan KC, Lim HS, Matjafri MZ, Abdullah K
    Environ Monit Assess, 2012 Jun;184(6):3813-29.
    PMID: 21755424 DOI: 10.1007/s10661-011-2226-0
    Atmospheric corrections for multi-temporal optical satellite images are necessary, especially in change detection analyses, such as normalized difference vegetation index (NDVI) rationing. Abrupt change detection analysis using remote-sensing techniques requires radiometric congruity and atmospheric correction to monitor terrestrial surfaces over time. Two atmospheric correction methods were used for this study: relative radiometric normalization and the simplified method for atmospheric correction (SMAC) in the solar spectrum. A multi-temporal data set consisting of two sets of Landsat images from the period between 1991 and 2002 of Penang Island, Malaysia, was used to compare NDVI maps, which were generated using the proposed atmospheric correction methods. Land surface temperature (LST) was retrieved using ATCOR3_T in PCI Geomatica 10.1 image processing software. Linear regression analysis was utilized to analyze the relationship between NDVI and LST. This study reveals that both of the proposed atmospheric correction methods yielded high accuracy through examination of the linear correlation coefficients. To check for the accuracy of the equation obtained through linear regression analysis for every single satellite image, 20 points were randomly chosen. The results showed that the SMAC method yielded a constant value (in terms of error) to predict the NDVI value from linear regression analysis-derived equation. The errors (average) from both proposed atmospheric correction methods were less than 10%.
    Matched MeSH terms: Environmental Monitoring/methods*
  14. Tan KC, Lim HS, Mat Jafri MZ
    Environ Sci Pollut Res Int, 2014 Jun;21(12):7567-77.
    PMID: 24599658 DOI: 10.1007/s11356-014-2697-y
    This study aimed to predict monthly columnar ozone (O3) in Peninsular Malaysia by using data on the concentration of environmental pollutants. Data (2003-2008) on five atmospheric pollutant gases (CO2, O3, CH4, NO2, and H2O vapor) retrieved from the satellite Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) were employed to develop a model that predicts columnar ozone through multiple linear regression. In the entire period, the pollutants were highly correlated (R = 0.811 for the southwest monsoon, R = 0.803 for the northeast monsoon) with predicted columnar ozone. The results of the validation of columnar ozone with column ozone from SCIAMACHY showed a high correlation coefficient (R = 0.752-0.802), indicating the model's accuracy and efficiency. Statistical analysis was utilized to determine the effects of each atmospheric pollutant on columnar ozone. A model that can retrieve columnar ozone in Peninsular Malaysia was developed to provide air quality information. These results are encouraging and accurate and can be used in early warning of the population to comply with air quality standards.
    Matched MeSH terms: Environmental Monitoring/methods*
  15. Tan C, Seet G, Sluzek A, Wang X, Yuen CT, Fam CY, et al.
    Opt Express, 2010 Sep 27;18(20):21147-54.
    PMID: 20941011 DOI: 10.1364/OE.18.021147
    The range-gated imaging systems are reliable underwater imaging system with the capability to minimize backscattering effect from turbid media. The tail-gating technique has been developed to fine tune the signal to backscattering ratio and hence improve the gated image quality. However, the tail-gating technique has limited image quality enhancement in high turbidity levels. In this paper, we developed a numerical model of range-gated underwater imaging system for near target in turbid medium. The simulation results matched the experimental work favorably. Further investigation using this numerical model shows that the multiple scattering components of the backscattering noise dominate for propagation length larger than 4.2 Attenuation Length (AL). This has limited the enhancement of tail-gating technique in high turbidity conditions.
    Matched MeSH terms: Environmental Monitoring/methods*
  16. Syed Abdul Mutalib SN, Juahir H, Azid A, Mohd Sharif S, Latif MT, Aris AZ, et al.
    Environ Sci Process Impacts, 2013 Sep;15(9):1717-28.
    PMID: 23831918 DOI: 10.1039/c3em00161j
    The objective of this study is to identify spatial and temporal patterns in the air quality at three selected Malaysian air monitoring stations based on an eleven-year database (January 2000-December 2010). Four statistical methods, Discriminant Analysis (DA), Hierarchical Agglomerative Cluster Analysis (HACA), Principal Component Analysis (PCA) and Artificial Neural Networks (ANNs), were selected to analyze the datasets of five air quality parameters, namely: SO2, NO2, O3, CO and particulate matter with a diameter size of below 10 μm (PM10). The three selected air monitoring stations share the characteristic of being located in highly urbanized areas and are surrounded by a number of industries. The DA results show that spatial characterizations allow successful discrimination between the three stations, while HACA shows the temporal pattern from the monthly and yearly factor analysis which correlates with severe haze episodes that have happened in this country at certain periods of time. The PCA results show that the major source of air pollution is mostly due to the combustion of fossil fuel in motor vehicles and industrial activities. The spatial pattern recognition (S-ANN) results show a better prediction performance in discriminating between the regions, with an excellent percentage of correct classification compared to DA. This study presents the necessity and usefulness of environmetric techniques for the interpretation of large datasets aiming to obtain better information about air quality patterns based on spatial and temporal characterizations at the selected air monitoring stations.
    Matched MeSH terms: Environmental Monitoring/methods*
  17. Sugumaran D, Blake WH, Millward GE, Yusop Z, Mohd Yusoff AR, Mohamad NA, et al.
    Environ Sci Pollut Res Int, 2023 Jun;30(28):71881-71896.
    PMID: 35411514 DOI: 10.1007/s11356-022-19904-6
    Pristine tropical river systems are coming under increasing pressure from the development of economic resources such as forestry and mining for valuable elements. The Lebir catchment, north eastern Malaysia, is now under development as a result of unregulated tree felling and mining for essential and rare metals. Two sediment cores, one in the upstream reaches and the other from the downstream reaches, were taken from flood prone area of the Lebir River, Malaysia, and analysed for their elemental composition by XRF, specifically Al, Si, Fe, Ca, K, Mg, Mn, V, Cu, Ni, Pb, Cr, Zn, As, Th and U. Activities of fallout radionuclides, 137Cs and 210Pb were also determined to from a geochronological context. The elemental concentrations in the soils were assessed in terms of their enrichment factor and Si, Ca, K, Mg, Mn, V, Cu, Ni and Zn were found not to be enriched, whereas As, Th and U had elevated enrichment factors. The Th and U were particularly enriched in the downstream core indicating inputs from a tributary that drains a catchment with known deposits of Th and possibly U. The results suggest that the growth in economic development is fostering the transport of contaminants by the major rivers which, in turn, is contaminating the riverine floodplains. This points to the need for a more integrated and holistic approach to river basin management to maintain the environmental quality of these fragile aquatic systems.
    Matched MeSH terms: Environmental Monitoring/methods
  18. Sudaryanto A, Takahashi S, Iwata H, Tanabe S, Ismail A
    Environ Pollut, 2004 Aug;130(3):347-58.
    PMID: 15182968
    Concentration of butyltin compounds (BTs), including tributyltin (TBT), dibutyltin (DBT) and monobutyltin (MBT) and total tin (SigmaSn) were determined in green mussel (Perna viridis), 10 species of muscle fish and sediment from coastal waters of Malaysia. BTs were detected in all these samples ranging from 3.6 to 900 ng/g wet wt., 3.6 to 210 ng/g wet wt., and 18 to 1400 ng/g dry wt. for mussels, fish and sediments, respectively. The concentrations of BTs in several locations of this study were comparable with the reported values from some developed countries and highest among Asian developing nations. Considerable concentration of BTs in several locations might have ecotoxicological consequences and may cause concern to human health. The parent compound TBT was found to be highest than those of its degradation compounds, DBT and MBT, suggesting recent input of TBT to the Malaysian marine environment. Significant positive correlation (Spearman rank correlation: r2=0.82, P<0.0001) was found between BTs and SigmaSn, implying considerable anthropogenic input of butyltin compounds to total tin contamination levels. Enormous boating activities may be a major source of BTs in this country, although aquaculture activities may not be ignored.
    Matched MeSH terms: Environmental Monitoring/methods
  19. Sow AY, Ismail A, Zulkifli SZ
    Environ Sci Pollut Res Int, 2013 Dec;20(12):8964-73.
    PMID: 23757028 DOI: 10.1007/s11356-013-1857-9
    The present study investigates the concentration of Pb, Cd, Ni, Zn, and Cu in the paddy field soils collected from Tumpat, Kelantan. Soil samples were treated with sequential extraction to distinguish the anthropogenic and lithogenic origin of Pb, Cd, Ni, Zn, and Cu. ELFE and oxidizable-organic fractions were detected as the lowest accumulation of Pb, Cd, Ni, Zn, and Cu. Therefore, all the heavy metals examined were concentrated, particularly in resistant fraction, indicating that those heavy metals occurred and accumulated in an unavailable form. The utilization of agrochemical fertilizers and pesticides might not elevate the levels of heavy metals in the paddy field soils. In comparison, the enrichment factor and geoaccumulation index for Pb, Cd, Ni, Zn, and Cu suggest that these heavy metals have the potential to cause environmental risk, although they present abundance in resistant fraction. Therefore, a complete study should be conducted based on the paddy cycle, which in turn could provide a clear picture of heavy metals distribution in the paddy field soils.
    Matched MeSH terms: Environmental Monitoring/methods*
  20. Soh SC, Abdullah MP
    Environ Monit Assess, 2007 Jan;124(1-3):39-50.
    PMID: 16967208
    A field investigation was conducted at all water treatment plants throughout 11 states and Federal Territory in Peninsular Malaysia. The sampling points in this study include treatment plant operation, service reservoir outlet and auxiliary outlet point at the water pipelines. Analysis was performed by solid phase micro-extraction technique with a 100 microm polydimethylsiloxane fibre using gas chromatography with mass spectrometry detection to analyse 54 volatile organic compounds (VOCs) of different chemical families in drinking water. The concentration of VOCs ranged from undetectable to 230.2 microg/l. Among all of the VOCs species, chloroform has the highest concentration and was detected in all drinking water samples. Average concentrations of total trihalomethanes (THMs) were almost similar among all states which were in the range of 28.4--33.0 microg/l. Apart from THMs, other abundant compounds detected were cis and trans-1,2-dichloroethylene, trichloroethylene, 1,2-dibromoethane, benzene, toluene, ethylbenzene, chlorobenzene, 1,4-dichlorobenzene and 1,2-dichloro - benzene. Principal component analysis (PCA) with the aid of varimax rotation, and parallel factor analysis (PARAFAC) method were used to statistically verify the correlation between VOCs and the source of pollution. The multivariate analysis pointed out that the maintenance of auxiliary pipelines in the distribution systems is vital as it can become significant point source pollution to Malaysian drinking water.
    Matched MeSH terms: Environmental Monitoring/methods
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links