Displaying publications 21 - 40 of 299 in total

Abstract:
Sort:
  1. Mohd Nor NH, Berahim Z, Azlina A, Kannan TP
    Clin Oral Investig, 2019 Nov;23(11):3959-3966.
    PMID: 30847574 DOI: 10.1007/s00784-019-02827-x
    OBJECTIVES: This study aimed to differentiate and characterize fibroblast-like cells from stem cells from human exfoliated deciduous teeth (SHED).

    MATERIALS AND METHODS: The differentiation of fibroblast-like cells from SHED was carried out by using specific human recombinant connective tissue growth factor (CTGF). To characterize fibroblastic differentiation, the induced cells were subjected to morphological changes, proliferation rate, gene expression analysis using quantitative reverse transcription-polymerase chain reaction (qRT-PCR), flow cytometry, and immunofluorescence staining. The commercial primary human gingival fibroblasts served as positive control in this study.

    RESULTS: The results from characterization analysis were compared with that of commercial cells to ensure that the cells differentiated from SHED were fibroblast-like cells. The results showed the inductive effect of CTGF for fibroblastic differentiation in SHED. SHED-derived fibroblasts were successfully characterized despite having similar morphological appearance, i.e., (i) significant proliferation rate between fibroblast-like cells and SHED, (ii) high expression of fibroblast-associated markers in qRT-PCR analysis, and (iii) positive staining against collagen type 1, fibroblast-specific protein 1, and human thymic fibroblasts in flow cytometry analysis and immunofluorescence staining. The same expression patterns were found in primary human gingival fibroblasts, respectively. SHED as negative control showed lower expression or no signal, thus confirming the cells differentiated from SHED were fibroblast-like cells.

    CONCLUSIONS: Taken together, the protocol adopted in this study suggests CTGF to be an appropriate inducer in the differentiation of SHED into fibroblast-like cells.

    CLINICAL RELEVANCE: The fibroblast-like cells differentiated from SHED could be used in future in vitro and in vivo dental tissue regeneration studies as well as in clinical applications where these cells are needed.

    Matched MeSH terms: Fibroblasts*
  2. Zeimaran E, Pourshahrestani S, Pingguan-Murphy B, Kong D, Naveen SV, Kamarul T, et al.
    Carbohydr Polym, 2017 Nov 01;175:618-627.
    PMID: 28917909 DOI: 10.1016/j.carbpol.2017.08.038
    Blends of poly (1, 8-octanediol citrate) (POC) and chitosan (CS) were prepared through solution casting technique. Films with different component fractions (POC/CS: 100/0, 90/10, 80/20, 70/30, 60/40, and 0/100) were successfully prepared and characterized for their mechanical, thermal, structural and morphological properties as well as biocompatibility. The incorporation of CS to POC significantly increased tensile strength and elastic modulus and presented limited influences on pH variation which is important to the biocompatibility of biomaterial implants. The assessment of surface topography indicated that blending could enhance and control the surface roughness of the pure films. POC/CS blends well-supported human dermal fibroblast cells attachment and proliferation, and thus can be used for a range of tissue engineering applications.
    Matched MeSH terms: Fibroblasts/cytology
  3. Busra FM, Chowdhury SR, Saim AB, Idrus RB
    Saudi Med J, 2011 Dec;32(12):1311-2.
    PMID: 22159390
    Matched MeSH terms: Fibroblasts/drug effects
  4. Feng Z, Ishiguro Y, Fujita K, Kosawada T, Nakamura T, Sato D, et al.
    Biomaterials, 2015 Oct;67:365-81.
    PMID: 26247391 DOI: 10.1016/j.biomaterials.2015.07.038
    In this paper, we present a general, fibril-based structural constitutive theory which accounts for three material aspects of crosslinked filamentous materials: the single fibrillar force response, the fibrillar network model, and the effects of alterations to the fibrillar network. In the case of the single fibrillar response, we develop a formula that covers the entropic and enthalpic deformation regions, and introduce the relaxation phase to explain the observed force decay after crosslink breakage. For the filamentous network model, we characterize the constituent element of the fibrillar network in terms its end-to-end distance vector and its contour length, then decompose the vector orientation into an isotropic random term and a specific alignment, paving the way for an expanded formalism from principal deformation to general 3D deformation; and, more important, we define a critical core quantity over which macroscale mechanical characteristics can be integrated: the ratio of the initial end-to-end distance to the contour length (and its probability function). For network alterations, we quantitatively treat changes in constituent elements and relate these changes to the alteration of network characteristics. Singular in its physical rigor and clarity, this constitutive theory can reproduce and predict a wide range of nonlinear mechanical behavior in materials composed of a crosslinked filamentous network, including: stress relaxation (with dual relaxation coefficients as typically observed in soft tissues); hysteresis with decreasing maximum stress under serial cyclic loading; strain-stiffening under uniaxial tension; the rupture point of the structure as a whole; various effects of biaxial tensile loading; strain-stiffening under simple shearing; the so-called "negative normal stress" phenomenon; and enthalpic elastic behaviors of the constituent element. Applied to compacted collagen gels, the theory demonstrates that collagen fibrils behave as enthalpic elasticas with linear elasticity within the gels, and that the macroscale nonlinearity of the gels originates from the curved fibrillar network. Meanwhile, the underlying factors that determine the mechanical properties of the gels are clarified. Finally, the implications of this study on the enhancement of the mechanical properties of compacted collagen gels and on the cellular mechanics with this model tissue are discussed.
    Matched MeSH terms: Fibroblasts/drug effects; Fibroblasts/metabolism*; Fibroblasts/ultrastructure
  5. Bhavikatti SK, Karobari MI, Zainuddin SLA, Marya A, Nadaf SJ, Sawant VJ, et al.
    PMID: 34281099 DOI: 10.3390/ijerph18137162
    Background-chlorhexidine (CHX) is most commonly used as a chemical plaque control agent. Nevertheless, its adverse effects, including teeth discoloration, taste alteration and calculus build-up, limit its use and divert us to medicinal herbs. The purpose of the study was to evaluate the phytochemical composition, antioxidant potential, and cytotoxic effects of Mimusops elengi Linn extract (ME) over normal human cultured adult gingival fibroblasts (HGFs). Methods-in vitro phytochemical screening, total flavonoid content, antioxidant potential by DPPH and Nitric Oxide (NO) radical scavenging activity, and cytotoxic effects of ME extracts over HGF were explored. The viability of HGF cells was determined using 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT), neutral red uptake, and trypan blue assay after treatment with different concentrations of CHX and ME (0.3125 to 10 µg/mL). Results-ME showed some alkaloids, glycosides, saponins and flavonoids exhibited relatively moderate-to-good antioxidant potential. Increasing the concentration of CHX and ME from 0.3125 to 10 µg/mL reduced cell viability from 29.71% to 1.07% and 96.12% to 56.02%, respectively. At higher concentrations, CHX reduced the viability of cells by 52.36-fold compared to ME, revealed by MTT assay. At 10 µg/mL concentration, the mean cell viability of CHX and ME-treated cells was 2.24% and 57.45%, respectively, revealed by a neutral red assay. The viability of CHX- and ME-treated HGF cells estimated at higher concentrations (10 µg/mL) using trypan blue assay was found to be 2.18% and 47.36%, respectively. A paired t-test showed significance (p < 0.05), and one-way ANOVA difference between the mean cell viability of CHX- and ME-treated cells at different concentrations. One-way ANOVA confirmed the significant difference between the viability of CHX- and ME-treated cells. Conclusions-The cytoprotective and antioxidant effects of ME emphasize its potential benefits. Therefore, it could emerge as a herbal alternative and adjunct to conventional oral hygiene methods, that can diminish periodontal tissue destruction.
    Matched MeSH terms: Fibroblasts
  6. Megat Nabil Mohsin S, Hussein MZ, Sarijo SH, Fakurazi S, Arulselvan P, Taufiq-Yap YH
    Int J Nanomedicine, 2018;13:6359-6374.
    PMID: 30349255 DOI: 10.2147/IJN.S171390
    Introduction: The potential of layered double hydroxide (LDH) as a host of multiple ultraviolet-ray absorbers was investigated by simultaneous intercalation of benzophenone 4 (B4) and Eusolex® 232 (EUS) in Zn/Al LDH.

    Methods: The nanocomposites were prepared via coprecipitation method at various molar ratios of B4 and EUS.

    Results: At equal molar ratios, the obtained nanocomposite showed an intercalation selectivity that is preferential to EUS. However, the selectivity ratio of intercalated anions was shown to be capable of being altered by adjusting the molar ratio of intended guests during synthesis. Dual-guest nanocomposite synthesized with B4:EUS molar ratio 3:1 (ZEB [3:1]) showed an intercalation selectivity ratio of B4:EUS =53:47. Properties of ZEB (3:1) were monitored using powder X-ray diffractometer to show a basal spacing of 21.8 Å. Direct-injection mass spectra, Fourier transform infrared spectra, and ultraviolet-visible spectra confirmed the dual intercalation of both anions into the interlayer regions of dual-guest nanocomposite. The cytotoxicity study of dual-guest nanocomposite ZEB (3:1) on human dermal fibroblast cells showed no significant toxicity until 25 μg/mL.

    Conclusion: Overall, the findings demonstrate successful customization of ultraviolet-ray absorbers composition in LDH host.

    Matched MeSH terms: Fibroblasts/cytology; Fibroblasts/drug effects*; Fibroblasts/radiation effects
  7. Tan HH, Thomas NF, Inayat-Hussain SH, Chan KM
    Sci Rep, 2021 02 26;11(1):4773.
    PMID: 33637843 DOI: 10.1038/s41598-021-83163-7
    Cytoprotection involving the nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) signaling pathway is an important preventive strategy for normal cells against carcinogenesis. In our previous study, the chemopreventive potential of (E)-N-(2-(3, 5-Dimethoxystyryl) phenyl) furan-2-carboxamide (BK3C231) has been elucidated through its cytoprotective effects against DNA and mitochondrial damages in the human colon fibroblast CCD-18Co cell model. Therefore this study aimed to investigate the molecular mechanisms underlying BK3C231-induced cytoprotection and the involvement of the Nrf2/ARE pathway. The cells were pretreated with BK3C231 before exposure to carcinogen 4-nitroquinoline N-oxide (4NQO). BK3C231 increased the protein expression and activity of cytoprotective enzymes namely NAD(P)H:quinone oxidoreductase 1 (NQO1), glutathione S-transferase (GST) and heme oxygenase-1 (HO-1), as well as restoring the expression of glutamate-cysteine ligase catalytic subunit (GCLC) back to the basal level. Furthermore, dissociation of Nrf2 from its inhibitory protein, Keap1, and ARE promoter activity were upregulated in cells pretreated with BK3C231. Taken together, our findings suggest that BK3C231 exerts cytoprotection by activating the Nrf2 signaling pathway which leads to ARE-mediated upregulation of cytoprotective proteins. This study provides new mechanistic insights into BK3C231 chemopreventive activities and highlights the importance of stilbene derivatives upon development as a potential chemopreventive agent.
    Matched MeSH terms: Fibroblasts/cytology; Fibroblasts/drug effects*; Fibroblasts/metabolism
  8. Azmi AF, Yahya MAAM, Azhar NA, Ibrahim N, Ghafar NA, Ghani NAA, et al.
    Int J Mol Sci, 2023 Mar 17;24(6).
    PMID: 36982842 DOI: 10.3390/ijms24065775
    Cord blood-platelet lysate (CB-PL), containing growth factors such as a platelet-derived growth factor, has a similar efficacy to peripheral blood-platelet lysate (PB-PL) in initiating cell growth and differentiation, which makes it a unique alternative to be implemented into oral ulceration healing. This research study aimed to compare the effectiveness of CB-PL and PB-PL in promoting oral wound closure in vitro. Alamar blue assay was used to determine the optimal concentration of CB-PL and PB-PL in enhancing the proliferation of human oral mucosal fibroblasts (HOMF). The percentage of wound closure was measured using the wound-healing assay for CB-PL and PB-PL at the optimal concentration of 1.25% and 0.3125%, respectively. The gene expressions of cell phenotypic makers (Col. I, Col. III, elastin and fibronectin) were determined via qRT-PCR. The concentrations of PDGF-BB were quantified using ELISA. We found that CB-PL was as effective as PB-PL in promoting wound-healing and both PL were more effective compared to the control (CTRL) group in accelerating the cell migration in the wound-healing assay. The gene expressions of Col. III and fibronectin were significantly higher in PB-PL compared to CB-PL. The PDGF-BB concentration of PB-PL was the highest and it decreased after the wound closed on day 3. Therefore, we concluded that PL from both sources can be a beneficial treatment for wound-healing, but PB-PL showed the most promising wound-healing properties in this study.
    Matched MeSH terms: Fibroblasts
  9. Kamba AS, Ismail M, Ibrahim TA, Zakaria ZA
    PMID: 25392577
    BACKGROUND: Currently, there has been extensive research interest for inorganic nanocrystals such as calcium phosphate, iron oxide, silicone, carbon nanotube and layered double hydroxide as a drug delivery system especially in cancer therapy. However, toxicological screening of such particles is paramount importance before use as delivery carrier. In this study we examine the biocompatibility of CaCO3 nanocrystal on NIH 3T3 cell line.

    MATERIAL AND METHODS: Transmission and field emission scanning electron microscopy (TEM and FESEM) were used for the characterisation of CaCO3 nanocrystals. Cytotoxicity and genotoxic effect of calcium carbonate nanocrystals in cultured mouse embryonic fibroblast NIH 3T3 cell line using various bioassays including MTT, and Neutral red/Trypan blue double-staining assays. LDH, BrdU and reactive oxygen species were used for toxicity analysis. Cellular morphology was examined by scanning electron microscopy (SEM) and confocal fluorescence microscope.

    RESULTS: The outcome of the analyses revealed a clear rod-shaped aragonite polymorph of calcium carbonate nanocrystal. The analysed cytotoxic and genotoxicity of CaCO3 nanocrystal on NIH 3T3 cells using different bioassays revealed no significance differences as compared to control. A slight decrease in cell viability was noticed when the cells were exposed to higher concentrations of 200 to 400 µg/ml, while increase in ROS generation and LDH released at 200 and 400 µg/ml was observed.

    CONCLUSIONS: The study has shown that CaCO3 nanocrystal is biocompatible and non toxic to NIH 3T3 fibroblast cells. The analysed results offer a promising potential of CaCO3 nanocrystal for the development of intracellular drugs, genes and other macromolecule delivery systems.

    Matched MeSH terms: Fibroblasts/drug effects*; Fibroblasts/metabolism
  10. Rothan HA, Djordjevic I, Bahrani H, Paydar M, Ibrahim F, Abd Rahmanh N, et al.
    Int J Med Sci, 2014;11(10):1029-38.
    PMID: 25136258 DOI: 10.7150/ijms.8895
    Platelet rich plasma clot- releasate (PRCR) shows significant influence on tissue regeneration in clinical trials. Although, the mechanism of PRCR effect on fibroblast differentiation has been studied on 2D culture system, a detailed investigation is needed to establish the role of PRCR in cell seeded in 3D scaffolds. Therefore, a study was conducted to evaluate the influence of PRCR in fibroblasts (DFB) differentiation and extracellular matrix formation on both 3D and 2D culture systems. Cell viability was measured using MTT assay and DFB differentiation was evaluated by determining the expression levels of nucleostamin and alpha smooth muscle actin (α-SMA), using indirect immunostaining and Western blotting. The expression levels of extracellular matrix genes (collagen-I, collagen-III, fibronectin and laminin) and focal adhesion formation gene (integrin beta-1) were measured using Real-time PCR. The PRCR at 10% showed significant effect on cells viability compared with 5% and 20% in both culture environments. The decrease in the expression levels of nucleostamin and the increase in α-SMA signify the DFB differentiation to myofibroblast-like cells that was prominently greater in 3D compared to 2D culture. In 3D culture systems, the total collage production, expression levels of the extracellular matrix gene and the focal adhesion gene were increased significantly compared to 2D culture. In conclusion, 3D culture environments enhances the proliferative and differentiation effects of PRCR on DFB, thereby potentially increases the efficacy of DFB for future tissue engineering clinical application.
    Matched MeSH terms: Fibroblasts/cytology*; Fibroblasts/metabolism*
  11. Feng Z, Wagatsuma Y, Kikuchi M, Kosawada T, Nakamura T, Sato D, et al.
    Biomaterials, 2014 Sep;35(28):8078-91.
    PMID: 24976242 DOI: 10.1016/j.biomaterials.2014.05.072
    Fibroblast-mediated compaction of collagen gels attracts extensive attention in studies of wound healing, cellular fate processes, and regenerative medicine. However, the underlying mechanism and the cellular mechanical niche still remain obscure. This study examines the mechanical behaviour of collagen fibrils during the process of compaction from an alternative perspective on the primary mechanical interaction, providing a new viewpoint on the behaviour of populated fibroblasts. We classify the collagen fibrils into three types - bent, stretched, and adherent - and deduce the respective equations governing the mechanical behaviour of each type; in particular, from a putative principle based on the stationary state of the instantaneous Hamiltonian of the mechanotransduction system, we originally quantify the stretching force exerted on each stretched fibrils. Via careful verification of a structural elementary model based on this classification, we demonstrate a clear physical picture of the compaction process, quantitatively elucidate the panorama of the micro mechanical niche and reveal an intrinsic biphasic relationship between cellular traction force and matrix elasticity. Our results also infer the underlying mechanism of tensional homoeostasis and stress shielding of fibroblasts. With this study, and sequel investigations on the putative principle proposed herein, we anticipate a refocus of the research on cellular mechanobiology, in vitro and in vivo.
    Matched MeSH terms: Fibroblasts/cytology*; Fibroblasts/metabolism
  12. Alabsi AM, Bakar SA, Ali R, Omar AR, Bejo MH, Ideris A, et al.
    Int J Mol Sci, 2011;12(12):8645-60.
    PMID: 22272097 DOI: 10.3390/ijms12128645
    Newcastle disease virus (NDV) is used as an antineoplastic agent in clinical tumor therapy. It has prompted much interest as an anticancer agent because it can replicate up to 10,000 times better in human cancer cells than in most normal cells. This study was carried out to determine the oncolytic potential of NDV strain AF2240 and V4-UPM on WEHI-3B leukemia cell line. Results from MTT cytotoxicity assay showed that the CD(50) values for both strains were 2 and 8 HAU for AF2240 and V4-UPM, respectively. In addition, bromodeoxyuridine (BrdU) and trypan blue dye exclusion assays showed inhibition in cell proliferation after different periods. Increase in the cellular level of caspase-3 and detection of DNA laddering using agarose gel electrophoresis on treated cells with NDV confirmed that the mode of cell death was apoptosis. In addition, flow-cytometry analysis of cellular DNA content showed that the virus caused an increase in the sub-G1 region (apoptosis peaks). In conclusion, NDV strains AF2240 and V4-UPM caused cytolytic effects against WEHI-3B leukemic cell line.
    Matched MeSH terms: Fibroblasts/physiology; Fibroblasts/virology
  13. Zainuddin A, Makpol S, Chua KH, Abdul Rahim N, Yusof YA, Ngah WZ
    Med J Malaysia, 2008 Jul;63 Suppl A:73-4.
    PMID: 19024990
    Validation of housekeeping gene is important for accurate quantitation of RNA in real time RT-PCR technique. The purpose of this study was to determine the validity of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as a housekeeping gene for quantitative real time RT-PCR assessment in human skin fibroblast senescent model. The cells were divided into different treatment groups; young (passage 4), senescent (passage 30), treatment with H2O2 and treatment with A-tocotrienol prior to H2O2 treatment. Our results showed that the expression level of GAPDH was constant with different treatment groups. Therefore, we concluded that GAPDH was suitable to be used as housekeeping gene in human skin fibroblast senescent model.
    Matched MeSH terms: Fibroblasts/enzymology; Fibroblasts/physiology*
  14. Musa M, Ponnuraj KT, Mohamad D, Rahman IA
    Nanotechnology, 2013 Jan 11;24(1):015105.
    PMID: 23221152 DOI: 10.1088/0957-4484/24/1/015105
    Nanocomposite is used as a dental filling to restore the affected tooth, especially in dental caries. The dental nanocomposite (KelFil) for tooth restoration used in this study was produced by the School of Dental Sciences, Universiti Sains Malaysia, Malaysia and is incorporated with monodispersed, spherical nanosilica fillers. The aim of the study was to determine the genotoxic effect of KelFil using in vitro genotoxicity tests. The cytotoxicity and genotoxicity of KelFil was evaluated using MTT assay, comet assay and chromosome aberration tests with or without the addition of a metabolic activation system (S9 mix), using the human lung fibroblast cell line (MRC-5). Concurrent negative and positive controls were included. In the comet assay, no comet formation was found in the KelFil groups. There was a significant difference in tail moment between KelFil groups and positive control (p < 0.05). Similarly, no significant aberrations in chromosomes were noticed in KelFil groups. The mitotic indices of treatment groups and negative control were significantly different from positive controls. Hence, it can be concluded that the locally produced dental restoration nanocomposite (KelFil) is non-genotoxic under the present test conditions.
    Matched MeSH terms: Fibroblasts/cytology; Fibroblasts/drug effects
  15. Khor SC, Mohd Yusof YA, Wan Ngah WZ, Makpol S
    Clin Ter, 2015;166(2):e81-90.
    PMID: 25945449 DOI: 10.7417/CT.2015.1825
    BACKGROUND AND OBJECTIVE: Vitamin E has been suggested as nutritional intervention for the prevention of degenerative and age-related diseases. In this study, we aimed to elucidate the underlying mechanism of tocotrienol-rich fraction (TRF) in delaying cellular aging by targeting the proliferation signaling pathways in human diploid fibroblasts (HDFs).

    MATERIALS AND METHODS: Tocotrienol-rich fraction was used to treat different stages of cellular aging of primary human diploid fibroblasts viz. young (passage 6), pre-senescent (passage 15) and senescent (passage 30). Several selected targets involved in the downstream of PI3K/AKT and RAF/MEK/ERK pathways were compared in total RNA and protein.

    RESULTS: Different transcriptional profiles were observed in young, pre-senescent and senescent HDFs, in which cellular aging increased AKT, FOXO3, CDKN1A and RSK1 mRNA expression level, but decreased ELK1, FOS and SIRT1 mRNA expression level. With tocotrienol-rich fraction treatment, gene expression of AKT, FOXO3, ERK and RSK1 mRNA was decreased in senescent cells, but not in young cells. The three down-regulated mRNA in cellular aging, ELK1, FOS and SIRT1, were increased with tocotrienol-rich fraction treatment. Expression of FOXO3 and P21Cip1 proteins showed up-regulation in senescent cells but tocotrienol-rich fraction only decreased P21Cip1 protein expression in senescent cells.

    CONCLUSIONS: Tocotrienol-rich fraction exerts gene modulating properties that might be responsible in promoting cell cycle progression during cellular aging.

    Matched MeSH terms: Fibroblasts/cytology; Fibroblasts/drug effects
  16. Maarof M, Lokanathan Y, Ruszymah HI, Saim A, Chowdhury SR
    Protein J, 2018 12;37(6):589-607.
    PMID: 30343346 DOI: 10.1007/s10930-018-9800-z
    Growth factors and extracellular matrix (ECM) proteins are involved in wound healing. Human dermal fibroblasts secrete wound-healing mediators in culture medium known as dermal fibroblast conditioned medium (DFCM). However, the composition and concentration of the secreted proteins differ with culture conditions and environmental factors. We cultured human skin fibroblasts in vitro using serum-free keratinocyte-specific media (EpiLife™ Medium [KM1] and defined keratinocyte serum-free medium [KM2]) and serum-free fibroblast-specific medium (FM) to obtain DFCM-KM1, DFCM-KM2 and DFCM-FM, respectively. We identified and compared their proteomic profiles using bicinchoninic acid assay (BCA), 1-dimensional sodium dodecyl sulphate-polyacrylamide gel electrophoresis (1D SDS-PAGE), enzyme-linked immunosorbent assay (ELISA), matrix-assisted laser desorption ionisation-time-of-flight mass spectrometry (MALDI-TOF/TOF MS/MS) and liquid chromatography MS (LC-MS/MS). DFCM-KM1 and DFCM-KM2 had higher protein concentrations than DFCM-FM but not statistically significant. MALDI-TOF/TOF MS identified the presence of fibronectin, serotransferrin, serpin and serum albumin. LC-MS/MS and bioinformatics analysis identified 59, 46 and 58 secreted proteins in DFCM-KM1, DFCM-KM2 and DFCM-FM, respectively. The most significant biological processes identified in gene ontology were cellular process, metabolic process, growth and biological regulation. STRING® analysis showed that most secretory proteins in the DFCMs were associated with biological processes (e.g. wound healing and ECM organisation), molecular function (e.g. ECM binding) and cellular component (e.g. extracellular space). ELISA confirmed the presence of fibronectin and collagen in the DFCMs. In conclusion, DFCM secretory proteins are involved in cell adhesion, attachment, proliferation and migration, which were demonstrated to have potential wound-healing effects by in vitro and in vivo studies.
    Matched MeSH terms: Fibroblasts/cytology; Fibroblasts/metabolism*
  17. Mazlyzam AL, Aminuddin BS, Saim L, Ruszymah BH
    Arch Med Res, 2008 Nov;39(8):743-52.
    PMID: 18996287 DOI: 10.1016/j.arcmed.2008.09.001
    Standard fibroblast culture medium usually contains fetal bovine serum (FBS). In theory, unknown risks of infection from bovine disease or immune reaction to foreign proteins may occur if standard culture method is used for future human tissue-engineering development. Human serum (HS) theoretically would be another choice in providing a safer approach and autologous clinically reliable cells.
    Matched MeSH terms: Fibroblasts/cytology; Fibroblasts/physiology*
  18. Chen XY, Low HR, Loi XY, Merel L, Mohd Cairul Iqbal MA
    J Biomed Mater Res B Appl Biomater, 2019 08;107(6):2140-2151.
    PMID: 30758129 DOI: 10.1002/jbm.b.34309
    Graphene oxide (GO) is a potential material for wound dressing due to its excellent biocompatibility and mechanical properties. This study evaluated the effects of GO concentration on the synthesis of bacterial nanocellulose (BNC)-grafted poly(acrylic acid) (AA)-graphene oxide (BNC/P(AA)/GO) composite hydrogel and its potential as wound dressing. Hydrogels were successfully synthesized via electron-beam irradiation. The hydrogels were characterized by their mechanical properties, bioadhesiveness, water vapor transmission rates (WVTRs), water retention abilities, water absorptivity, and biocompatibility. Fourier transform infrared analysis showed the successful incorporation of GO into hydrogel. Thickness, gel fraction determination and morphological study revealed that increased GO concentration in hydrogels leads to reduced crosslink density and larger pore size, resulting in increased WVTR. Thus, highest swelling ratio was found in hydrogel with higher amount of GO (0.09 wt %). The mechanical properties of the composite hydrogel were maintained, while its hardness and bioadhesion were reduced with higher GO concentration in the hydrogel, affirming the durable and easy removable properties of a wound dressing. Human dermal fibroblast cell attachment and proliferation studies showed that biocompatibility of hydrogel was improved with the inclusion of GO in the hydrogel. Therefore, BNC/P(AA)/GO composite hydrogel has a potential application as perdurable wound dressing. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 2140-2151, 2019.
    Matched MeSH terms: Fibroblasts/cytology; Fibroblasts/metabolism
  19. Sahapaibounkit P, Prasertsung I, Mongkolnavin R, Wong CS, Damrongsakkul S
    J Biomed Mater Res B Appl Biomater, 2017 08;105(6):1658-1666.
    PMID: 27177842 DOI: 10.1002/jbm.b.33708
    In this study, polycaprolactone (PCL) film, a high potential material used in biomedical applications, was treated by air plasma prior to a conjugation by carbodiimide cross-linking with various types of proteins, including type A gelatin, type B gelatin, and collagen hydrolysate. The properties of modified PCL films were characterized by X-ray photoelectron spectroscopy (XPS), contact angle measurement, and atomic force microscopy. The XPS results showed that oxygen and nitrogen atoms were successfully introduced on the air plasma-treated PCL surface. Primary amine was found on the air plasma-treated PCL films. All proteins were shown to be successfully cross-linked on air plasma-treated PCL films. The wettability and roughness of protein-conjugated PCL films were significantly increased compared to those of neat PCL film. In vitro biocompatibility test using L929 mouse fibroblast showed that the attachment percentage and spreading area of attached cells on all protein-conjugated PCL films were markedly increased. Comparing among modified PCL films, no significant difference on the attachment of L929 on modified PCL films was noticed. However, the spreading areas of cells after 24 hours of culture on type A gelatin- and type B gelatin-modified PCL surfaces were higher than that on collagen hydrolysate-modified surface, possibly related to the lower percentage of amide bond on collagen hydrolysate-conjugated surface compared to those on both gelatin-conjugated PCL ones. This indicated that the two-step modification of PCL film via air plasma and carbodiimide cross-linking with collagen-derived proteins could enhance the biocompatibility of PCL films. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1658-1666, 2017.
    Matched MeSH terms: Fibroblasts/cytology; Fibroblasts/metabolism*
  20. Jayash SN, Hashim NM, Misran M, Baharuddin NA
    J Biomed Mater Res A, 2017 02;105(2):398-407.
    PMID: 27684563 DOI: 10.1002/jbm.a.35919
    The osteoprotegerin (OPG) system plays a critical role in bone remodelling by regulating osteoclast formation and activity. The study aimed to determine the physicochemical properties and biocompatibility of a newly formulated OPG-chitosan gel. The OPG-chitosan gel was formulated using human OPG protein and water-soluble chitosan. The physicochemical properties were determined using Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Gel morphology was determined using scanning electron microscopy (SEM) and then it was subjected to a protein release assay and biodegradability test. An in vitro cytotoxicity test on normal human periodontal ligament (NHPL) fibroblasts and normal human (NH) osteoblasts was carried out using the AlamarBlue assay. In vivo evaluation in a rabbit model involved creating critical-sized defects in calvarial bone, filling with the OPG-chitosan gel and sacrificing at 12 weeks. In vitro results demonstrated that the 25 kDa OPG-chitosan gel had the highest rate of protein release and achieved 90% degradation in 28 days. At 12 weeks, the defects filled with 25 kDa OPG-chitosan gel showed significant (p 
    Matched MeSH terms: Fibroblasts/metabolism; Fibroblasts/pathology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links