Displaying publications 21 - 40 of 80 in total

Abstract:
Sort:
  1. Fatin Azwa Haruddin
    Orient Neuron Nexus, 2010;1(1):13-16.
    MyJurnal
    Traumatic brain injury (TBI) is known to inflict significant morbidity and mortality worldwide. In severe TBI cases, the resulting physical and cognitive impairments incur high management and rehabilitation costs that crucially involve monitoring intracranial pressure (ICP) and improving brain oxygenation. Normobaric Hyperoxia Treatment (NBOT) is a therapeutic strategy to improve brain oxygen metabolism and to decrease ICP by reducing tissue swelling and deactivating toxin. NBOT is administered by increasing the inspired oxygen concentration to 100% in normal atmospheric pressure. Previous studies involving NBOT had explored its effectiveness to salvage the TBI-related cognitive and motor deficits. However, the focus of these studies has frequently been on the cortical lesions despite the known facts that TBI often inflicts tissue damage to the subcortical areas such as the basal ganglia. There are growing evidence to support recent functional theories that implicate a pivotal role of the basal ganglia in regulating normal movements and cognition through dopamine (DA) and glutamate interaction. Thus, tissue damages leading to TBI-related motor and cognitive deficits may involve the different affected brain regions. This minireview attempts to highlight the key processes involved in the pathophysiology of severe TBI and offers insights into the role of NBOT by exploring its potential effects on the cerebral energy metabolism and gene expression patterns of dopamine receptor in a mouse model.
    Matched MeSH terms: Glutamic Acid
  2. Fukumoto J, Ismail NI, Kubo M, Kinoshita K, Inoue M, Yuasa K, et al.
    J. Biochem., 2013 Nov;154(5):465-73.
    PMID: 23946505 DOI: 10.1093/jb/mvt077
    Oligopeptidase B (OPB) is a member of the prolyl oligopeptidase (POP) family of serine proteases. OPB in trypanosomes is an important virulence factor and potential pharmaceutical target. Characteristic structural features of POP family members include lack of a propeptide and presence of a β-propeller domain (PD), although the role of the β-PD has yet to be fully understood. In this work, residues Glu(172), Glu(490), Glu(524) and Arg(689) in Trypanosoma brucei OPB (Tb OPB), which are predicted to form inter-domain salt bridges, were substituted for Gln and Ala, respectively. These mutants were evaluated in terms of catalytic properties and stability. A negative effect on kcat/Km was obtained following mutation of Glu(172) or Arg(689). In contrast, the E490Q mutant exhibited markedly decreased thermal stability, although this mutation had less effect on catalytic properties compared to the E172Q and R689A mutants. Trypsin digestion showed that the boundary regions between the β-PD and catalytic domains (CDs) of the E490Q mutant are unfolded with heat treatment. These results indicated that Glu(490) in the CD plays a role in stabilization of Tb OPB, whereas Glu(172) in the β-PD is critical for the catalytic activity of Tb OPB.
    Matched MeSH terms: Glutamic Acid/genetics; Glutamic Acid/metabolism*
  3. Ghassem M, Fern SS, Said M, Ali ZM, Ibrahim S, Babji AS
    J Food Sci Technol, 2014 Mar;51(3):467-75.
    PMID: 24587521 DOI: 10.1007/s13197-011-0526-6
    This study was conducted to evaluate the kinetic characteristics of proteolytic activity of proteases on Channa striatus protein fractions. Degree of hydrolysis (DH), amino acid composition and kinetic parameters of sarcoplasmic and myofibrillar proteins were investigated when incubated with proteinase K and thermolysin, separately. After 30 min incubation with proteases, a decrease in DH of sarcoplasmic protein was observed whereas, hydrolysis of myofibrillar protein with proteases took 2 h with an increase in DH. The major amino acids were glutamic acid (16.6%) in thermolysin- myofibrillar hydrolysate followed by aspartic acid (11.1%) in sarcoplasmic protein fraction with no enzyme treatment and lysine (10%) in thermolysin-myofibrillar hydrolysate. The apparent Michaelis constant of proteinase K was lower than thermolysin for both sarcoplasmic and myofibrillar proteins. However, rate of turnover and enzyme efficiency suggested that sarcoplasmic and myofibrillar proteins are suitable substrates for proteinase K and thermolysin hydrolytic reaction, respectively.
    Matched MeSH terms: Glutamic Acid
  4. Guilhon CC, Abdul Wahab IR, Boylan F, Fernandes PD
    PMID: 26273315 DOI: 10.1155/2015/915927
    Pereskia bleo (Kunth) DC. (Cactaceae) is a plant commonly used in popular medicine in Malaysia. In this work, we evaluate the antinociceptive effect of P. bleo leaf extracts and isolated compounds in central antinociceptive model. Ethanol extract (E), hexane (H), ethyl acetate (EA), or butanol (B) fractions (30, 50, or 100 mg/kg, p.o.), sitosterol (from hexane) and vitexin (from ethyl acetate), were administered to mice. Antinociceptive effect was evaluated in the hot plate and capsaicin- or glutamate-induced licking models. Morphine (1 mg/kg, p.o.) was used as reference drug. Naloxone (1 mg/kg, i.p.), atropine (1 mg/kg, i.p.), and L-nitro arginine methyl ester (L-NAME, 3 mg/kg, i.p.) were administered 30 min earlier (100 mg/kg, p.o.) in order to evaluate the mechanism of the antinociceptive action. Higher dose of B developed an effect significantly superior to morphine-treated group. Naloxone prevented the antinociceptive effect of all fractions. L-NAME demonstrated effect against E, EA, and B. In all fractions, sitosterol and vitexin reduced the licking time after capsaicin injection. Glutamate-induced licking response was blocked by H, EA, and B. Our results indicate that Pereskia bleo fractions, sitosterol and vitexin, possessed a central antinociceptive effect. Part of this effect is mediated by opioid receptors and nitrergic pathway.
    Matched MeSH terms: Glutamic Acid
  5. Harnentis H, Nurmiati N, Marlida Y, Adzitey F, Huda N
    Vet World, 2019 Aug;12(8):1352-1357.
    PMID: 31641319 DOI: 10.14202/vetworld.2019.1352-1357
    Aim: This study aimed at optimizing γ-aminobutyric acid (GABA) production using lactic acid bacteria (LAB) of an Indonesian indigenous fermented buffalo milk (dadih) origin. This study utilized LAB previously cultured from dadih that has the ability to produce GABA.

    Materials and Methods: The study started with the identification of selected LAB by 16S rRNA, followed by optimization of GABA production by culture conditions using different initial pH, temperature, glutamate concentration, incubation time, carbon, and nitrogen sources. 16S rRNA polymerase chain reaction and analysis by phylogenetic were used to identify Lactobacillus plantarum (coded as N5) responsible for the production of GABA.

    Results: GABA production by high-performance liquid chromatography was highest at pH of 5.5, temperature of 36°C, glutamate concentration of 500 mM, and incubation time of 84 h. Peptone and glucose served as the nitrogen and carbon sources, respectively, whereas GABA was produced at optimum fermentation condition of 211.169 mM.

    Conclusion: Production of GABA by L. plantarum N5 was influenced by initial pH of 5.5, glutamic acid concentration, nitrogen source, glucose as carbon source, and incubation temperature and time.

    Matched MeSH terms: Glutamic Acid
  6. Hassan UA, Hussein MZ, Alitheen NB, Yahya Ariff SA, Masarudin MJ
    Int J Nanomedicine, 2018;13:5075-5095.
    PMID: 30233174 DOI: 10.2147/IJN.S164843
    Background: Inefficient cellular delivery and poor intracellular accumulation are major drawbacks towards achieving favorable therapeutic responses from many therapeutic drugs and biomolecules. To tackle this issue, nanoparticle-mediated delivery vectors have been aptly explored as a promising delivery strategy capable of enhancing the cellular localization of biomolecules and improve their therapeutic efficacies. However, the dynamics of intracellular biomolecule release and accumulation from such nanoparticle systems has currently remained scarcely studied.

    Objectives: The objective of this study was to utilize a chitosan-based nanoparticle system as the delivery carrier for glutamic acid, a model for encapsulated biomolecules to visualize the in vitro release and accumulation of the encapsulated glutamic acid from chitosan nanoparticle (CNP) systems.

    Methods: CNP was synthesized via ionic gelation routes utilizing tripolyphosphate (TPP) as a cross-linker. In order to track glutamic acid release, the glutamic acid was fluorescently-labeled with fluorescein isothiocyanate prior encapsulation into CNP.

    Results: Light Scattering data concluded the successful formation of small-sized and mono-dispersed CNP at a specific volume ratio of chitosan to TPP. Encapsulation of glutamic acid as a model cargo into CNP led to an increase in particle size to >100 nm. The synthesized CNP exhibited spherical shape under Electron Microscopy. The formation of CNP was reflected by the reduction in free amine groups of chitosan following ionic crosslinking reactions. The encapsulation of glutamic acid was further confirmed by Fourier Transform Infrared (FTIR) analysis. Cell viability assay showed 70% cell viability at the maximum concentration of 0.5 mg/mL CS and 0.7 mg/mL TPP used, indicating the low inherent toxicity property of this system. In vitro release study using fluorescently-tagged glutamic acids demonstrated the release and accumulation of the encapsulated glutamic acids at 6 hours post treatment. A significant accumulation was observed at 24 hours and 48 hours later. Flow cytometry data demonstrated a gradual increase in intracellular fluorescence signal from 30 minutes to 48 hours post treatment with fluorescently-labeled glutamic acids encapsulated CNP.

    Conclusion: These results therefore suggested the potential of CNP system towards enhancing the intracellular delivery and release of the encapsulated glutamic acids. This CNP system thus may serves as a potential candidate vector capable to improve the therapeutic efficacy for drugs and biomolecules in medical as well as pharmaceutical applications through the enhanced intracellular release and accumulation of the encapsulated cargo.

    Matched MeSH terms: Glutamic Acid/administration & dosage*; Glutamic Acid/pharmacokinetics; Glutamic Acid/chemistry
  7. Hossain MZ, Bakri MM, Yahya F, Ando H, Unno S, Kitagawa J
    Int J Mol Sci, 2019 Jan 27;20(3).
    PMID: 30691193 DOI: 10.3390/ijms20030526
    Dental pain is a common health problem that negatively impacts the activities of daily living. Dentine hypersensitivity and pulpitis-associated pain are among the most common types of dental pain. Patients with these conditions feel pain upon exposure of the affected tooth to various external stimuli. However, the molecular mechanisms underlying dental pain, especially the transduction of external stimuli to electrical signals in the nerve, remain unclear. Numerous ion channels and receptors localized in the dental primary afferent neurons (DPAs) and odontoblasts have been implicated in the transduction of dental pain, and functional expression of various polymodal transient receptor potential (TRP) channels has been detected in DPAs and odontoblasts. External stimuli-induced dentinal tubular fluid movement can activate TRP channels on DPAs and odontoblasts. The odontoblasts can in turn activate the DPAs by paracrine signaling through ATP and glutamate release. In pulpitis, inflammatory mediators may sensitize the DPAs. They could also induce post-translational modifications of TRP channels, increase trafficking of these channels to nerve terminals, and increase the sensitivity of these channels to stimuli. Additionally, in caries-induced pulpitis, bacterial products can directly activate TRP channels on DPAs. In this review, we provide an overview of the TRP channels expressed in the various tooth structures, and we discuss their involvement in the development of dental pain.
    Matched MeSH terms: Glutamic Acid/metabolism
  8. Hussin FS, Chay SY, Zarei M, Meor Hussin AS, Ibadullah WZW, Zaharuddin ND, et al.
    Foods, 2020 Dec 09;9(12).
    PMID: 33316941 DOI: 10.3390/foods9121826
    The current study evaluated the γ-aminobutyric acid (GABA) producing ability from three novel strains of lactic acid bacteria (L. plantarum Taj-Apis362, assigned as UPMC90, UPMC91, and UPMC1065) co-cultured with starter culture in a yogurt. A combination of UPMC90 + UPMC91 with starter culture symbiotically revealed the most prominent GABA-producing effect. Response surface methodology revealed the optimized fermentation conditions at 39.0 °C, 7.25 h, and 11.5 mM glutamate substrate concentration to produce GABA-rich yogurt (29.96 mg/100 g) with desirable pH (3.93) and water-holding capacity (63.06%). At 2% glucose to replace pyridoxal-5-phosphate (PLP), a cofactor typically needed during GABA production, GABA content was further enhanced to 59.00 mg/100 g. In vivo study using this sample revealed a blood pressure-lowering efficacy at 0.1 mg/kg GABA dosage (equivalent to 30 mg/kg GABA-rich yogurt) in spontaneously hypertensive rats. An improved method to produce GABA-rich yogurt has been established, involving shorter fermentation time and lower glutamate concentration than previous work, along with glucose induction that omits the use of costly PLP, fostering the potential of developing a GABA-rich functional dairy product through natural fermentation with desirable product quality and antihypertensive property.
    Matched MeSH terms: Glutamic Acid
  9. Isa IM, Ab Ghani S
    Talanta, 2007 Jan 15;71(1):452-5.
    PMID: 19071326 DOI: 10.1016/j.talanta.2006.04.034
    This paper describes the preparation of and experimentation undertaken by heterogeneous chitosan membrane as ion selective electrode for glutamate ion. The linearity response was obtained in the range of 1.0x10(-5) to 1.0x10(-1)M with a detection limit of 1.0x10(-6)M. The performance of the electrode was found in the pH range of 4.0-8.0 at temperature 25+/-3 degrees C. The response time was at 5-35s and was useful for a period of more than 4 months. The selectivity values towards some anions indicates good selectivity over a number of interfering anions. No significant improvement of membrane performance over additional of plasticizers such as 2-NPOE, BEHA and DOPP. The electrodes gave sufficient Nernstian responses with the exception of membrane with 2-NPOE.
    Matched MeSH terms: Glutamic Acid
  10. Islam, M.R., Muzaimi, M., Abdullah, J.M.
    Orient Neuron Nexus, 2011;2(1):2-9.
    MyJurnal
    Glutamate is the principal excitatory neurotransmitter in the central nervous system, and plays important roles in both physiological and pathological neuronal processes. Current understanding of the exact mechanisms involved in glutamate-induced neuronal excitotoxicity, in which excessive glutamate causes neuronal dysfunction and degeneration, whether acute or chronic, remain elusive. Conditions, due to acute insults such as ischaemia and traumatic brain injury, and chronic neurodegenerative disorders such as multiple sclerosis and motor neuron disease, suffer from the lack of translational neuroprotection in clinical setting to tackle glutamate excitotoxicity despite steady growth of animal studies that revealed complex cell death pathway interactions. In addition, glutamates are also released by non-neuronal cells including astrocytes and oligodendroglia. Thus, attempts to elucidate this complexity are closely related to our understanding of the glutamatergic circuitry in the brain. Neuronal cells develop a glutamatergic system at glutamatergic synapses that utilise glutamate as an intercellular signaling molecule to characterise the output, input, and termination of this signaling. As to signal input, various kinds of glutamate receptors have been identified and characterized. Na+-dependent glutamate transporters at the plasma membrane are responsible for the signal termination through sequestration of glutamate from the synaptic cleft. The signal output systems comprise vesicular storage and subsequent exocytosis of glutamate by using vesicular glutamate transporters. Similar to the mammalian brain, the regional differences of glutamatergic neurons and glutamate receptor neurons suggest many glutamatergic projections in the avian brain, as supported by recent evidence of glutamate-related genes distribution. Glutamatergic target areas are expected to show high activity of glutamate transporters that remove released glutamate from the synaptic clefts. This review summarises and compares glutamatergic circuits in the avian and mammalian brain, particularly in the olfactory pathway, the paffial organization of glutamatergic neurons and connection with the striatum, hippocampal-septal pathway, visual and auditory pathways, and granule cell-Purkinje cell pathway in the cerebellum. Comparative appreciation of these glutamatergic circuits, particularly with the localisation and/or expression of specific subtypes of glutamate transporters, would provide the morphological basis for physiological and pharmacological designs that supplement existing animal studies of the current proposed mechanisms that underlie glutamate-induced neuronal excitotoxicity.
    Matched MeSH terms: Glutamic Acid
  11. Ismail NI, Ming-Tatt L, Lajis N, Akhtar MN, Akira A, Perimal EK, et al.
    Molecules, 2016 Aug 22;21(8).
    PMID: 27556438 DOI: 10.3390/molecules21081077
    The antinociceptive effects produced by intraperitoneal administration of a novel synthetic chalcone, 3-(2,3-dimethoxyphenyl)-1-(5-methylfuran-2-yl)prop-2-en-1-one (DMFP), were investigated in several mouse models of induced nociception. The administration of DMFP (0.1, 0.5, 1.0 and 5.0 mg/kg) produced significant attenuation on the acetic acid-induced abdominal-writhing test. It also produced a significant increase in response latency time in the hot-plate test and a marked reduction in time spent licking the injected paw in both phases of the formalin-induced paw-licking test. In addition, it was also demonstrated that DMFP exhibited significant inhibition of the neurogenic nociceptive response induced by intraplantar injections of capsaicin and glutamate. Moreover, the antinociceptive effect of DMFP in the acetic acid-induced abdominal-writhing test and the hot-plate test was not antagonized by pretreatment with a non-selective opioid receptor antagonist, naloxone. Finally, DMFP did not show any toxic effects and/or mortality in a study of acute toxicity and did not interfere with motor coordination during the Rota-rod test. Our present results show that DMFP exhibits both peripheral and central antinociceptive effects. It was suggested that its peripheral antinociceptive activity is associated with attenuated production and/or release of NO and various pro-inflammatory mediators, while central antinociceptive activity seems to be unrelated to the opioidergic system, but could involve, at least in part, an interaction with the inhibition of capsaicin-sensitive fibers and the glutamatergic system.
    Matched MeSH terms: Glutamic Acid/adverse effects*
  12. Jinap S, Ilya-Nur AR, Tang SC, Hajeb P, Shahrim K, Khairunnisak M
    Appetite, 2010 Oct;55(2):238-44.
    PMID: 20600418 DOI: 10.1016/j.appet.2010.06.007
    The shrimp paste called belacan is a traditional umami taste condiment extensively used in Malaysia that is rich in glutamate and 5'-nucleotides. The aim of this study was to determine the concentration of glutamate and 5'-nucleotides of various types of foods prepared with belacan and to measure their sensory attributes. The concentration of free glutamic acid found in different brands of belacan was 180-530mg/100g and in local dishes 601-4207mg/100g. The total amount of 5'-nucleotides in belacan samples ranged from 0.85 to 42.25μg/g. A Quantitative Descriptive Analysis (QDA) using a list of 17 sensory attributes showed a good correlation between belacan concentration in the final food and a range of positive sensory attributes, except for bitter, sweet, sour taste and astringency. Belacan also contains bitter, sweet and sour compounds that change the positive attributes of belacan at higher concentrations. The highest aroma attributes were linked to nasi goreng belacan (belacan fried rice) while the highest flavour attributes were found in sambal belacan. There was a 32 folds significant increase of umami attributes with the addition of belacan to final foods. The optimum amount of belacan was 0.45% for asam pedas (tamarind flavoured dish with belacan), 18% for sambal belacan (chilli belacan), 1.5-2.5% for kangkong goreng belacan (stir fried water convolous with belacan), and 2% for nasi goreng belacan.
    Matched MeSH terms: Glutamic Acid/analysis*
  13. Jumardi Roslan, Siti Mazlina Mustapa Kamal, Khairul Faezah Md. Yunos, Norhafizah Abdullah
    Sains Malaysiana, 2014;43:1715-1723.
    Fish protein hydrolysate was prepared from tilapia muscle using commercial Alcalase enzyme. Optimization of enzymatic hydrolysis process for preparing tilapia muscle protein hydrolysates (TMPH) was performed by employing central composite design (CCD) method of response surface methodology (RSM). O-phtaldialdehyde (OPA) method was employed to calculate the degree of hydrolysis (DH), which is the key parameter for monitoring the reaction of protein hydrolysis. The suggested model equation was proposed based on the effects of pH, temperature, substrate concentration and enzyme concentration on the DH. Optimum enzymatic hydrolysis conditions using Alcalase enzyme were obtained at pH7.5, temperature of 50oC, substrate concentration of 2.5% and enzyme concentration of 4.0%. Under these conditions, the highest value of the DH was achieved at 25.16% after hydrolysing at 120 min. The TMPH was further assessed for their nutritional value with respect to chemical and amino acid compositions. Molecular weight distributions of TMPH were characterized by SDS-PAGE. TMPH contains moderate amount of protein (28.14%) and good nutritive value with respect to the higher total amino acid composition (267.57 mg/g). Glutamic acid, aspartic acid and lysine were the most abundant amino acids present in TMPH with values 42.68, 29.16 and 26.21 mg/g, respectively. Protein hydrolysates from tilapia muscle containing a desirable peptide with low molecular weight which may potentially to be used as functional food products.
    Matched MeSH terms: Glutamic Acid
  14. Kamal H, Tan GC, Ibrahim SF, Shaikh MF, Mohamed IN, Mohamed RMP, et al.
    Front Cell Neurosci, 2020;14:282.
    PMID: 33061892 DOI: 10.3389/fncel.2020.00282
    Alcohol use disorder (AUD) has been associated with neurodegenerative diseases such as Alzheimer's and Parkinson's disease. Prolonged excessive alcohol intake contributes to increased production of reactive oxygen species that triggers neuroimmune response and cellular apoptosis and necrosis via lipid peroxidation, mitochondrial, protein or DNA damage. Long term binge alcohol consumption also upregulates glutamate receptors, glucocorticoids and reduces reuptake of glutamate in the central nervous system, resulting in glutamate excitotoxicity, and eventually mitochondrial injury and cell death. In this review, we delineate the following principles in alcohol-induced neurodegeneration: (1) alcohol-induced oxidative stress, (2) neuroimmune response toward increased oxidants and lipopolysaccharide, (3) glutamate excitotoxicity and cell injury, and (4) interplay between oxidative stress, neuroimmune response and excitotoxicity leading to neurodegeneration and (5) potential chronic alcohol intake-induced development of neurodegenerative diseases, including Alzheimer's and Parkinson's disease.
    Matched MeSH terms: Glutamic Acid
  15. Khairunnisak M, Azizah AH, Jinap S, Nurul Izzah A
    PMID: 19680916 DOI: 10.1080/02652030802596860
    A study to quantify the free glutamic acid content of six processed foods, 44 dishes and 26 condiments available in Malaysia was performed using high-performance liquid chromatography with a fluorescence detector (HPLC-FRD). Recovery tests were carried out with spiked samples at levels from 6 to 31 mg g(-1). High recovery in different matrices was achieved ranging from 88% +/- 13% to 102% +/- 5.12%, with an average of 97% +/- 8.92%. Results from the study revealed that the average free glutamic acid content ranged from 0.34 +/- 0.20 to 4.63 +/- 0.41 mg g(-1) in processed foods, while in prepared dishes it was as low as 0.24 +/- 0.15 mg g(-1) in roti canai (puffed bread served with curry or dhal) to 8.16 +/- 1.99 mg g(-1) in dim sum (a small casing of dough, usually filled with minced meat, seafood, and vegetables, either steamed or fried). Relatively, the content of free glutamic acid was found to be higher in condiments at 0.28 +/- 0 mg g(-1) in mayonnaise to 170.90 +/- 6.40 mg g(-1) in chicken stock powder.
    Matched MeSH terms: Glutamic Acid/analysis*
  16. Khalid MH, Akhtar MN, Mohamad AS, Perimal EK, Akira A, Israf DA, et al.
    J Ethnopharmacol, 2011 Sep 01;137(1):345-51.
    PMID: 21664960 DOI: 10.1016/j.jep.2011.05.043
    ETHNOPHARMACOLOGICAL RELEVANCE: Zingiber zerumbet (L.) Smith, a wild edible ginger species or locally known as "lempoyang", commonly used in the Malays traditional medicine as an appetizer or to treat stomachache, toothache, muscle sprain and as a cure for swelling sores and cuts.

    AIM: The present study was conducted to investigate the possible mechanism of actions underlying the systemic antinociception activity of the essential oil of Zingiber zerumbet (EOZZ) in chemical-induced nociception tests in mice.

    MATERIALS AND METHODS: Acetic acid-induced abdominal constriction, capsaicin-, glutamate- and phorbol 12-myristate 13-acetate-induced paw licking tests in mice were employed in the study. In all experiments, EOZZ was administered systemically at the doses of 50, 100, 200 and 300 mg/kg.

    RESULTS: It was shown that EOZZ given to mice via intraperitoneal and oral routes at 50, 100, 200 and 300 mg/kg produced significant dose dependent antinociception when assessed using acetic acid-induced abdominal writing test with calculated mean ID(50) values of 88.84 mg/kg (80.88-97.57 mg/kg) and 118.8 mg/kg (102.5-137.8 mg/kg), respectively. Likewise, intraperitoneal administration of EOZZ at similar doses produced significant dose dependent inhibition of neurogenic pain induced by intraplantar injection of capsaicin (1.6 μg/paw), glutamate (10 μmol/paw) and phorbol 12-myristate 13-acetate (1.6μg/paw) with calculated mean ID(50) of 128.8 mg/kg (118.6-139.9 mg/kg), 124.8 mg/kg (111.4-139.7 mg/kg) and 40.29 (35.39-45.86) mg/kg, respectively. It was also demonstrated that pretreatment with l-arginine (100mg/kg, i.p.), a nitric oxide precursor significantly reversed antinociception produced by EOZZ suggesting the involvement of l-arginine/nitric oxide pathway. In addition, methylene blue (20mg/kg, i.p.) significantly enhanced antinociception produced by EOZZ. Administration of glibenclamide (10mg/kg, i.p.), an ATP-sensitive K(+) channel antagonist significantly reversed antinociceptive activity induced by EOZZ.

    CONCLUSION: Together, the present results suggested that EOZZ-induced antinociceptive activity was possibly related to its ability to inhibit glutamatergic system, TRPV1 receptors as well as through activation of l-arginine/nitric oxide/cGMP/protein kinase C/ATP-sensitive K(+) channel pathway.

    Matched MeSH terms: Glutamic Acid/metabolism
  17. Khoo AS, Balraj P, Volpi L, Nair S
    Hum Mutat, 2000 May;15(5):485.
    PMID: 10790221
    Matched MeSH terms: Glutamic Acid*
  18. Kiew LV, Cheah HY, Voon SH, Gallon E, Movellan J, Ng KH, et al.
    Nanomedicine, 2017 05;13(4):1447-1458.
    PMID: 28214608 DOI: 10.1016/j.nano.2017.02.002
    In photodynamic therapy (PDT), the low absorptivity of photosensitizers in an aqueous environment reduces singlet oxygen generation efficiency and thereby decreases photosensitizing efficacy in biological conditions. To circumvent this problem, we designed a phthalocyanine-poly-L-glutamic acid conjugate (1-PG) made from a new phthalocyanine (Pc 1) monofunctionalized to allow adequate conjugation to PGA. The resulting 1-PG conjugate retained high absorptivity in the near-infrared (NIR) region at its λmax675nm in an aqueous environment. The 1-PG conjugate demonstrated good singlet oxygen generation efficiency, increased uptake by 4 T1 breast cancer cells via clathrin-mediated endocytosis, and enhanced photocytotoxic efficacy. The conjugate also displayed a high light-dark toxicity ratio, approximately 1.5-fold greater than zinc phthalocyanine at higher concentration (10 μM), an important feature for the reduction of dark toxicity and unwanted side effects. These results suggest that the 1-PG conjugate could be a useful alternative for deep tissue treatment with enhanced anti-cancer (PDT) efficacy.
    Matched MeSH terms: Glutamic Acid/chemistry*
  19. Kundap UP, Paudel YN, Kumari Y, Othman I, Shaikh MF
    Front Pharmacol, 2019;10:315.
    PMID: 31057394 DOI: 10.3389/fphar.2019.00315
    Epilepsy is a neuronal disorder associated with several neurological and behavioral alterations characterized by recurrent spontaneous epileptic seizures. Despite having more than 20 anti-epileptic drugs (AEDs), they only provide a symptomatic treatment. As well as, currently available AEDs also displayed cognitive alterations in addition to retarding seizure. This leads to the need for exploring new molecules that not only retard seizure but also improve cognitive impairment. Embelin (EMB) is a benzoquinone derivative which has already demonstrated its pharmacological potentials against arrays of neurological conditions. The current study developed a chronic kindling model in adult zebrafish by using repeated administration of small doses of pentylenetetrazole (PTZ) and a single dose of Kainic acid (KA) to investigate the associated memory impairment. This has been done by using the three-axis maze which is a conventional method to test the learning ability and egocentric memory in zebrafish. As well as, the ameliorative potential of EMB has been evaluated against chronic epilepsy-related memory alterations. Moreover the expression level of pro-inflammatory genes such as C-C motif ligand 2 (CCL2), toll-like receptor-4 (TLR4), tumor necrosis factor-α (TNF-α), interleukin-1 (IL-1) and interferon-γ (IFN-γ) were evaluated. The level of several neurotransmitters such as γ-aminobutyric acid (GABA), acetylcholine (Ach) and glutamate (Glu) was evaluated by liquid chromatography-mass spectrometry (LC-MS). The results showed that daily dose of PTZ 80 mg/kg for 10 days successfully induces a kindling effect in zebrafish, whereas the single dose of KA did not. As compared to control, the PTZ and KA group demonstrates impairment in memory as demonstrated by the three-axis maze. The PTZ group treated with a series of EMB doses (ranging from 0.156 to 0.625 mg/kg) was found to have retarded seizure as well as significantly reduces epilepsy-induced memory alteration. In addition, EMB treatment reduces the expression of inflammatory markers implicating its anti-inflammatory potential. Moreover, levels of GABA, Ach, and glutamate are increased in EMB administered group as compared to the PTZ administered group. Overall, findings demonstrate that EMB might be a potential candidate against chronic epilepsy-related cognitive dysfunction as EMB prevents the seizures, so we expect it to prevent the associated neuroinflammation and learning deficit.
    Matched MeSH terms: Glutamic Acid
  20. Kundap UP, Kumari Y, Othman I, Shaikh MF
    Front Pharmacol, 2017;8:515.
    PMID: 28824436 DOI: 10.3389/fphar.2017.00515
    Epilepsy is a neuronal disorder allied with distinct neurological and behavioral alterations characterized by recurrent spontaneous epileptic seizures. Impairment of the cognitive performances such as learning and memory is frequently observed in epileptic patients. Anti-epileptic drugs (AEDs) are efficient to the majority of patients. However, 30% of this population seems to be refractory to the drug treatment. These patients are not seizure-free and frequently they show impaired cognitive functions. Unfortunately, as a side effect, some AEDs could contribute to such impairment. The major problem associated with conducting studies on epilepsy-related cognitive function is the lack of easy, rapid, specific and sensitive in vivo testing models. However, by using a number of different techniques and parameters in the zebrafish, we can incorporate the unique feature of specific disorder to study the molecular and behavior basis of this disease. In the view of current literature, the goal of the study was to develop a zebrafish model of epilepsy induced cognitive dysfunction. In this study, the effect of AEDs on locomotor activity and seizure-like behavior was tested against the pentylenetetrazole (PTZ) induced seizures in zebrafish and epilepsy associated cognitive dysfunction was determined using T-maze test followed by neurotransmitter estimation and gene expression analysis. It was observed that all the AEDs significantly reversed PTZ induced seizure in zebrafish, but had a negative impact on cognitive functions of zebrafish. AEDs were found to modulate neurotransmitter levels, especially GABA, glutamate, and acetylcholine and gene expression in the drug treated zebrafish brains. Therefore, combination of behavioral, neurochemical and genenetic information, makes this model a useful tool for future research and discovery of newer and safer AEDs.
    Matched MeSH terms: Glutamic Acid
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links