Displaying publications 21 - 40 of 437 in total

Abstract:
Sort:
  1. Rajedadram A, Pin KY, Ling SK, Yan SW, Looi ML
    J Zhejiang Univ Sci B, 2021 Feb 15;22(2):112-122.
    PMID: 33615752 DOI: 10.1631/jzus.B2000446
    This study aims to elucidate the antiproliferative mechanism of hydroxychavicol (HC). Its effects on cell cycle, apoptosis, and the expression of c-Jun N-terminal kinase (JNK) and P38 mitogen-activated protein kinase (MAPK) in HT-29 colon cancer cells were investigated. HC was isolated from Piper betle leaf (PBL) and verified by high-performance liquid chromatography (HPLC), nuclear magnetic resonance (NMR), and gas chromatography-mass spectrometry (GC-MS). The cytotoxic effects of the standard drug 5-fluorouracil (5-FU), PBL water extract, and HC on HT-29 cells were measured after 24, 48, and 72 h of treatment. Cell cycle and apoptosis modulation by 5-FU and HC treatments were investigated up to 30 h. Changes in phosphorylated JNK (pJNK) and P38 (pP38) MAPK expression were observed up to 18 h. The half maximal inhibitory concentration (IC50) values of HC (30 μg/mL) and PBL water extract (380 μg/mL) were achieved at 24 h, whereas the IC50 of 5-FU (50 μmol/L) was obtained at 72 h. Cell cycle arrest at the G0/G1 phase in HC-treated cells was observed from 12 h onwards. Higher apoptotic cell death in HC-treated cells compared to 5-FU-treated cells (P<0.05) was observed. High expression of pJNK and pP38 MAPK was observed at 12 h in HC-treated cells, but not in 5-FU-treated HT-29 cells (P<0.05). It is concluded that HC induces cell cycle arrest and apoptosis of HT-29 cells, with these actions possibly mediated by JNK and P38 MAPK.
    Matched MeSH terms: Inhibitory Concentration 50
  2. Lim PC, Ali Z, Khan IA, Khan SI, Kassim NK, Awang K, et al.
    Nat Prod Res, 2021 Feb 12.
    PMID: 33576269 DOI: 10.1080/14786419.2021.1885031
    An undescribed conjugated sesquiterpene, amelicarin (1), together with nine known compounds (2-10) were isolated for the first time from Melicope latifolia. Their structures were elucidated by extensive NMR spectroscopic and mass spectrometric methods. The conjugated sesquiterpene possesses a unique 6/6/9/4-ring fused tetracyclic skeleton. The proposed biosynthesis pathway of 1 consist of three reactions steps: (1) polyketide formation, (2) cyclisation and (3) addition to form the conjugated sesquiterpenoid as final metabolite. Out of the ten isolated metabolites, amelicarin (1) showed activity against 4 cancerous cell lines namely SK-MEL skin cancer, KB oral cancer, BT-549 breast cancer, and SK-OV-3 ovarian cancer with IC50 values between 15 and 25 µg/mL.
    Matched MeSH terms: Inhibitory Concentration 50
  3. Wang Z, Tu Z, Xie X, Cui H, Kong KW, Zhang L
    Foods, 2021 Feb 03;10(2).
    PMID: 33546380 DOI: 10.3390/foods10020315
    This study aims to evaluate the bioactive components, in vitro bioactivities, and in vivo hypoglycemic effect of P. frutescens leaf, which is a traditional medicine-food homology plant. P. frutescens methanol crude extract and its fractions (petroleum ether, chloroform, ethyl acetate, n-butanol fractions, and aqueous phase residue) were prepared by ultrasound-enzyme assisted extraction and liquid-liquid extraction. Among the samples, the ethyl acetate fraction possessed the high total phenolic (440.48 μg GAE/mg DE) and flavonoid content (455.22 μg RE/mg DE), the best antioxidant activity (the DPPH radical, ABTS radical, and superoxide anion scavenging activity, and ferric reducing antioxidant power were 1.71, 1.14, 2.40, 1.29, and 2.4 times higher than that of control Vc, respectively), the most powerful α-glucosidase inhibitory ability with the IC50 value of 190.03 μg/mL which was 2.2-folds higher than control acarbose, the strongest proliferative inhibitory ability against MCF-7 and HepG2 cell with the IC50 values of 37.92 and 13.43 μg/mL, which were considerable with control cisplatin, as well as certain inhibition abilities on acetylcholinesterase and tyrosinase. HPLC analysis showed that the luteolin, rosmarinic acid, rutin, and catechin were the dominant components of the ethyl acetate fraction. Animal experiments further demonstrated that the ethyl acetate fraction could significantly decrease the serum glucose level, food, and water intake of streptozotocin-induced diabetic SD rats, increase the body weight, modulate their serum levels of TC, TG, HDL-C, and LDL-C, improve the histopathology and glycogen accumulation in liver and intestinal tissue. Taken together, P. frutescens leaf exhibits excellent hypoglycemic activity in vitro and in vivo, and could be exploited as a source of natural antidiabetic agent.
    Matched MeSH terms: Inhibitory Concentration 50
  4. Lim SM, Agatonovic-Kustrin S, Lim FT, Ramasamy K
    J Pharm Biomed Anal, 2021 Jan 30;193:113702.
    PMID: 33160220 DOI: 10.1016/j.jpba.2020.113702
    Bioactive compounds from endophytic fungi exhibit diverse biological activities which include anticancer effect. Capitalising on the abundance of unexplored endophytes that reside within marine plants, this study assessed the anticancer potential of ethyl acetate endophytic fungal extracts (i.e. MBFT Tip 2.1, MBL 1.2, MBS 3.2, MKS 3 and MKS 3.1) derived from leaves, stem and fruits of marine plants that grow along Morib Beach, Malaysia. For identification of endophytic fungi, EF 4/ EF 3 and ITS 1/ ITS 4 PCR primer pairs were used to amplify the fungal 18S rDNA sequence and ITS region sequence, respectively. The resultant sequences were subjected to similarity search via the NCBI GenBank database. High-performance thin layer chromatography (HPTLC) hyphenated with bioassays was used to characterise the extracts in terms of their phytochemical profiles and bioactivity. Microchemical derivatisation was used to assess polyphenolic and phytosterol/ terpenoid content whereas biochemical derivatisation was used to establish antioxidant activities and α-amylase enzyme inhibition. The sulforhodamine B (SRB) assay was used to assess the anticancer effect of the extracts against HCT116 (a human colorectal cancer cell line). The present results indicated MBS 3.2 (Penicillium decumbens) as the most potent extract against HCT116 (IC50 = 0.16 μg/mL), approximately 3-times more potent than 5-flurouracil (IC50 = 0.46 μg/mL). Stepwise multiple regression method suggests that the anticancer effect of MBS 3.2 could be associated with high polyphenolic content and antioxidant potential. Nonlinear regression analysis confirmed that low to moderate α-amylase inhibition exhibits maximum anticancer activity. Current findings warrant further in-depth mechanistic studies.
    Matched MeSH terms: Inhibitory Concentration 50
  5. Taher M, Salleh WMNHW, Alkhamaiseh SI, Ahmad F, Rezali MF, Susanti D, et al.
    Z Naturforsch C J Biosci, 2021 Jan 27;76(1-2):87-91.
    PMID: 32931451 DOI: 10.1515/znc-2020-0089
    A phytochemical investigation of the stem bark of Calophyllum canum resulted in the isolation of a new xanthone dimer identified as biscaloxanthone (1), together with four compounds; trapezifoliaxanthone (2), trapezifolixanthone A (3), taraxerone (4) and taraxerol (5). The structures of these compounds were determined via spectroscopic methods of IR, UV, MS and NMR (1D and 2D). The cytotoxicity of compounds 1-3 were screened against A549, MCF-7, C33A and 3T3L1 cell lines, wherein weak cytotoxic activities were observed (IC50 > 50 μm).
    Matched MeSH terms: Inhibitory Concentration 50
  6. Harun SN, Ahmad H, Lim HN, Chia SL, Gill MR
    Pharmaceutics, 2021 Jan 24;13(2).
    PMID: 33498795 DOI: 10.3390/pharmaceutics13020150
    The ruthenium polypyridyl complex [Ru(dppz)2PIP]2+ (dppz: dipyridophenazine, PIP: (2-(phenyl)-imidazo[4,5-f ][1,10]phenanthroline), or Ru-PIP, is a potential anticancer drug that acts by inhibiting DNA replication. Due to the poor dissolution of Ru-PIP in aqueous media, a drug delivery agent would be a useful approach to overcome its limited bioavailability. Mesoporous silica nanoparticles (MSNs) were synthesized via a co-condensation method by using a phenanthrolinium salt with a 16 carbon length chain (Phen-C16) as the template. Optimization of the synthesis conditions by Box-Behnken design (BBD) generated MSNs with high surface area response at 833.9 m2g-1. Ru-PIP was effectively entrapped in MSNs at 18.84%. Drug release profile analysis showed that Ru-PIP is gradually released, with a cumulative release percentage of approximately 50% at 72 h. The release kinetic profile implied that Ru-PIP was released from MSN by diffusion. The in vitro cytotoxicity of Ru-PIP, both free and MSN-encapsulated, was studied in Hela, A549, and T24 cancer cell lines. While treatment of Ru-PIP alone is moderately cytotoxic, encapsulated Ru-PIP exerted significant cytotoxicity upon all the cell lines, with half maximal inhibitory concentration (IC50) values determined by MTT (([3-(4,5-dimethylthiazol-2-yl)-2,5-dephenyltetrazolium bromide]) assay at 48 h exposure substantially decreasing from >30 µM to <10 µM as a result of MSN encapsulation. The mechanistic potential of cytotoxicity on cell cycle distribution showed an increase in G1/S phase populations in all three cell lines. The findings indicate that MSN is an ideal drug delivery agent, as it is able to sustainably release Ru-PIP by diffusion in a prolonged treatment period.
    Matched MeSH terms: Inhibitory Concentration 50
  7. Saleh MSM, Jalil J, Mustafa NH, Ramli FF, Asmadi AY, Kamisah Y
    Life (Basel), 2021 Jan 22;11(2).
    PMID: 33499128 DOI: 10.3390/life11020078
    Parkia speciosa is a food plant that grows indigenously in Southeast Asia. A great deal of interest has been paid to this plant due to its traditional uses in the treatment of several diseases. The pods contain many beneficial secondary metabolites with potential applications in medicine and cosmetics. However, studies on their phytochemical properties are still lacking. Therefore, the present study was undertaken to profile the bioactive compounds of P. speciosa pods collected from six different regions of Malaysia through ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS) and α-glucosidase inhibitory potential. This study applied metabolomics to elucidate the differences between P. speciosa populations found naturally in the different locations and to characterize potential α-glucosidase inhibitors from P. speciosa pods. P. speciosa collected from different regions of Malaysia showed good α-glucosidase inhibitory activity, with a median inhibitory concentration (IC50) of 0.45-0.76 μg/mL. The samples from the northern and northeastern parts of Peninsular Malaysia showed the highest activity. Using UHPLC-QTOF-MS/MS analysis, 25 metabolites were identified in the pods of P. speciosa. The findings unveiled that the pods of P. speciosa collected from different locations exhibit different levels of α-glucosidase inhibitory activity. The pods are a natural source of potent antidiabetic bioactive compounds.
    Matched MeSH terms: Inhibitory Concentration 50
  8. Kumari M, Tahlan S, Narasimhan B, Ramasamy K, Lim SM, Shah SAA, et al.
    BMC Chem, 2021 Jan 21;15(1):5.
    PMID: 33478538 DOI: 10.1186/s13065-020-00717-y
    BACKGROUND: Triazole is an important heterocyclic moiety that occupies a unique position in heterocyclic chemistry, due to its large number of biological activities. It exists in two isomeric forms i.e. 1,2,4-triazole and 1,2,3-triazole and is used as core molecule for the design and synthesis of many medicinal compounds. 1,2,4-Triazole possess broad spectrum of therapeutically interesting drug candidates such as analgesic, antiseptic, antimicrobial, antioxidant, anti-urease, anti-inflammatory, diuretics, anticancer, anticonvulsant, antidiabetic and antimigraine agents.

    METHODS: The structures of all synthesized compounds were characterized by physicochemical properties and spectral means (IR and NMR). The synthesized compounds were evaluated for their in vitro antimicrobial activity against Gram-positive (B. subtilis), Gram-negative (P. aeruginosa and E. coli) bacterial and fungal (C. albicans and A. niger) strains by tube dilution method using ciprofloxacin, amoxicillin and fluconazole as standards. In-vitro antioxidant and anti-urease screening was done by DPPH assay and indophenol method, respectively. The in-vitro anticancer evaluation was carried out against MCF-7 and HCT116 cancer cell lines using 5-FU as standards.

    RESULTS, DISCUSSION AND CONCLUSION: The biological screening results reveal that the compounds T5 (MICBS, EC = 24.7 µM, MICPA, CA = 12.3 µM) and T17 (MICAN = 27.1 µM) exhibited potent antimicrobial activity as comparable to standards ciprofloxacin, amoxicillin (MICCipro = 18.1 µM, MICAmo = 17.1 µM) and fluconazole (MICFlu = 20.4 µM), respectively. The antioxidant evaluation showed that compounds T2 (IC50 = 34.83 µg/ml) and T3 (IC50 = 34.38 µg/ml) showed significant antioxidant activity and comparable to ascorbic acid (IC50 = 35.44 µg/ml). Compounds T3 (IC50 = 54.01 µg/ml) was the most potent urease inhibitor amongst the synthesized compounds and compared to standard thiourea (IC50 = 54.25 µg/ml). The most potent anticancer activity was shown by compounds T2 (IC50 = 3.84 μM) and T7 (IC50 = 3.25 μM) against HCT116 cell lines as compared to standard 5-FU (IC50 = 25.36 μM).

    Matched MeSH terms: Inhibitory Concentration 50
  9. Sabran A, Kumolosasi E, Jantan I, Jamal JA, Azmi N, Jasamai M
    Saudi Pharm J, 2021 Jan;29(1):73-84.
    PMID: 33603542 DOI: 10.1016/j.jsps.2020.12.011
    Background: Phytoestrogens are polyphenolic plant compounds which are structurally similar to the endogenous mammalian estrogen, 17β-estradiol. Annexin A1 (ANXA1) is an endogenous protein which inhibits cyclo-oxygenase 2 (COX-2) and phospholipase A2, signal transduction, DNA replication, cell transformation, and mediation of apoptosis.

    Objective: This study aimed to determine the effects of selected phytoestrogens on annexin A1 (ANXA1) expression, mode of cell death and cell cycle arrest in different human leukemic cell lines.

    Methods: Cells viability were examined by MTT assay and ANXA1 quantification via Enzyme-linked Immunosorbent Assay. Cell cycle and apoptosis were examined by flow cytometer and phagocytosis effect was evaluated using haematoxylin-eosin staining.

    Results: Coumestrol significantly (p 

    Matched MeSH terms: Inhibitory Concentration 50
  10. Ahmad SJ, Mohamad Zin N, Mazlan NW, Baharum SN, Baba MS, Lau YL
    PeerJ, 2021;9:e10816.
    PMID: 33777509 DOI: 10.7717/peerj.10816
    Background: Antiplasmodial drug discovery is significant especially from natural sources such as plant bacteria. This research aimed to determine antiplasmodial metabolites of Streptomyces spp. against Plasmodium falciparum 3D7 by using a metabolomics approach.

    Methods: Streptomyces strains' growth curves, namely SUK 12 and SUK 48, were measured and P. falciparum 3D7 IC50 values were calculated. Metabolomics analysis was conducted on both strains' mid-exponential and stationary phase extracts.

    Results: The most successful antiplasmodial activity of SUK 12 and SUK 48 extracts shown to be at the stationary phase with IC50 values of 0.8168 ng/mL and 0.1963 ng/mL, respectively. In contrast, the IC50 value of chloroquine diphosphate (CQ) for antiplasmodial activity was 0.2812 ng/mL. The univariate analysis revealed that 854 metabolites and 14, 44 and three metabolites showed significant differences in terms of strain, fermentation phase, and their interactions. Orthogonal partial least square-discriminant analysis and S-loading plot putatively identified pavettine, aurantioclavine, and 4-butyldiphenylmethane as significant outliers from the stationary phase of SUK 48. For potential isolation, metabolomics approach may be used as a preliminary approach to rapidly track and identify the presence of antimalarial metabolites before any isolation and purification can be done.

    Matched MeSH terms: Inhibitory Concentration 50
  11. Sakharkar MK, Dhillon SK, Mazumder M, Yang J
    Genes Cancer, 2021;12:12-24.
    PMID: 33884102 DOI: 10.18632/genesandcancer.210
    Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal type of cancer. In this study, we undertook a pairwise comparison of gene expression pattern between tumor tissue and its matching adjacent normal tissue for 45 PDAC patients and identified 22 upregulated and 32 downregulated genes. PPI network revealed that fibronectin 1 and serpin peptidase inhibitor B5 were the most interconnected upregulated-nodes. Virtual screening identified bleomycin exhibited reasonably strong binding to both proteins. Effect of bleomycin on cell viability was examined against two PDAC cell lines, AsPC-1 and MIA PaCa-2. AsPC-1 did not respond to bleomycin, however, MIA PaCa-2 responded to bleomycin with an IC50 of 2.6 μM. This implicates that bleomycin could be repurposed for the treatment of PDAC, especially in combination with other chemotherapy agents. In vivo mouse xenograft studies and patient clinical trials are warranted to understand the functional mechanism of bleomycin towards PDAC and optimize its therapeutic efficacy. Furthermore, we will evaluate the antitumor activity of the other identified drugs in our future studies.
    Matched MeSH terms: Inhibitory Concentration 50
  12. Teo MYM, Ng JJC, Fong JY, Hwang JS, Song AA, Lim RLH, et al.
    PeerJ, 2021;9:e11063.
    PMID: 33959410 DOI: 10.7717/peerj.11063
    Background: KRAS oncogenes harboring codon G12 and G13 substitutions are considered gatekeeper mutations which drive oncogenesis in many cancers. To date, there are still no target-specific vaccines or drugs available against this genotype, thus reinforcing the need towards the development of targeted therapies such as immunotoxins.

    Methods: This study aims to develop a recombinant anti-mKRAS scFv-fused mutant Hydra actinoporin-like-toxin-1 (mHALT-1) immunotoxin that is capable of recognizing and eradicating codon-12 mutated k-ras antigen abnormal cells. One G13D peptide mimotope (164-D) and one G12V peptide mimotope (68-V) were designed to elicit antigen specific IgG titres against mutated K-ras antigens in immunised Balb/c mice. The RNA was extracted from splenocytes following ELISA confirmation on post-immunized mice sera and was reverse transcribed into cDNA. The scFv combinatorial library was constructed from cDNA repertoire of variable regions of heavy chain (VH) and light chain (VL) fusions connected by a flexible glycine-serine linker, using splicing by overlap extension PCR (SOE-PCR). Anti-mKRAS G12V and G13D scFvs were cloned in pCANTAB5E phagemid and superinfected with helper phage. After few rounds of bio-panning, a specific mKRAS G12V and G13D scFv antibody against G12V and G13D control mimotope was identified and confirmed using ELISA without any cross-reactivity with other mimotopes or controls. Subsequently, the anti-mKRAS scFv was fused to mHALT-1 using SOE-PCR and cloned in pET22b vector. Expressed recombinant immunotoxins were analyzed for their effects on cell proliferation by the MTT assay and targeted specificity by cell-based ELISA on KRAS-positive and KRAS-negative cancer cells.

    Results: The VH and VL genes from spleen RNA of mice immunized with 164-D and 68-V were amplified and randomly linked together, using SOE-PCR producing band sizes about 750 bp. Anti-mKRAS G12V and G13D scFvs were constructed in phagemid pCANTAB5E vectors with a library containing 3.4 × 106 and 2.9 × 106 individual clones, respectively. After three rounds of bio-panning, the anti-mKRAS G12V-34 scFv antibody against G12V control mimotope was identified and confirmed without any cross-reactivity with other controls using ELISA. Anti-mKRAS G12V-34 scFv fragment was fused to mHALT-1 toxin and cloned in pET22b vector with expression as inclusion bodies in E. coli BL21(DE3) (molecular weight of ~46.8 kDa). After successful solubilization and refolding, the mHALT-1-scFv immunotoxin exhibited cytotoxic effects on SW-480 colorectal cancer cells with IC50 of 25.39 μg/mL, with minimal cytotoxicity effect on NHDF cells.

    Discussion: These results suggested that the development of such immunotoxins is potentially useful as an immunotherapeutic application against KRAS-positive malignancies.

    Matched MeSH terms: Inhibitory Concentration 50
  13. Ab Aziz NA, Salim N, Zarei M, Saari N, Yusoff FM
    Prep Biochem Biotechnol, 2021;51(1):44-53.
    PMID: 32701046 DOI: 10.1080/10826068.2020.1789991
    The study was conducted to determine anti-tyrosinase and antioxidant activities of the extracted collagen hydrolysate (CH) derived from Malaysian jellyfish, Rhopilema hispidum. Collagen was extracted using 1:1 (w:v) 0.1 M NaOH solution at temperature 25 °C for 48 hr followed by treatment of 1:2 (w:v) distilled water for another 24 hr and freeze-dried. The extracted collagen was hydrolyzed using papain at optimum temperature, pH and enzyme/substrate ratio [E/S] of 60 °C, 7.0 and 1:50, respectively. CH was found to exhibit tyrosinase inhibitory activity, DPPH radical scavenging and metal ion-chelating assays up to 64, 28, and 83%, respectively, after 8 hr of hydrolysis process. The molecular weight of CH was found <10 kDa consisting of mainly Gly (19.219%), Glu (10.428%), and Arg (8.848%). The UV-visible spectrum analysis showed a major and minor peak at 218 and 276 nm, accordingly. The FTIR spectroscopy confirmed the amide groups in CH. The SEM images demonstrated spongy and porous structure of CH. In the cytotoxicity study, CH has no cytotoxicity against mouse embryonic 3T3 fibroblast cell line with IC50 value >500 µg/ml. Results revealed that the CH generated from this study has a potential to be developed as active ingredient in cosmeceutical application.
    Matched MeSH terms: Inhibitory Concentration 50
  14. Yusefi M, Shameli K, Su Yee O, Teow SY, Hedayatnasab Z, Jahangirian H, et al.
    Int J Nanomedicine, 2021;16:2515-2532.
    PMID: 33824589 DOI: 10.2147/IJN.S284134
    INTRODUCTION: Fe3O4 nanoparticles (Fe3O4 NPs) with multiple functionalities are intriguing candidates for various biomedical applications.

    MATERIALS AND METHODS: This study introduced a simple and green synthesis of Fe3O4 NPs using a low-cost stabilizer of plant waste extract rich in polyphenols content with a well-known antioxidant property as well as anticancer ability to eliminate colon cancer cells. Herein, Fe3O4 NPs were fabricated via a facile co-precipitation method using the crude extract of Garcinia mangostana fruit peel as a green stabilizer at different weight percentages (1, 2, 5, and 10 wt.%). The samples were analyzed for magnetic hyperthermia and then in vitro cytotoxicity assay was performed.

    RESULTS: The XRD planes of the samples were corresponding to the standard magnetite Fe3O4 with high crystallinity. From TEM analysis, the green synthesized NPs were spherical with an average size of 13.42±1.58 nm and displayed diffraction rings of the Fe3O4 phase, which was in good agreement with the obtained XRD results. FESEM images showed that the extract covered the surface of the Fe3O4 NPs well. The magnetization values for the magnetite samples were ranging from 49.80 emu/g to 69.42 emu/g. FTIR analysis verified the functional groups of the extract compounds and their interactions with the NPs. Based on DLS results, the hydrodynamic sizes of the Fe3O4 nanofluids were below 177 nm. Furthermore, the nanofluids indicated the zeta potential values up to -34.92±1.26 mV and remained stable during four weeks of storage, showing that the extract favorably improved the colloidal stability of the Fe3O4 NPs. In the hyperthermia experiment, the magnetic nanofluids showed the acceptable specific absorption rate (SAR) values and thermosensitive performances under exposure of various alternating magnetic fields. From results of in vitro cytotoxicity assay, the killing effects of the synthesized samples against HCT116 colon cancer cells were mostly higher compared to those against CCD112 colon normal cells. Remarkably, the Fe3O4 NPs containing 10 wt.% of the extract showed a lower IC50 value (99.80 µg/mL) in HCT116 colon cancer cell line than in CCD112 colon normal cell line (140.80 µg/mL).

    DISCUSSION: This research, therefore, introduced a new stabilizer of Garcinia mangostana fruit peel extract for the biosynthesis of Fe3O4 NPs with desirable physiochemical properties for potential magnetic hyperthermia and colon cancer treatment.

    Matched MeSH terms: Inhibitory Concentration 50
  15. Mainasara MM, Abu Bakar MF, Md Akim A, Linatoc AC, Abu Bakar FI, Ranneh YKH
    PMID: 33505506 DOI: 10.1155/2021/8826986
    Breast cancer is among the most commonly diagnosed cancer and the leading cause of cancer-related death among women globally. Malaysia is a country that is rich in medicinal plant species. Hence, this research aims to explore the secondary metabolites, antioxidant, and antiproliferative activities of Dioscorea bulbifera leaf collected from Endau Rompin, Johor, Malaysia. Antioxidant activity was assessed using 2,2-diphenyl-1-picrylhydrazyl (DPPH), ferric reducing antioxidant power (FRAP), and 2,2'-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) assays, while the cytotoxicity of D. bulbifera on MDA-MB-231 and MCF-7 breast cancer cell lines was tested using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Cell cycle analysis and apoptosis were assessed using flow cytometry analysis. Phytochemical profiling was conducted using gas chromatography-mass spectrometry (GC-MS). Results showed that methanol extract had the highest antioxidant activity in DPPH, FRAP, and ABTS assays, followed by ethyl acetate and hexane extracts. D. bulbifera tested against MDA-MB-231 and MCF-7 cell lines showed a pronounced cytotoxic effect with IC50 values of 8.96 μg/mL, 6.88 μg/mL, and 3.27 μg/mL in MCF-7 and 14.29 μg/mL, 11.86 μg/mL, and 7.23 μg/mL in MDA-MB-231, respectively. Cell cycle analysis also indicated that D. bulbifera prompted apoptosis at various stages, and a significant decrease in viable cells was detected within 24 h and substantially improved after 48 h and 72 h of treatment. Phytochemical profiling of methanol extract revealed the presence of 39 metabolites such as acetic acid, n-hexadecanoic acid, acetin, hexadecanoate, 7-tetradecenal, phytol, octadecanoic acid, cholesterol, palmitic acid, and linolenate. Hence, these findings concluded that D. bulbifera extract has promising anticancer and natural antioxidant agents. However, further study is needed to isolate the bioactive compounds and validate the effectiveness of this extract in the In in vivo model.
    Matched MeSH terms: Inhibitory Concentration 50
  16. Alkadi KAA, Ashraf K, Adam A, Shah SAA, Taha M, Hasan MH, et al.
    J Pharm Bioallied Sci, 2020 12 21;13(1):116-122.
    PMID: 34084057 DOI: 10.4103/jpbs.JPBS_279_19
    Objectives: The aim of the present study was to isolate and evaluate cytotoxicity and anti-inflammatory activities of new novel compounds isolated from Prismatomeris glabra.

    Materials and Methods: Dried root of P. glabra was extracted under reflux with methyl alcohol, fractionated through the vacuum liquid chromatography technique, and evaporated and then purified the compounds using column chromatography and preparative thin-layer chromatography. THP-1 cells were treated with amentoflavone, 5,7,4'-hydroxyflavonoid, and stigmasterol with various concentrations (0-30 µg/mL) and then incubated with MTS reagent for 2h. Treatment was done for 24, 48, and 72h. Then, effects of these compounds were also tested on PGE2, TNF-α, and IL-6 expression in human THP-1-derived macrophage cells for 24h.

    Results: Three new compounds such as amentoflavone, 5,7,4'-hydroxyflavonoid, and stigmasterol were isolated. After 24h of incubation, a significant decrease in cell viability was reported with IC50 values of amentoflavone, 5,7,4'- hydroxyflavonoid, and stigmasterol (21 µg/mL ≡ 38 M), (18 µg/mL ≡ 66 M) and (20 µg/mL ≡ 48.5 M), respectively. Whereas for 48 and 72h treatment showed a less decreased cell viability compared with 24h treatment. These compounds also showed a significant reduction in the production of TNF-α, IL-6, and PGE2 in a dose-dependent manner.

    Conclusions: The isolated new compounds showed significant cytotoxicity and anti-inflammatory effects.

    Matched MeSH terms: Inhibitory Concentration 50
  17. Radzali SA, Markom M, Saleh NM
    Molecules, 2020 Dec 11;25(24).
    PMID: 33322389 DOI: 10.3390/molecules25245859
    A preliminary study was conducted to study the effects of different types and concentrations of co-solvents based on yield, composition and antioxidants capacity of extract prior to optimization studies of supercritical fluid extraction (SFE) of Labisia pumila (locally referred to as 'kacip fatimah'). The following co-solvents were studied prior to the optimization of supercritical carbon dioxide (SC-CO2) technique: ethanol, water, methanol, as well as aqueous solutions of ethanol-water and methanol-water (50% and 70% v/v). By using the selected co-solvents, identification of phenolic acids (gallic acid, methyl gallate and caffeic acid) was determined by using High-Performance Liquid Chromatography (HPLC). Then, the antioxidant capacity was evaluated by using three different assays: total phenolic content (TPC), ferric reducing/antioxidant power (FRAP) and free radical-scavenging capacity of 2,2-diphenyl-1-picrylhydrazyl (DPPH). SC-CO2 with 70% ethanol-water co-solvent was superior in terms of a higher combination of phenolic compounds extracted and antioxidants capacity. Overall, SC-CO2 with co-solvent 70% ethanol-water technique was efficient in extracting phenolic compounds from L. pumila, and thus the usage of this solvent system should be considered for further optimization studies.
    Matched MeSH terms: Inhibitory Concentration 50
  18. Ali AH, Agustar HK, Hassan NI, Latip J, Embi N, Sidek HM
    Data Brief, 2020 Dec;33:106592.
    PMID: 33318979 DOI: 10.1016/j.dib.2020.106592
    Aromatic (ar)-turmerone is one of the aromatic constituents abundant in turmeric essential oil from Curcuma longa. Ar-turmerone exhibited anti-inflammatory properties. So far, antiplasmodial data for ar-turmerone is still not reported. The data showed the in vitro antiplasmodial effect of ar-turmerone against Plasmodium falciparum 3D7 (chloroquine-sensitive) via Plasmodium lactate dehydrogenase assay (pLDH) and cytotoxic effect against Vero mammalian kidney cells using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) colourimetric assay. Selectivity indexes of ar-turmerone were calculated based on inhibition concentration at 50% of parasite growth (IC50) from MTT and pLDH assays and the effects of ar-turmerone were compared to the antimalarial reference drug chloroquine diphosphate. The inhibitory effect of ar-turmerone at the intraerythrocytic stages of plasmodial lifecycles was evaluated via a stage-dependant susceptibility test. The antiplasmodial and cytotoxic activities of ar-turmerone revealed IC50 values of 46.8 ± 2.4 μM and 820.4 ± 1.5 μM respectively. The selectivity index of ar-turmerone was 17.5. Ar-turmerone suppressed the ring-trophozoite transition stage of the intraerythrocytic life cycle of P. falciparum 3D7.
    Matched MeSH terms: Inhibitory Concentration 50
  19. Solangi M, Kanwal, Mohammed Khan K, Saleem F, Hameed S, Iqbal J, et al.
    Bioorg Med Chem, 2020 Nov 01;28(21):115605.
    PMID: 33065441 DOI: 10.1016/j.bmc.2020.115605
    One of the most prevailing metabolic disorder diabetes mellitus has become the global health issue that has to be addressed and cured. Different marketed drugs have been made available for the treatment of diabetes but there is still a need of introducing new therapeutic agents that are economical and have lesser or no side effects. The current study deals with the synthesis of indole acrylonitriles (3-23) and the evaluation of these compounds for their potential for α-glucosidase inhibition. The structures of these synthetic molecules were deduced by using different spectroscopic techniques. Acarbose (IC50 = 2.91 ± 0.02 μM) was used as standard in this study and the synthetic molecules (3-23) have shown promising α-glucosidase inhibitory activity. Compounds 4, 8, 10, 11, 14, 18, and 21 displayed superior inhibition of α-glucosidase enzyme in the range of (IC50 = 0.53 ± 0.01-1.36 ± 0.04 μM) as compared to the standard acarbose. Compound 10 (IC50 = 0.53 ± 0.01 μM) was the most effective inhibitor of this library and displayed many folds enhanced activity in contrast to the standard. Molecular docking of synthetic compounds was performed to verify the binding interactions of ligand with the active site of enzyme. This study had identified a number of potential α-glucosidase inhibitors that can be used for further research to identify a potent therapeutic agent against diabetes.
    Matched MeSH terms: Inhibitory Concentration 50
  20. Nik Zainuddin NAS, Muhammad H, Nik Hassan NF, Othman NH, Zakaria Y
    J Pharm Bioallied Sci, 2020 Nov;12(Suppl 2):S768-S776.
    PMID: 33828376 DOI: 10.4103/jpbs.JPBS_262_19
    Introduction: Cervical cancer is a leading cause of death in women. Current cancer treatment comes with side effects. Clinacanthus nutans has been known traditionally to treat cancer. This study was aimed to characterize C. nutans standardized fraction (SF1) and to investigate its anticancer mechanism against SiHa cells.

    Materials and Methods: SF1 was produced by optimized methodology for bioassay-guided fractionation. Fourier transform infrared (FTIR) spectroscopy and liquid chromatography-mass spectrometry (LC-MS) were carried out to characterize the SF1. SF1 was screened for cytotoxicity activity toward HeLa, SiHa, and normal cells (NIH) cells by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay. The anticancer mechanism of SF1 was evaluated toward SiHa cells, which showed highest cytotoxicity toward SF1 treatment. The mechanism includes cell cycle progression and protein expression, which was detected using specific antibody-conjugated fluorescent dye, p53-FITC, by flow cytometry.

    Results: Major constituents of SF1 were alkaloids with amines as functional group. SF1 showed highest cytotoxic activity against SiHa (half-maximal inhibitory concentration [IC50] < 10 µg/mL) compared to HeLa cells. Cytoselectivity of SF1 was observed with no IC50 detected on normal NIH cells. On flow cytometry analysis, SF1 was able to induce apoptosis on SiHa cells by arresting cell cycle at G1/S and upregulation of p53 protein.

    Conclusion: SF1 showed anticancer activity by inducing apoptosis through arrested G1/S cell cycle checkpoint-mediated mitochondrial pathway.

    Matched MeSH terms: Inhibitory Concentration 50
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links