Displaying publications 21 - 40 of 55 in total

Abstract:
Sort:
  1. Mitra NK, Xuan KY, Teo CC, Xian-Zhuang N, Singh A, Chellian J
    Res Pharm Sci, 2020 Dec;15(6):602-611.
    PMID: 33828603 DOI: 10.4103/1735-5362.301345
    Background and Purpose: Multiple sclerosis (MS) is an autoimmune disorder characterized by demyelination and axonal loss. Quantitative estimation of behavioral, locomotor, and histological changes following the use of alpha-tocopherol (AT) in the animal model of MS have not been reported. The present study was planned to evaluate whether AT can improve sensorimotor dysfunction and reduce demyelination in the cuprizone (CPZ)-induced rat model of MS.

    Experimental approach: Female Sprague-Dawley rats (8 weeks) were fed with cuprizone diet for 5 weeks followed by intraperitoneal injections of alpha-tocopherol (100 mg/Kg) or PBS for 2 weeks (groups E1 and E2, n = 8). Group C (n = 8) was fed with normal pellets followed by intraperitoneal doses of PBS. Open-field test and beam walking were carried out on every 10th day. The mean area of demyelination in the corpus callosum was quantified in Luxol® fast blue (LFB) stained histological sections of the forebrain. Qualitative grading for relative changes in the stains of myelinated fibers was also done.

    Findings/Results: During withdrawal of CPZ, AT treatment increased the average speed by 22% in group E1, compared to group E2 (P < 0.05). The mean time to walk the beam was reduced in group E1 by 2.6% compared to group E2 (P < 0.05). The rearing frequency was increased in group E1 during week 6-7 compared to that in the period of CPZ treatment. The mean area of demyelination in the corpus callosum showed a 12% reduction in group E1 compared to group E2 (P < 0.05).

    Conclusion and implications: Short-term AT therapy showed improvement in motor dysfunction and reduction of demyelination in the animal model of MS.

    Matched MeSH terms: Injections, Intraperitoneal
  2. Haron MN, D'Souza UJ, Jaafar H, Zakaria R, Singh HJ
    Fertil. Steril., 2010 Jan;93(1):322-4.
    PMID: 19709655 DOI: 10.1016/j.fertnstert.2009.07.995
    Daily intraperitoneal injection of 5-30 microg/kg body weight of leptin for 42 days to adult rats decreases sperm count and increases the fraction of abnormal sperm.
    Matched MeSH terms: Injections, Intraperitoneal
  3. Chong FW, Chakravarthi S, Nagaraja HS, Thanikachalam PM, Lee N
    Malays J Pathol, 2009 Jun;31(1):35-43.
    PMID: 19694312
    Cyclosporine A (CsA), a calcineurin inhibitor produced by the fungi Trichoderma polysporum and Cylindrocarpon lucidum, is an immunosuppressant prescribed in organ transplants to prevent rejection. Its adverse effect on renal dysfunction has limited its use in a clinical setting. Apigenin (4',5',7'-Trihydroxyflavone), a herbal extract, with anti-inflammatory and anti-tumour properties, has been investigated for properties to reverse this adverse effect. This research was conducted to establish a standard protocol for immunohistochemical estimation of Transforming Growth Factor beta (TGF-beta) expression, as an indicator of Cyclosporine A induced damage, and to observe whether apoptotic index and TGF-beta expression can be used to assess effects of Apigenin on CsA induced renal dysfunction. Six groups of 5 male Sprague-Dawley albino rats each were dosed once daily for 21 days, as follows: (1) negative control--oral corn oil, (2) positive control--Cyclosporine A (25 mg/kg), (3) Group 3--Apigenin (20 mg/kg), (4) Group 4--Cyclosporine A (25 mg/kg) +Apigenin (10 mg/kg), (5) Group 5--Cyclosporine A (25 mg/kg) +Apigenin (15 mg/kg) and (6) Group 6--Cyclosporine A (25 mg/kg) +Apigenin (20 mg/kg). Cyclosporine A was administered intra-peritoneally while Apigenin was given orally. The rat kidneys were harvested and examined microscopically to assess the apoptotic index, and stained by immunohistochemistry for multifunctioning polypeptide TGF-beta expression. A high apoptotic index and TGF-beta intensity was observed in the Cyclosporine A group. Apigenin significantly reduced the both apoptotic index and TGF-beta intensity. The apoptotic index correlated with TGF-beta intensity, especially in glomeruli. This study indicates that Cyclosporine A can enhance the TGF-beta expression in rat kidney, signifying accelerated apoptosis. TGF-beta and apoptotic index may be used to assess Apigenin and its effect on Cyclosporine A induced renal damage.
    Matched MeSH terms: Injections, Intraperitoneal
  4. Alomari G, Al-Trad B, Hamdan S, Aljabali A, Al-Zoubi M, Bataineh N, et al.
    Drug Deliv Transl Res, 2020 Feb;10(1):216-226.
    PMID: 31637677 DOI: 10.1007/s13346-019-00675-6
    Several recent studies have reported that gold nanoparticles (AuNPs) attenuate hyperglycemia in diabetic animal models without any observed side effects. The present study was intended to provide insight into the effects of 50-nm AuNPs on diabetic kidney disease. Adult male rats were divided into three groups (n = 7/group): control (non-diabetic, ND), diabetic (D), and diabetic treated intraperitoneally with 50-nm AuNPs (AuNPs + D; 2.5 mg/kg/day) for 7 weeks. Diabetes was induced by a single-dose injection of 55 mg/kg streptozotocin. The result showed that AuNP treatment prevented diabetes-associated increases in the blood glucose level. Reduction in 24-h urinary albumin excretion rate, glomerular basement membrane thickness, foot process width, and renal oxidative stress markers was also demonstrated in the AuNP-treated group. In addition, the results showed downregulation effect of AuNPs in renal mRNA or protein expression of transforming growth factor β1 (TGF-β1), fibronectin, collagen IV, tumor necrosis factor-α (TNF-α), and vascular endothelial growth factor-A (VEGF-A). Moreover, the protein expression of nephrin and podocin, podocyte markers, in glomeruli was increased in the AuNPs + D group compared with the D group. These results provide evidence that 50-nm AuNPs can ameliorate renal damage in experimental models of diabetic nephropathy through improving the renal function and downregulating extracellular matrix protein accumulation, along with inhibiting renal oxidative stress and amelioration of podocyte injury.
    Matched MeSH terms: Injections, Intraperitoneal
  5. Somchit N, Norshahida AR, Hasiah AH, Zuraini A, Sulaiman MR, Noordin MM
    Hum Exp Toxicol, 2004 Nov;23(11):519-25.
    PMID: 15625777
    Itraconazole and fluconazole are oral antifungal drugs, which have a wide spectrum antifungal activity and better efficacy than the older drugs. However, both drugs have been associated with hepatotoxicity in susceptible patients. The mechanism of antifungal drug-induced hepatotoxicity is largely unknown. Therefore, the aim of this present study was to investigate and compare the hepatotoxicity induced by these drugs in vivo. Rats were treated intraperitoneally with itraconazole or fluconazole either single (0, 10, 100 and 200 mg/kg) or subchronic (0, 10, 50 and 100 mg/kg per day for 14 days) doses. Plasma and liver samples were taken at the end of the study. A statistically significant and dose dependent increase of plasma alanine aminotransferase (ALT) and alkaline phosphatase (ALP) activities were detected in the subchronic itraconazole-treated group. In addition, dose-dependent hepatocellular necrosis, degeneration of periacinar and mizonal hepatocytes, bile duct hyperplasia and biliary cirrhosis and giant cell granuloma were observed histologically in the same group. Interestingly, fluconazole treated rats had no significant increase in transaminases for both single and subchronic groups. In the subchronic fluconazole treated rats, only mild degenerative changes of centrilobular hepatocytes were observed. These results demonstrated that itraconazole was a more potent hepatotoxicant than fluconazole in vivo in rats.
    Matched MeSH terms: Injections, Intraperitoneal
  6. Islam MN, Jesmine K, Kong Sn Molh A, Hasnan J
    Leg Med (Tokyo), 2009 Apr;11 Suppl 1:S147-50.
    PMID: 19345131 DOI: 10.1016/j.legalmed.2009.02.035
    A small amount of Methamphetamine (MA) can produce behavioural changes such as euphoria, increased alertness, paranoia, decreased appetite and increased physical activity. In cardiovascular system, it can produce chest pain and hypertension which can result in cardiovascular collapse. In addition, MA causes accelerated heartbeat, elevated blood pressure. It can also cause irreversible damage to blood vessels in the brain. A number of sympathomimetic amines are capable of causing myocardial damage, but the cardio-toxic action of MA has been of particular interest since standardized dosage consistently produces myocardial lesions. As this drug is a choice of many teenagers and young adults, the damage to their health, as well as their future aspects could be greatly affected, therefore more evidence must be sought to convince them the negative root and show them the optimism of recovery and salvation. To clarify the effect of Methamphetamine (MA) on myocardium, 56 male Wister rats aged four weeks were divided equally into MA, Methamphetamine withdrawal (MW), Placebo (P) and Control (C) group were examined following daily intra-peritoneal administration of MA at a dose of 5 mg/kg body weight for 2, 4, 8 and 12 weeks. Normal saline was similarly injected in P group. Light microscopic changes was seen in the myocardium of MA treated group including eosinophilic degeneration, atrophy, hypertrophy, disarray, edema, cellular infiltration, myolysis, granulation tissue, fibrosis and vacuolization. On the other hand, the withdrawal group showed evidence of gradual recovery of those myocardial changes. Optimism is therefore generated about possibility of returning towards normal by withdrawing of this drug by the addicts.
    Matched MeSH terms: Injections, Intraperitoneal
  7. Junaid OQ, Wong KT, Khaw LT, Mahmud R, Vythilingam I
    Trop Biomed, 2018 Dec 01;35(4):981-998.
    PMID: 33601846
    Co-infection with multiple different parasites is a common phenomenon in both human and animals. Among parasites that frequently co-infect the same hosts, are the filarial worms and malaria parasites. Despite this, the mechanisms underlying the interactions between these parasites is still relatively unexplored with very few studies available on the resulting pathologies due to co-infection by filarial nematodes and malaria parasites. Hence, this study investigated the histopathological effect of Brugia pahangi and Plasmodium berghei ANKA (PbA) infections in gerbil host. Gerbils grouped into B. pahangi-infected, PbA-infected, B. pahangi and PbA-coinfected, and uninfected control, were necropsied at different time points of post PbA infections. Brugia pahangi infections in the gerbils were first initiated by subcutaneous inoculation of 50 infective larvae, while PbA infections were done by intraperitoneal injection of 106 parasitized red blood cells after 70 days patent period of B. pahangi. Organs such as the lungs, kidneys, spleen, heart and liver were harvested aseptically at the point of necropsy. There was significant hepatosplenomegaly observed in both PbA-infected only and coinfected gerbils. The spleen, liver and lungs were heavily pigmented. Both B. pahangi and PbA infections (mono and coinfections) resulted in pulmonary edema, while glomerulonephritis was associated with PbA infections. The presence of both parasites induced extramedullary hematopoiesis in the spleen and liver. These findings suggest that the pathologies associated with coinfected gerbils were synergistically induced by both B. pahangi and PbA infections.
    Matched MeSH terms: Injections, Intraperitoneal
  8. Osman AY, Abdullah FF, Kadir AA, Saharee AA
    Microb Pathog, 2016 Nov;100:17-29.
    PMID: 27591112 DOI: 10.1016/j.micpath.2016.08.019
    Brucella melitensis is one of the major zoonotic pathogens with significant economic implications worldwide. The pathogenicity is complex and not always well understood. Lipopolysaccharide (LPS) remains the major virulent factor of B. melitensis and responsible for the mechanism by which the pathogen causes its deleterious effects. In this study, 84 mice of 6-8 weeks old of both sexes were divided equally into 3 groups; namely Brucella melitensis infected group, lipopolysaccharide (LPS) infected group and control group. The former two groups contained 36 mice each with equal gender distribution. The control group consisted of 12 mice only. Animals in B. melitensis infected group, a single inoculum of 0.4 ml containing 10(9) of B. melitensis were intraperitoneally challenged while animals in LPS group, a single dose of 0.4 ml containing LPS extracted from the B. melitensis were intraperitoneally inoculated. Animals in control group received intraperitoneally, a single dose of 0.4 ml phosphate buffered saline (PBS) of pH7. Animals that were infected intraperitoneally with B. melitensis demonstrated significant clinical presentation; gross and histo-pathological evidence than LPS infected group. However, both infected groups showed elevated levels of interleukins (IL-1β and IL6), antibody levels (IgM an IgG) as early as 3 days post-infection with predominance in LPS infected group. In contrast, low levels of sex related hormonal changes in which LPS infected group showed the least concentration were also detected throughout the experimental period. In conclusion, B. melitensis can be transmitted via gastrointestinal, respiratory and reproductive tract. Moreover, LPS stimulated significantly the innate and acquired immune system without significant systemic dysfunction, suggesting potentiality of the protective properties of this component as alternative vaccine for brucellosis infection.
    Matched MeSH terms: Injections, Intraperitoneal
  9. Malik A, Arooj M, Butt TT, Zahid S, Zahid F, Jafar TH, et al.
    Drug Des Devel Ther, 2018;12:1431-1443.
    PMID: 29872266 DOI: 10.2147/DDDT.S154169
    Background: The present study investigates the hepato- and DNA-protective effects of standardized extracts of Cleome brachycarpa (cabralealactone), Solanum incanum (solasodin), and Salvadora oleioides (salvadorin) in rats.

    Materials and methods: Hepatotoxicity was induced with intraperitoneal injection of carbon tetrachloride (CCl4) (1 mL/kg b.wt.) once a week for 12 weeks. The hepato- and DNA protective effects of the extracts in different combinations were compared with that of a standard drug Clavazin (200 mg/kg b.wt.). Tissue alanine aminotransferase, alpha-fetoprotein, tumor necrosis factor alpha (TNF-α), isoprostanes-2α, malondialdehyde, and 8-hydroxydeoxyguanosine, the significant hallmarks of oxidative stress, were studied.

    Results: Histopathological findings of the liver sections from the rat group which received CCl4+cabralealactone, solasodin, and salvadorin demonstrated improved centrilobular hepatocyte regeneration with moderate areas of congestion and infiltration comparable with Clavazin. For in silico study, the identified compounds were subjected to molecular docking with cyclooxygenase-2 and TNF-α followed by a molecular dynamics study, which indicated their potential as anti-inflammatory agents.

    Conclusion: Cabralealactone, solasodin, and salvadorin confer some hepatoprotective and DNA-damage protective effects against CCl4-induced toxicity. They successfully restored the normal architecture of hepatocytes and have the potential to be used as inhibitor to main culprits, that is, cyclooxygenase-2 and TNF-α. They can combat oxidative stress and liver injuries both as mono and combinational therapies. However, combination therapy has more ameliorating effects.

    Matched MeSH terms: Injections, Intraperitoneal
  10. Ranneh Y, Akim AM, Hamid HA, Khazaai H, Mokhtarrudin N, Fadel A, et al.
    Arch Immunol Ther Exp (Warsz), 2019 Dec;67(6):385-400.
    PMID: 31278602 DOI: 10.1007/s00005-019-00553-6
    Chronic subclinical systemic inflammation has a key role in stimulating several chronic conditions associated with cardiovascular diseases, cancer, rheumatoid arthritis, diabetes, and neurodegenerative diseases. Hence, developing in vivo models of chronic subclinical systemic inflammation are essential to the study of the pathophysiology and to measure the immunomodulatory agents involved. Male Sprague-Dawley rats were subjected to intraperitoneal, intermittent injection with saline, or lipopolysaccharide (LPS) (0.5, 1, 2 mg/kg) thrice a week for 30 days. Hematological, biochemical, and inflammatory mediators were measured at different timepoints and at the end of the study. The hearts, lungs, kidneys, and livers were harvested for histological evaluation. Significant elevation in peripheral blood leukocyte includes neutrophils, monocytes, and lymphocytes, as well as the neutrophils-to-lymphocyte ratio. The pro-inflammatory mediator levels [C-reactive protein, tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-1β, and IL-8] along with the biochemical profile (alkaline phosphatase, aspartate aminotransferase, alanine aminotransferase, gamma-glutamyl transferase, creatine kinase, creatinine, and urea) were increased significantly (P 
    Matched MeSH terms: Injections, Intraperitoneal
  11. Khan AH, Sattar MA, Abdullah NA, Johns EJ
    Eur J Pharmacol, 2007 Aug 13;569(1-2):110-8.
    PMID: 17559832
    This study investigated whether the alpha(1)-adrenoceptor subtype(s) mediating the vasoconstrictor actions of the renal sympathetic nerves were altered in rats with cisplatin-induced renal failure. Male Wistar Kyoto rats were used and half received cisplatin (5 mg/kg i.p.) to induce renal failure and were taken for study 7 days later. The renal blood flow reductions caused by electrical renal nerve stimulation and close intra-renal administration of noradrenaline, phenylephrine and methoxamine were determined before and after amlodopine (AMP), 5-methylurapidil (MeU), chloroethylclonidine (CEC) or BMY 7378. Water intake and creatinine clearance were decreased (P<0.05) by 40-50% while fractional excretion of sodium was increased two-fold in the cisplatin treated rats. Mean arterial pressure was higher, 110+/-2 versus 102+/-3 mmHg and renal blood flow was lower, 10.7+/-0.9 versus 18.9+/-0.1 ml/min/kg in the renal failure rats (both P<0.05). AMP, MeU and BMY 7378 decreased (all P<0.05) the adrenergically induced renal vasoconstrictor responses in the renal failure groups by 30 to 50% and in normal rats by 20 to 40%. In the presence of CEC, renal nerve stimulation and noradrenaline and methoxamine induced renal vasoconstrictor responses were enhanced (all P<0.05) in the renal failure but not in the normal rats. These data showed that alpha(1A)- and alpha(1D)-adrenoceptors were the major subtypes in mediating adrenergically induced renal vasoconstriction but there was no substantial shift in subtype in renal failure. The contribution of alpha(1B)-adrenoceptor subtypes either pre- or post-synaptic appeared to be raised in the renal failure rats.
    Matched MeSH terms: Injections, Intraperitoneal
  12. Afzal S, Sattar MA, Johns EJ, Abdulla MH, Akhtar S, Hashmi F, et al.
    J Physiol Biochem, 2016 Dec;72(4):593-604.
    PMID: 27405250
    Adiponectin exerts vasodilatory effects. Irbesartan, an angiotensin receptor blocker, possesses partial peroxisome proliferator-activated receptor gamma (PPAR-γ) agonist activity and increases circulating adiponectin. This study explored the effect of irbesartan alone and in combination with adiponectin on blood pressure, renal hemodynamic excretory function, and vasoactive responses to angiotensin II and adrenergic agonists in spontaneously hypertensive rat (SHR). Irbesartan was given orally (30 mg/kg/day) for 28 days and adiponectin intraperitoneally (2.5 μg/kg/day) for last 7 days. Groups of SHR received either irbesartan or adiponectin or in combination. A group of Wistar Kyoto rats (WKY) served as controls. Metabolic data and plasma samples were taken on days 0, 21, and 28. In acute studies, the renal vasoconstrictor actions of angiotensin II (ANGII), noradrenaline (NA), phenylephrine (PE), and methoxamine (ME) were determined. SHR control rats had a higher mean blood pressure than the WKY (132 ± 7 vs. 98 ± 2 mmHg), lower plasma and urinary adiponectin, creatinine clearance, urine flow rate and sodium excretion, and oxidative stress markers compared to WKY (all P 
    Matched MeSH terms: Injections, Intraperitoneal
  13. Somchit N, Chung JH, Yaacob A, Ahmad Z, Zakaria ZA, Kadir AA
    Drug Chem Toxicol, 2012 Jul;35(3):304-9.
    PMID: 22288423 DOI: 10.3109/01480545.2011.614619
    Voriconazole is a new, potent broad-spectrum triazole systemic antifungal drug, a second-generation azole antifungal that is increasing in popularity, especially for the treatment of invasive aspergillosis and fluconazole-resistant invasive Candida infections. However, it is also known to induce hepatotoxicity clinically. The aim of this study was to investigate the hepatotoxicity and nephrotoxicity potential of voriconazole in vivo in rats. Forty rats were treated intraperitoneally with voriconazole as single (0, 10, l00, and 200 mg/kg) or repeated (0, 10, 50, and l00 mg/kg per day for 14 days) doses. Venous blood was collected for the repeated-dose group on days 1 and 14. Rats were sacrificed 24 hours after the last dose. Body weight, liver weight, and kidney weight of rats were recorded. Livers and kidneys samples were taken for histological and transmission electron microscopy (TEM) analysis. Results revealed that voriconazole had no effects on serum alanine aminotransferase, aspartate aminotransferase, alkaline phosphotase, gamma glutamyl transpeptidase, blood urea nitrogen, and creatinine for both the single- and repeated-dose groups. However, histologically, in the repeated 50- and 100-mg/kg voriconazole-treated rats, mild focal inflammation was observed. Under TEM, only small changes in the 100 mg/kg/day group were revealed. These results collectively demonstrated that voriconazole did not induce significant hepatotoxicity and nephrotoxicity, even at very high doses.
    Matched MeSH terms: Injections, Intraperitoneal
  14. Islam MN, Khan J, Jaafar H
    Leg Med (Tokyo), 2009 Apr;11 Suppl 1:S143-6.
    PMID: 19345604 DOI: 10.1016/j.legalmed.2009.02.045
    Series of experiments have been completed with Methamphetamine (MA). Some were with the higher, medium or lower duration of MA administration and some were with acute or chronic doses. Whatever may be the dose or duration the ultimate result came out with the further establishment of cardio-toxic effect of this drug. Cardiovascular symptoms related to MA toxicity include chest pain, palpitations, dyspnoea, hypertension, tachycardia, atrial and ventricular arrhythmias, and myocardial ischemia. MA abusers often go through a repeated pattern of frequent drug administrations followed by a period of abstinence. Previous studies have focused largely upon the chronic effect of MA intake to major organs, such as the brains and the heart, by using animal experiments. However, there is a lack of research into the effects of acute dose of MA, especially pertaining to the heart. To clarify the effect of MA on myocardium, 22 male Wister rats aged six weeks were divided into MA, Placebo (P) and Control (C) group were examined following single intraperitoneal administration of MA at a dose of 50 mg/kg body weight. Normal saline was similarly injected in P group. Light microscopic changes was seen in the myocardium of MA treated group including cellular infiltration, with clusters of macrophage-like cells having large nuclei and little cytoplasm evident in the sub-endocardium region. There were presence of few macrophages, leucocytes, and spindle-like fibroblasts. Bringing in to account of cardiac changes by a single dose of MA, slogan should be voiced out to leave methamphetamine.
    Matched MeSH terms: Injections, Intraperitoneal
  15. Mansooreh, Sadat Mojani, Asmah Rahmat, Rajesh, Ramasamy, Vahid, Hosseinpour Sarmadi, Pratheep, Sandrasaigaran, Shalini, Vellasamy, et al.
    Malays J Nutr, 2016;22(3):421-432.
    MyJurnal
    Introduction: This study was conducted to determine immunological and metabolic effects of different concentrations of ginger rhizome (Zingiber officinale Roscoe) in streptozotocin (STZ)-nicotinamide (NA) induced diabetic rats.

    Methods: Forty-eight fasted male Sprague-Dawley rats were induced diabetes using a single intraperitoneal injection of NA(110 mg/kg b.w.) and STZ (65 mg/kg b.w, 15 min after NA). Diabetic rats orally received either different concentrations (250, 500 and 750 mg/kg body weight) of ginger rhizome suspension or glibenclamide (10 mg/kg body weight) for 6 weeks. Two control diabetic and normal groups were gavaged with only distilled water as a vehicle.

    Results: The results indicated that the lower concentrations of ginger modulated body weight, fasting blood glucose, level of triglyceride and tumor necrosis factor-a (TNF-a) (p
    Matched MeSH terms: Injections, Intraperitoneal
  16. Aliyu A, Shaari MR, Ahmad Sayuti NS, Reduan MFH, Sithambaram S, Noordin MM, et al.
    Cancers (Basel), 2020 Mar 13;12(3).
    PMID: 32183192 DOI: 10.3390/cancers12030678
    Chemical carcinogens are commonly used to investigate the biology and prognoses of various cancers. This study investigated the mechanism of leukaemogenic effects of n-ethyl-n-nitrosourea (ENU) in a mouse model. A total of 14 3-week-old male Institute of Cancer Research (ICR)-mice were used for the study. The mice were divided into groups A and B with seven mice each. Group A served as the control while group B received intraperitoneal (IP) injections of 80 mg/kg ENU twice with a one-week interval and were monitored monthly for 3 months for the development of leukaemia via blood smear examination. The mice were sacrificed humanely using a CO2 chamber. Blood, spleen, lymph nodes, liver, kidney and lung samples were collected for blood smear examination and histopathological evaluation. The expression of angiogenic protein (VEGF), and pro and anti-apoptotic proteins (BCL2 and BAX), was detected and quantified using Western blot technique. Leukaemia was confirmed by the presence of numerous blast cells in the peripheral blood smear in group B. Similarly, the VEGF and BCL2 proteins were significantly (p < 0.05) upregulated in group B compared to A. It is concluded that IP administration of 80 mg/kg ENU induced leukaemia in ICR-mice 12 weeks post administration through upregulation of angiogenic and anti-apoptotic proteins: VEGF and BCL2.
    Matched MeSH terms: Injections, Intraperitoneal
  17. Badran MM, Alomrani AH, Harisa GI, Ashour AE, Kumar A, Yassin AE
    Biomed Pharmacother, 2018 Oct;106:1461-1468.
    PMID: 30119220 DOI: 10.1016/j.biopha.2018.07.102
    In the present study, docetaxel (DTX)-loaded poly(lactic-co-glycolic acid) (PLGA) and polycaprolactone (PCL) nanoparticles were successfully prepared and coated with chitosan (CS). The prepared nanoparticles (NPs) were evaluated for their particle size, zeta potential, particle morphology, drug entrapment efficiency (EE%), and in vitro drug release profile. The anticancer activity of DTX-loaded NPs was assessed in human HT29 colon cancer cell line utilizing MTT assay. The pharmacokinetics of DTX-loaded NPs was monitored in Wistar rats in comparison to DTX solution. The prepared NPs exhibited particle sizes in the range 177.1 ± 8.2-287.6 ± 14.3 nm. CS decorated NPs exhibited a significant increase in particle size and a switch of zeta potential from negative to positive. In addition, high EE% values were obtained for CS coated PCL NPs and PLGA NPs as 67.1 and 76.2%, respectively. Moreover, lowering the rate of DTX in vitro release was achieved within 48 h by using CS coated NPs. Furthermore, a tremendous increase in DTX cytotoxicity was observed by CS-decorated PLGA NPs compared to all other NPs including DTX-free-NPs and pure DTX. The in vivo study revealed significant enhancement in DTX bioavailability from CS-decorated PLGA NPs with more than 4-fold increase in AUC compared to DTX solution. In conclusion, CS-decorated PLGA NPs are a considerable DTX-delivery carrier with magnificent antitumor efficacy.
    Matched MeSH terms: Injections, Intraperitoneal
  18. Alkhateeb Y, Jarrar QB, Abas F, Rukayadi Y, Tham CL, Hay YK, et al.
    Molecules, 2020 Jul 06;25(13).
    PMID: 32640512 DOI: 10.3390/molecules25133069
    2,4,6-trihydroxy-3-geranylacetophenone (tHGA) is a bioactive compound that shows excellent anti-inflammatory properties. However, its pharmacokinetics and metabolism have yet to be evaluated. In this study, a sensitive LC-HRMS method was developed and validated to quantify tHGA in rat plasma. The method showed good linearity (0.5-80 ng/mL). The accuracy and precision were within 10%. Pharmacokinetic investigations were performed on three groups of six rats. The first two groups were given oral administrations of unformulated and liposome-encapsulated tHGA, respectively, while the third group received intraperitoneal administration of liposome-encapsulated tHGA. The maximum concentration (Cmax), the time required to reach Cmax (tmax), elimination half-life (t1/2) and area under curve (AUC0-24) values for intraperitoneal administration were 54.6 ng/mL, 1.5 h, 6.7 h, and 193.9 ng/mL·h, respectively. For the oral administration of unformulated and formulated tHGA, Cmax values were 5.4 and 14.5 ng/mL, tmax values were 0.25 h for both, t1/2 values were 6.9 and 6.6 h, and AUC0-24 values were 17.6 and 40.7 ng/mL·h, respectively. The liposomal formulation improved the relative oral bioavailability of tHGA from 9.1% to 21.0% which was a 2.3-fold increment. Further, a total of 12 metabolites were detected and structurally characterized. The metabolites were mainly products of oxidation and glucuronide conjugation.
    Matched MeSH terms: Injections, Intraperitoneal
  19. Satyavert, Gupta S, Choudhury H, Jacob S, Nair AB, Dhanawat M, et al.
    Pharmacol Rep, 2021 Dec;73(6):1734-1743.
    PMID: 34283375 DOI: 10.1007/s43440-021-00312-5
    BACKGROUND: Curcumin, a natural polyphenol from Curcuma longa, is known to possess diversified pharmacological roles including anti-inflammatory, antioxidant, antiproliferative and antiangiogenic properties; however, its bioavailability is severely limited due to its poor solubility, poor absorption, rapid metabolism, and significant elimination. Hydrazinocurcumin (HZC), a novel analogue of curcumin has been reported to overcome the limitations of curcumin and also possesses multiple pharmacological activities. The present study aimed to evaluate the unexplored pharmacokinetic profile of this agent in experimental rats.

    METHODS: Drug formulations were administered to the experimental animals via oral, intravenous and intraperitoneal routes. Blood samples were collected at different pre-determined time intervals to determine the pharmacokinetic parameters. To understand the biodistribution profile of HCZ, tissue samples were isolated from different groups of Sprague-Dawley rats at different time points. The pharmacokinetic parameters of HZC were evaluated after administration through oral (100 mg/kg), intraperitoneal (100 mg/kg) and intravenous (10 mg/kg) routes.

    RESULTS: Significantly (p 

    Matched MeSH terms: Injections, Intraperitoneal
  20. Idris SB, Abdul Kadir A, Abdullah JFF, Ramanoon SZ, Basit MA, Abubakar MZZA
    Front Vet Sci, 2020;7:270.
    PMID: 32613011 DOI: 10.3389/fvets.2020.00270
    The development and utilization of nano-antibiotics is currently gaining attention as a possible solution to antibiotic resistance. The aim of this study was therefore to determine the pharmacokinetics of free oxytetracycline (OTC) and oxytetracycline loaded cockle shell calcium carbonate-based nanoparticle (OTC-CNP) after a single dose of intraperitoneal (IP) administration in BALB/c mice. A total of 100 female BALB/c mice divided into two groups of equal number (n = 50) were administered with 10 mg/kg OTC and OTC-CNP, respectively. Blood samples were collected before and post-administration from both groups at time 0, 5, 10, 15, and 30 min and 1, 2, 6, 24, and 48 h, and OTC plasma concentration was quantified using a validated HPLC-UV method. The pharmacokinetic parameters were analyzed using a non-compartment model. The Cmax values of OTC in OTC-CNP and free OTC treated group were 64.99 and 23.53 μg/ml, respectively. OTC was detected up to 24 h in the OTC-CNP group as against 1 h in the free OTC group following intraperitoneal administration. In the OTC-CNP group, the plasma elimination rate of OTC was slower while the half-life, the area under the curve, and the volume of the distribution were increased. In conclusion, the pharmacokinetic profile of OTC in the OTC-CNP group differs significantly from that of free OTC. However, further studies are necessary to determine the antibacterial efficacy of OTC-CNP for the treatment of bacterial diseases.
    Matched MeSH terms: Injections, Intraperitoneal
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links