Displaying publications 21 - 40 of 45 in total

Abstract:
Sort:
  1. Wu YS, Looi CY, Subramaniam KS, Masamune A, Chung I
    Oncotarget, 2016 Jun 14;7(24):36719-36732.
    PMID: 27167341 DOI: 10.18632/oncotarget.9165
    Pancreatic stellate cells (PSC), a prominent stromal cell, contribute to the progression of pancreatic ductal adenocarcinoma (PDAC). We aim to investigate the mechanisms by which PSC promote cell proliferation in PDAC cell lines, BxPC-3 and AsPC-1. PSC-conditioned media (PSC-CM) induced proliferation of these cells in a dose- and time-dependent manner. Nrf2 protein was upregulated and subsequently, its transcriptional activity was increased with greater DNA binding activity and transcription of target genes. Downregulation of Nrf2 led to suppression of PSC-CM activity in BxPC-3, but not in AsPC-1 cells. However, overexpression of Nrf2 alone resulted in increased cell proliferation in both cell lines, and treatment with PSC-CM further enhanced this effect. Activation of Nrf2 pathway resulted in upregulation of metabolic genes involved in pentose phosphate pathway, glutaminolysis and glutathione biosynthesis. Downregulation and inhibition of glucose-6-phosphate-dehydrogenase with siRNA and chemical approaches reduced PSC-mediated cell proliferation. Among the cytokines present in PSC-CM, stromal-derived factor-1 alpha (SDF-1α) and interleukin-6 (IL-6) activated Nrf2 pathway to induce cell proliferation in both cells, as shown with neutralization antibodies, recombinant proteins and signaling inhibitors. Taken together, SDF-1α and IL-6 secreted from PSC induced PDAC cell proliferation via Nrf2-activated metabolic reprogramming and ROS detoxification.
    Matched MeSH terms: Interleukin-6/metabolism
  2. Batumalaie K, Amin MA, Murugan DD, Sattar MZ, Abdullah NA
    Sci Rep, 2016 06 02;6:27236.
    PMID: 27250532 DOI: 10.1038/srep27236
    Activation of inflammatory pathways via reactive oxygen species (ROS) by free fatty acids (FFA) in obesity gives rise to insulin resistance and endothelial dysfunction. Withaferin A (WA), possesses both antioxidant and anti-inflammatory properties and therefore would be a good strategy to suppress palmitic acid (PA)-induced oxidative stress and inflammation and hence, insulin resistance and dysfunction in the endothelium. Effect of WA on PA-induced insulin resistance in human umbilical vein endothelial cells (HUVECs) was determined by evaluating insulin signaling mechanisms whilst effect of this drug on PA-induced endothelial dysfunction was determined in acetylcholine-mediated relaxation in isolated rat aortic preparations. WA significantly inhibited ROS production and inflammation induced by PA. Furthermore, WA significantly decreased TNF-α and IL-6 production in endothelial cells by specifically suppressing IKKβ/NF-κβ phosphorylation. WA inhibited inflammation-stimulated IRS-1 serine phosphorylation and improved the impaired insulin PI3-K signaling, and restored the decreased nitric oxide (NO) production triggered by PA. WA also decreased endothelin-1 and plasminogen activator inhibitor type-1 levels, and restored the impaired endothelium-mediated vasodilation in isolated aortic preparations. These findings suggest that WA inhibited both ROS production and inflammation to restore impaired insulin resistance in cultured endothelial cells and improve endothelial dysfunction in rat aortic rings.
    Matched MeSH terms: Interleukin-6/metabolism
  3. Lappin DF, Robertson D, Hodge P, Treagus D, Awang RA, Ramage G, et al.
    J. Periodontol., 2015 Nov;86(11):1249-59.
    PMID: 26252750 DOI: 10.1902/jop.2015.150149
    BACKGROUND: Periodontal disease is a major complication of type 1 diabetes mellitus (T1DM). The aim of the present study is to investigate the relationship between glycated hemoglobin and circulating levels of interleukin (IL)-6, IL-8, and C-X-C motif chemokine ligand 5 (CXCL5) in non-smoking patients suffering from T1DM, with and without periodontitis. In addition, to determine the effect of advanced glycation end products (AGE) in the presence and absence of Porphyromonas gingivalis lipopolysaccharide (LPS) on IL-6, IL-8, and CXCL5 expression by THP-1 monocytes and OKF6/TERT-2 cells.

    METHODS: There were 104 participants in the study: 19 healthy volunteers, 23 patients with periodontitis, 28 patients with T1DM, and 34 patients with T1DM and periodontitis. Levels of blood glucose/glycated hemoglobin (International Federation of Clinical Chemistry [IFCC]) were determined by high-performance liquid chromatography. Levels of IL-6, IL-8, and CXCL5 in plasma were determined by enzyme-linked immunosorbent assay (ELISA). In vitro stimulation of OKF6/TERT-2 cells and THP-1 monocytes was performed with combinations of AGE and P. gingivalis LPS. Changes in expression of IL-6, IL-8, and CXCL5 were monitored by ELISA and real-time polymerase chain reaction.

    RESULTS: Patients with diabetes and periodontitis had higher plasma levels of IL-8 than patients with periodontitis alone. Plasma levels of IL-8 correlated significantly with IFCC units, clinical probing depth, and attachment loss. AGE and LPS, alone or in combination, stimulated IL-6, IL-8, and CXCL5 expression in both OKF6/TERT-2 cells and THP-1 monocytes.

    CONCLUSIONS: Elevated plasma levels of IL-8 potentially contribute to the cross-susceptibility between periodontitis and T1DM. P. gingivalis LPS and AGE in combination caused significantly greater expression of IL-6, IL-8, and CXCL5 from THP-1 monocytes and OKF6/TERT-2 cells than LPS alone.

    Matched MeSH terms: Interleukin-6/metabolism
  4. Zulaziz N, Azhim A, Himeno N, Tanaka M, Satoh Y, Kinoshita M, et al.
    Hum. Cell, 2015 Oct;28(4):159-66.
    PMID: 25997703 DOI: 10.1007/s13577-015-0118-2
    Antibacterial photodynamic therapy (PDT) has come to attract attention as an alternative therapy for drug-resistant bacteria. Recent reports revealed that antibacterial PDT induces innate immune response and stimulates abundant cytokine secretion as a part of inflammatory responses. However, the underlying mechanism how antibacterial PDT interacts with immune cells responsible for cytokine secretion has not been well outlined. In this study, we aimed to clarify the difference in gene expression and cytokine secretion between combined culture of fibroblasts and macrophages and their independent cultures. SCRC-1008, mouse fibroblast cell line and J774, mouse macrophage-like cell line were co-cultured and PDT treatments with different parameters were carried out. After various incubation periods (1-24 h), cells and culture medium were collected, and mRNA and protein levels for cytokines were measured using real-time PCR and ELISA, respectively. Our results showed that fibroblasts and macrophages interact with each other to mediate the immune response. We propose that fibroblasts initially respond to PDT by expressing Hspa1b, which regulates the NF-κB pathway via Tlr2 and Tlr4. Activation of the NF-κB pathway then results in an enhanced secretion of pro-inflammatory cytokines (TNF-α, IL-6 and IL-1β) and neutrophil chemoattractant MIP-2 and KC from macrophages.
    Matched MeSH terms: Interleukin-6/metabolism
  5. Prakash A, Kumar A, Ming LC, Mani V, Majeed AB
    J Mol Neurosci, 2015 Jul;56(3):739-50.
    PMID: 25854775 DOI: 10.1007/s12031-015-0508-7
    Alzheimer's disease (AD) is a neurodegenerative disease characterized by impaired memory function and oxidative damage. NO is a major signaling molecule produced in the central nervous system to modulate neurological activity through modulating nitric oxide synthase. Recently, PPAR-γ agonists have shown neuroprotective effects in neurodegenerative disorders. However, there have been only a few studies identifying mechanisms through which cognitive benefits may be exerted. The present study was designed to investigate the possible nitric oxide mechanism in the protective effect of pioglitazone against streptozotocin (STZ)-induced memory dysfunction. Wistar rats were intracerebroventricularly (ICV) injected with STZ. Then rats were treated with pioglitazone, NO modulators [L-arginine and nitro-L-arginine methyl ester (L-NAME)] for 21 days. Behavioral alterations were assessed in between the study period. Animals were sacrificed immediately after behavioral session, and mito-oxidative parameters, TNF-α, IL-6, and caspase-3 activity were measured. STZ-treated rats showed a memory deficit and significantly increased in mito-oxidative damage and inflammatory mediators and apoptosis in the hippocampus. Chronic treatment of pioglitazone significantly improved memory retention and attenuated mito-oxidative damage parameters, inflammatory markers, and apoptosis in STZ-treated rats. However, L-arginine pretreatment with lower dose of pioglitazone has not produced any protective effect as compared to per se. Furthermore, pretreatment of L-NAME significantly potentiated its protective effect, which indicates the involvement of nitric oxide for activation of PPAR-γ action. These results demonstrate that pioglitazone offers protection against STZ-induced memory dysfunction possibly due to its antioxidant, anti-inflammatory, and anti-apoptotic action mediating nitric oxide pathways and, therefore, could have a therapeutic potential in AD.
    Matched MeSH terms: Interleukin-6/metabolism
  6. Wan Ahmad WN, Sakri F, Mokhsin A, Rahman T, Mohd Nasir N, Abdul-Razak S, et al.
    PLoS One, 2015;10(1):e0116867.
    PMID: 25614985 DOI: 10.1371/journal.pone.0116867
    BACKGROUND: Inflammation, endothelial activation and oxidative stress have been established as key events in the initiation and progression of atherosclerosis. High-density lipoprotein cholesterol (HDL-c) is protective against atherosclerosis and coronary heart disease, but its association with inflammation, endothelial activation and oxidative stress is not well established.

    OBJECTIVES: (1) To compare the concentrations of biomarkers of inflammation, endothelial activation and oxidative stress in subjects with low HDL-c compared to normal HDL-c; (2) To examine the association and correlation between HDL-c and these biomarkers and (3) To determine whether HDL-c is an independent predictor of these biomarkers.

    METHODS: 422 subjects (mean age±SD = 43.2±11.9 years) of whom 207 had low HDL-c concentrations (HDL-c <1.0 mmol/L and <1.3 mmol/L for males and females respectively) and 215 normal controls (HDL-c ≥1.0 and ≥1.3 mmol/L for males and females respectively) were recruited in this study. The groups were matched for age, gender, ethnicity, smoking status, diabetes mellitus and hypertension. Fasting blood samples were collected for analysis of biomarkers of inflammation [high-sensitivity C-reactive protein (hsCRP) and Interleukin-6 (IL-6)], endothelial activation [soluble Vascular Cell Adhesion Molecule-1 (sVCAM-1), soluble Intercellular Adhesion Molecule-1 (sICAM-1) and E-selectin)] and oxidative stress [F2-Isoprostanes, oxidized Low Density Lipoprotein (ox-LDL) and Malondialdehyde (MDA)].

    RESULTS: Subjects with low HDL-c had greater concentrations of inflammation, endothelial activation and oxidative stress biomarkers compared to controls. There were negative correlations between HDL-c concentration and biomarkers of inflammation (IL-6, p = 0.02), endothelial activation (sVCAM-1 and E-selectin, p = 0.029 and 0.002, respectively), and oxidative stress (MDA and F2-isoprostane, p = 0.036 and <0.0001, respectively). Multiple linear regression analysis showed HDL-c as an independent predictor of IL-6 (p = 0.02) and sVCAM-1 (p<0.03) after correcting for various confounding factors.

    CONCLUSION: Low serum HDL-c concentration is strongly correlated with enhanced status of inflammation, endothelial activation and oxidative stress. It is also an independent predictor for enhanced inflammation and endothelial activation, which are pivotal in the pathogenesis of atherosclerosis and atherosclerosis-related complications.

    Matched MeSH terms: Interleukin-6/metabolism
  7. Harun A, Vidyadaran S, Lim SM, Cole AL, Ramasamy K
    PMID: 26047814 DOI: 10.1186/s12906-015-0685-5
    Excessive production of inflammatory mediators such as nitric oxide (NO) and proinflammatory cytokines like tumour necrosis factor-alpha (TNF-α) from activated microglia contributes to uncontrolled inflammation in neurodegenerative diseases. This study investigated the protective role of five endophytic extracts (HAB16R12, HAB16R13, HAB16R14, HAB16R18 and HAB8R24) against LPS-induced inflammatory events in vitro. These endophytic extracts were previously found to exhibit potent neuroprotective effect against LPS-challenged microglial cells.
    Matched MeSH terms: Interleukin-6/metabolism
  8. Zulkifli I, Najafi P, Nurfarahin AJ, Soleimani AF, Kumari S, Aryani AA, et al.
    Poult Sci, 2014 Dec;93(12):3112-8.
    PMID: 25306460 DOI: 10.3382/ps.2014-04099
    An experiment was conducted to determine the effect of corticosterone (CORT) administration on serum ovotransferrin (OVT), α1-acid glycoprotein (AGP), ceruloplasmin (CPN), and IL-6 concentrations, and brain heat shock protein (HSP) 70 expression in broiler chickens. From 14 to 20 d of age, equal numbers of birds were subjected to either (i) daily intramuscular injection with CORT in ethanol:saline (1:1, vol/vol) at 6 mg/kg of BW, or (ii) daily intramuscular injection with 0.5 mL ethanol:saline (1:1, vol/vol; control). Blood samples were collected before CORT treatment (14 d old), 3 and 7 d after CORT injections, and 4 d after cessation of CORT administration for determination of serum levels of CORT, OVT, AGP, CPN, and IL-6. Brain samples (whole cerebrum) were collected to measure HSP 70 density. Although CORT administration significantly increased feed intake, weight gain was significantly depressed. Administration of CORT also increased CORT, OVT, CPN, AGP, IL-6, and HSP 70 expression. Four days following cessation of CORT administration, OVT declined to the basal level but not CPN and AGP. In conclusion, an elevation in CORT can induce an acute-phase response and HSP 70 expression. Thus, APP and HSP 70 may be of value as indicators of stress in poultry.
    Matched MeSH terms: Interleukin-6/metabolism*
  9. Bukhari SN, Lauro G, Jantan I, Bifulco G, Amjad MW
    Bioorg Med Chem, 2014 Aug 1;22(15):4151-61.
    PMID: 24938495 DOI: 10.1016/j.bmc.2014.05.052
    Arachidonic acid and its metabolites have generated high level of interest among researchers due to their vital role in inflammation. The inhibition of enzymes involved in arachidonic acid metabolism has been considered as synergistic anti-inflammatory effect. A series of novel α,β-unsaturated carbonyl based compounds were synthesized and evaluated for their inhibitory activity on secretory phospholipase A₂ (sPLA₂), cyclooxygenases (COX), soybean lipoxygenase (LOX) in addition to proinflammatory cytokines comprising IL-6 and TNF-α. Six α,β-unsaturated carbonyl based compounds (2, 3, 4, 12, 13 and 14) exhibited strong inhibition of sPLA₂ activity, with IC₅₀ values in the range of 2.19-8.76 μM. Nine compounds 1-4 and 10-14 displayed inhibition of COX-1 with IC₅₀ values ranging from 0.37 to 1.77 μM (lower than that of reference compound), whereas compounds 2, 10, 13 and 14 strongly inhibited the COX-2. The compounds 10-14 exhibited strong inhibitory activity against LOX enzyme. All compounds were evaluated for the inhibitory activities against LPS-induced TNF-α and IL-6 release in the macrophages. On the basis of screening results, five active compounds 3, 4, 12, 13 and 14 were found strong inhibitors of TNF-α and IL-6 release in a dose-dependent manner. Molecular docking experiments were performed to clarify the molecular aspects of the observed COX and LOX inhibitory activities of the investigated compounds. Present findings increases the possibility that these α,β-unsaturated carbonyl based compounds might serve as beneficial starting point for the design and development of improved anti-inflammatory agents.
    Matched MeSH terms: Interleukin-6/metabolism
  10. Mehrbod P, Hair-Bejo M, Tengku Ibrahim TA, Omar AR, El Zowalaty M, Ajdari Z, et al.
    Int J Mol Med, 2014 Jul;34(1):61-73.
    PMID: 24788303 DOI: 10.3892/ijmm.2014.1761
    Influenza A virus is one of the most important health risks that lead to significant respiratory infections. Continuous antigenic changes and lack of promising vaccines are the reasons for the unsuccessful treatment of influenza. Statins are pleiotropic drugs that have recently served as anti-influenza agents due to their anti-inflammatory activity. In this study, the effect of simvastatin on influenza A-infected cells was investigated. Based on the MTT cytotoxicity test, hemagglutination (HA) assay and qPCR it was found that simvastatin maintained cell viability and decreased the viral load significantly as compared to virus-inoculated cells. The expression of important pro-inflammatory cytokines (tumor necrosis factor-α, interleukin-6 and interferon-γ), which was quantified using ELISA showed that simvastatin decreased the expression of pro-inflammatory cytokines to an average of 2-fold. Furthermore, the modulation of actin filament polymerization was determined using rhodamine staining. Endocytosis and autophagy processes were examined by detecting Rab and RhoA GTPase protein prenylation and LC3 lipidation using western blotting. The results showed that inhibiting GTPase and LC3 membrane localization using simvastatin inhibits influenza replication. Findings of this study provide evidence that modulation of RhoA, Rabs and LC3 may be the underlying mechanisms for the inhibitory effects of simvastatin as an anti-influenza compound.
    Matched MeSH terms: Interleukin-6/metabolism
  11. Mahmood ND, Mamat SS, Kamisan FH, Yahya F, Kamarolzaman MF, Nasir N, et al.
    Biomed Res Int, 2014;2014:695678.
    PMID: 24868543 DOI: 10.1155/2014/695678
    Muntingia calabura L. is a tropical plant species that belongs to the Elaeocarpaceae family. The present study is aimed at determining the hepatoprotective activity of methanol extract of M. calabura leaves (MEMC) using two models of liver injury in rats. Rats were divided into five groups (n=6) and received 10% DMSO (negative control), 50 mg/kg N-acetylcysteine (NAC; positive control), or MEMC (50, 250, and 500 mg/kg) orally once daily for 7 days and on the 8th day were subjected to the hepatotoxic induction using paracetamol (PCM). The blood and liver tissues were collected and subjected to biochemical and microscopical analysis. The extract was also subjected to antioxidant study using the 2,2-diphenyl-1-picrylhydrazyl-(DPPH) and superoxide anion-radical scavenging assays. At the same time, oxygen radical antioxidant capacity (ORAC) and total phenolic content were also determined. From the histological observation, lymphocyte infiltration and marked necrosis were observed in PCM-treated groups (negative control), whereas maintenance of hepatic structure was observed in group pretreated with N-acetylcysteine and MEMC. Hepatotoxic rats pretreated with NAC or MEMC exhibited significant decrease (P<0.05) in ALT and AST enzymes level. Moreover, the extract also exhibited good antioxidant activity. In conclusion, MEMC exerts potential hepatoprotective activity that could be partly attributed to its antioxidant activity and, thus warrants further investigations.
    Matched MeSH terms: Interleukin-6/metabolism
  12. Razali FN, Ismail A, Abidin NZ, Shuib AS
    PLoS One, 2014;9(10):e108988.
    PMID: 25299340 DOI: 10.1371/journal.pone.0108988
    The polysaccharide fraction from Solanum nigrum Linne has been shown to have antitumor activity by enhancing the CD4+/CD8+ ratio of the T-lymphocyte subpopulation. In this study, we analyzed a polysaccharide extract of S. nigrum to determine its modulating effects on RAW 264.7 murine macrophage cells since macrophages play a key role in inducing both innate and adaptive immune responses. Crude polysaccharide was extracted from the stem of S. nigrum and subjected to ion-exchange chromatography to partially purify the extract. Five polysaccharide fractions were then subjected to a cytotoxicity assay and a nitric oxide production assay. To further analyze the ability of the fractionated polysaccharide extract to activate macrophages, the phagocytosis activity and cytokine production were also measured. The polysaccharide fractions were not cytotoxic, but all of the fractions induced nitric oxide in RAW 264.7 cells. Of the five fractions tested, SN-ppF3 was the least toxic and also induced the greatest amount of nitric oxide, which was comparable to the inducible nitric oxide synthase expression detected in the cell lysate. This fraction also significantly induced phagocytosis activity and stimulated the production of tumor necrosis factor-α and interleukin-6. Our study showed that fraction SN-ppF3 could classically activate macrophages. Macrophage induction may be the manner in which polysaccharides from S. nigrum are able to prevent tumor growth.
    Matched MeSH terms: Interleukin-6/metabolism
  13. Shawish HB, Wong WY, Wong YL, Loh SW, Looi CY, Hassandarvish P, et al.
    PLoS One, 2014;9(6):e100933.
    PMID: 24977407 DOI: 10.1371/journal.pone.0100933
    BACKGROUND: The biological properties of thiosemicarbazone have been widely reported. The incorporation of some transition metals such as Fe, Ni and Cu to thiosemicarbazone complexes is known to enhance its biological effects. In this study, we incorporated nickel(II) ions into thiosemicarbazone with N4-substitution groups H3L (H; H3L1, CH3; H3L2, C6H5; H3L3 and C2H5; H3L4) and examined its potential anti-inflammatory activity.

    METHODOLOGY/PRINCIPAL FINDINGS: Four ligands (1-4) and their respective nickel-containing complexes (5-8) were synthesized and characterized. The compounds synthesized were tested for their effects on NF-κB nuclear translocation, pro-inflammatory cytokines secretion and NF-κB transactivation activity. The active compound was further evaluated on its ability to suppress carrageenan-induced acute inflammation in vivo. A potential binding target of the active compound was also predicted by molecular docking analysis.

    CONCLUSIONS/SIGNIFICANCE: Among all synthesized compounds tested, we found that complex [Ni(H2L1)(PPh3)]Cl (5) (complex 5), potently inhibited IκBα degradation and NF-κB p65 nuclear translocation in LPS-stimulated RAW264.7 cells as well as TNFα-stimulated HeLa S3 cells. In addition, complex 5 significantly down-regulated LPS- or TNFα-induced transcription of NF-κB target genes, including genes that encode the pro-inflammatory cytokines TNFα, IFNβ and IL6. Luciferase reporter assays confirmed that complex 5 inhibited the transactivation activity of NF-κB. Furthermore, the anti-inflammatory effect of complex 5 was also supported by its suppressive effect on carrageenan-induced paw edema formation in wild type C57BL/6 mice. Interestingly, molecular docking study showed that complex 5 potentially interact with the active site of IKKβ. Taken together, we suggest complex 5 as a novel NF-κB inhibitor with potent anti-inflammatory effects.

    Matched MeSH terms: Interleukin-6/metabolism
  14. Zhang Y, Yan W, Collins MA, Bednar F, Rakshit S, Zetter BR, et al.
    Cancer Res, 2013 Oct 15;73(20):6359-74.
    PMID: 24097820 DOI: 10.1158/0008-5472.CAN-13-1558-T
    Pancreatic cancer, one of the deadliest human malignancies, is almost invariably associated with the presence of an oncogenic form of Kras. Mice expressing oncogenic Kras in the pancreas recapitulate the stepwise progression of the human disease. The inflammatory cytokine interleukin (IL)-6 is often expressed by multiple cell types within the tumor microenvironment. Here, we show that IL-6 is required for the maintenance and progression of pancreatic cancer precursor lesions. In fact, the lack of IL-6 completely ablates cancer progression even in presence of oncogenic Kras. Mechanistically, we show that IL-6 synergizes with oncogenic Kras to activate the reactive oxygen species detoxification program downstream of the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) signaling cascade. In addition, IL-6 regulates the inflammatory microenvironment of pancreatic cancer throughout its progression, providing several signals that are essential for carcinogenesis. Thus, IL-6 emerges as a key player at all stages of pancreatic carcinogenesis and a potential therapeutic target.
    Matched MeSH terms: Interleukin-6/metabolism*
  15. Barathan M, Mariappan V, Shankar EM, Abdullah BJ, Goh KL, Vadivelu J
    Cell Death Dis, 2013;4:e697.
    PMID: 23807226 DOI: 10.1038/cddis.2013.219
    Photodynamic therapy (PDT) has emerged as a capable therapeutic modality for the treatment of cancer. PDT is a targeted cancer therapy that reportedly leads to tumor cell apoptosis and/or necrosis by facilitating the secretion of certain pro-inflammatory cytokines and expression of multiple apoptotic mediators in the tumor microenvironment. In addition, PDT also triggers oxidative stress that directs tumor cell killing and activation of inflammatory responses. However, the cellular and molecular mechanisms underlying the role of PDT in facilitating tumor cell apoptosis remain ambiguous. Here, we investigated the ability of PDT in association with hypericin (HY) to induce tumor cell apoptosis by facilitating the induction of reactive oxygen species (ROS) and secretion of Th1/Th2/Th17 cytokines in human hepatocellular liver carcinoma cell line (HepG2) cells. To discover if any apoptotic mediators were implicated in the enhancement of cell death of HY-PDT-treated tumor cells, selected gene profiling in response to HY-PDT treatment was implemented. Experimental results showed that interleukin (IL)-6 was significantly increased in all HY-PDT-treated cells, especially in 1 μg/ml HY-PDT, resulting in cell death. In addition, quantitative real-time PCR analysis revealed that the expression of apoptotic genes, such as BH3-interacting-domain death agonist (BID), cytochrome complex (CYT-C) and caspases (CASP3, 6, 7, 8 and 9) was remarkably higher in HY-PDT-treated HepG2 cells than the untreated HepG2 cells, entailing that tumor destruction of immune-mediated cell death occurs only in PDT-treated tumor cells. Hence, we showed that HY-PDT treatment induces apoptosis in HepG2 cells by facilitating cytotoxic ROS, and potentially recruits IL-6 and apoptosis mediators, providing additional hints for the existence of alternative mechanisms of anti-tumor immunity in hepatocellular carcinoma, which contribute to long-term suppression of tumor growth following PDT.
    Matched MeSH terms: Interleukin-6/metabolism
  16. Shu MH, Appleton D, Zandi K, AbuBakar S
    PMID: 23497105 DOI: 10.1186/1472-6882-13-61
    Gracilaria changii (Xia et Abbott) Abbott, Zhang et Xia, a red algae commonly found in the coastal areas of Malaysia is traditionally used for foods and for the treatment of various ailments including inflammation and gastric ailments. The aim of the study was to investigate anti-inflammatory, gastroprotective and anti-ulcerogenic activities of a mass spectrometry standardized methanolic extract of Gracilaria changii.
    Matched MeSH terms: Interleukin-6/metabolism
  17. Fonseka M, Ramasamy R, Tan BC, Seow HF
    Cell Biol Int, 2012 Sep;36(9):793-801.
    PMID: 22335239 DOI: 10.1042/CBI20110595
    hUCB-MSC (human umbilical cord blood-derived mesenchymal stem cells) offer an attractive alternative to bone marrow-derived MSC for cell-based therapy by being less invasive a source of biological material. We have evaluated the effect of hUCB-MSC on the proliferation of K562 (an erythromyeloblastoid cell line) and the cytokine secretion pattern of hUCB-MSC. Co-culturing of hUCB-MSC and K562 resulted in inhibition of proliferation of K562 in a dose-dependent manner. However, the anti-proliferative effect was reduced in transwells, suggesting the importance of direct cell-to-cell contact. hUCB-MSC inhibited proliferation of K562, arresting them in the G0 /G1 phase. NO (nitric oxide) was not involved in the hUCB-MSC-mediated tumour suppression. The presence of IL-6 (interleukin 6) and IL-8 were obvious in the hUCB-MSC conditioned media, but no significant increase was found in 29 other cytokines. Th1 cytokines, IFNα (interferon α), Th2 cytokine IL-4 and Th17 cytokine, IL-17 were not secreted by hUCB-MSC. There was an increase in the number of hUCB-MSC expressing the latent membrane-bound form of TGFβ1 co-cultured with K562. The anti-proliferative effect of hUCB-MSC was due to arrest of the growth of K562 in the G0 /G1 phase. The mechanisms underlying increased IL-6 and IL-8 secretion and LAP (latency-associated peptide; TGFβ1) by hUCB-MSC remains unknown.
    Matched MeSH terms: Interleukin-6/metabolism*
  18. Taha MM, Salga MS, Ali HM, Abdulla MA, Abdelwahab SI, Hadi AH
    J Ethnopharmacol, 2012 May 7;141(1):273-81.
    PMID: 22374081 DOI: 10.1016/j.jep.2012.02.030
    Turnera diffusa Willd. ex Schult. has been used for the treatment of several human disorders including peptic ulcer.
    Matched MeSH terms: Interleukin-6/metabolism
  19. Abdelwahab SI, Abdul AB, Zain ZN, Hadi AH
    Int Immunopharmacol, 2012 Apr;12(4):594-602.
    PMID: 22330084 DOI: 10.1016/j.intimp.2012.01.014
    Interleukin-6 is one of the factors affecting sensitivity to cytotoxic agents. Therefore, the current study was designed to investigate the role of IL-6 and IL6 receptors in the cytotoxic effects of zerumbone in ovarian and cervical cancer cell lines (Caov-3 and HeLa, respectively). Exposure of both cancer cells to zerumbone or cisplatin demonstrated growth inhibition at a dose-dependent manner as determined by the MTT (3-[4,5-dimethylthiazol-2-yl]-2,Sdiphenyltetrazolium bromide) reduction assay. Both laser scanning confocal microscopy and TUNEL assay showed typical apoptotic features in treated cells. The studies conducted seems to suggest that zerumbone induces cell death by stimulating apoptosis better than cisplatin, based on the significantly higher percentage of apoptotic cells in zerumbone's treated cancer cells as compared to cisplatin. In addition, zerumbone and cisplatin arrest cancer cells at G2/M phase as analyzed by flow cytometry. Our results indicated that zerumbone significantly decreased the levels of IL-6 secreted by both cancer cells. In contrast, HeLa and Caov-3 cells were still sensitive to cisplatin and zerumbone, even in the presence of exogenous IL-6. However, membrane-bound IL-6 receptor is still intact after zerumbone treatment as demonstrated using an immune-fluorescence technique. This study concludes that the compound, zerumbone inhibits both cancer cell growth through the induction of apoptosis, arrests cell cycle at G2/M phase and inhibits the secretion levels of IL-6 in both cancer cells. Therefore, zerumbone is a potential candidate as a useful chemotherapeutic agent in treating both cervical and ovarian cancers in future.
    Matched MeSH terms: Interleukin-6/metabolism*
  20. Makpol S, Zainuddin A, Chua KH, Yusof YA, Ngah WZ
    Clinics (Sao Paulo), 2012;67(2):135-43.
    PMID: 22358238
    OBJECTIVE: Human diploid fibroblasts undergo a limited number of cellular divisions in culture and progressively reach a state of irreversible growth arrest, a process termed cellular aging. The beneficial effects of vitamin E in aging have been established, but studies to determine the mechanisms of these effects are ongoing. This study determined the molecular mechanism of γ-tocotrienol, a vitamin E homolog, in the prevention of cellular aging in human diploid fibroblasts using the expression of senescence-associated genes.

    METHODS: Primary cultures of young, pre-senescent, and senescent fibroblast cells were incubated with γ-tocotrienol for 24 h. The expression levels of ELN, COL1A1, MMP1, CCND1, RB1, and IL6 genes were determined using the quantitative real-time polymerase chain reaction. Cell cycle profiles were determined using a FACSCalibur Flow Cytometer.

    RESULTS: The cell cycle was arrested in the G(0)/G(1) phase, and the percentage of cells in S phase decreased with senescence. CCND1, RB1, MMP1, and IL6 were upregulated in senescent fibroblasts. A similar upregulation was not observed in young cells. Incubation with γ-tocotrienol decreased CCND1 and RB1 expression in senescent fibroblasts, decreased cell populations in the G(0)/G(1) phase and increased cell populations in the G(2)/M phase. γ-Tocotrienol treatment also upregulated ELN and COL1A1 and downregulated MMP1 and IL6 expression in young and senescent fibroblasts.

    CONCLUSION: γ-Tocotrienol prevented cellular aging in human diploid fibroblasts, which was indicated by the modulation of the cell cycle profile and senescence-associated gene expression.

    Matched MeSH terms: Interleukin-6/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links