Displaying publications 21 - 40 of 45 in total

Abstract:
Sort:
  1. Adam A, Marzuki A, Ngah WZ, Top GM
    Pharmacol. Toxicol., 1996 Dec;79(6):334-9.
    PMID: 9000262
    The hepatic and pulmonary effects of nitrofurantoin (40 mg/kg, intraperitoneally) were determined at 4 and 24 hr following its administration in mice fed for 10 weeks with a vitamin E sufficient, deficient or enriched diet. Liver glutathione (GSH) was reduced by nitrofurantoin at 4 hr but was unchanged 20 hr later. Nitrofurantoin did not affect liver glutathione peroxidase, glutathione reductase or superoxide dismutase activities. Liver catalase activities were decreased by nitrofurantoin at 4 hr. Lung GSH levels were increased whilst glutathione peroxidase activity was decreased at 4 and 24 hr. Lung glutathione reductase activity was reduced in certain groups. Nitrofurantoin did not affect lung superoxide dismutase, but catalase was decreased at 24 hr. Liver malondialdehyde levels were increased by nitrofurantoin in the vitamin E deficient group whilst lung malondialdehyde levels remained unchanged. Both liver and lung malondialdehyde levels were unaffected by vitamin E supplementation when compared to the vitamin E-sufficient group. These results suggest that nitrofurantoin (40 mg/kg) was deleterious to the liver and lung. Nitrofurantoin-induced lipid peroxidation was seen in vitamin E deficiency but an increase in dietary vitamin E content did not provide additional protection compared to the recommended daily allowance. The antioxidant activities of alpha-tocopherol and gamma-enriched tocotrienol were similar.
    Matched MeSH terms: Lung/metabolism
  2. Ridzwan BH, Waton NG
    PMID: 1982867
    1. Oral administration of [14C]histamine induced the presence of small amounts of [14C]histamine in stomach and ileal tissues of control guinea-pigs. In contrast, much larger amounts were found after 8 h infusion. 2. Similar amounts of [14C]histamine were found in the tissues when [14C]histamine was given by intravenous infusion from 24-30 h after chlorpromazine injection.
    Matched MeSH terms: Lung/metabolism
  3. Lee LY, Hew GSY, Mehta M, Shukla SD, Satija S, Khurana N, et al.
    Life Sci, 2021 Feb 15;267:118973.
    PMID: 33400932 DOI: 10.1016/j.lfs.2020.118973
    Eosinophils are bi-lobed, multi-functional innate immune cells with diverse cell surface receptors that regulate local immune and inflammatory responses. Several inflammatory and infectious diseases are triggered with their build up in the blood and tissues. The mobilization of eosinophils into the lungs is regulated by a cascade of processes guided by Th2 cytokine generating T-cells. Recruitment of eosinophils essentially leads to a characteristic immune response followed by airway hyperresponsiveness and remodeling, which are hallmarks of chronic respiratory diseases. By analysing the dynamic interactions of eosinophils with their extracellular environment, which also involve signaling molecules and tissues, various therapies have been invented and developed to target respiratory diseases. Having entered clinical testing, several eosinophil targeting therapeutic agents have shown much promise and have further bridged the gap between theory and practice. Moreover, researchers now have a clearer understanding of the roles and mechanisms of eosinophils. These factors have successfully assisted molecular biologists to block specific pathways in the growth, migration and activation of eosinophils. The primary purpose of this review is to provide an overview of the eosinophil biology with a special emphasis on potential pharmacotherapeutic targets. The review also summarizes promising eosinophil-targeting agents, along with their mechanisms and rationale for use, including those in developmental pipeline, in clinical trials, or approved for other respiratory disorders.
    Matched MeSH terms: Lung/metabolism
  4. Liam CK, Mallawathantri S, Fong KM
    Respirology, 2020 09;25(9):933-943.
    PMID: 32335992 DOI: 10.1111/resp.13823
    Molecular biomarker testing of advanced-stage NSCLC is now considered standard of care and part of the diagnostic algorithm to identify subsets of patients for molecular-targeted treatment. Tumour tissue biopsy is essential for an accurate initial diagnosis, determination of the histological subtype and for molecular testing. With the increasing use of small biopsies and cytological specimens for diagnosis and the need to identify an increasing number of predictive biomarkers, proper management of the limited amount of sampling materials available is important. Many patients with advanced NSCLC do not have enough tissue for molecular testing and/or do not have a biopsy-amenable lesion and/or do not want to go through a repeat biopsy given the potential risks. Molecular testing can be difficult or impossible if the sparse material from very small biopsy specimens has already been exhausted for routine diagnostic purposes. A limited diagnostic workup is recommended to preserve sufficient tissue for biomarker testing. In addition, tumour biopsies are limited by tumour heterogeneity, particularly in the setting of disease resistance, and thus may yield false-negative results. Hence, there have been considerable efforts to determine if liquid biopsy in which molecular alterations can be non-invasively identified in plasma cell-free ctDNA, a potential surrogate for the entire tumour genome, can overcome the issues with tissue biopsies and replace the need for the latter.
    Matched MeSH terms: Carcinoma, Non-Small-Cell Lung/metabolism
  5. Othman N, Nagoor NH
    Int J Oncol, 2019 01;54(1):306-314.
    PMID: 30365047 DOI: 10.3892/ijo.2018.4602
    The silencing of Bcl‑xL in the non‑small cell lung cancer (NSCLC) cell line, A549, downregulates miR‑361‑5p expression. This study aimed to determine the biological effects of miR‑361‑5p on NSCLC, and to elucidate the molecular mechanisms through which apoptosis is regulated. MicroRNA (miRNA or miR) functional analyses were performed via transfection of miR‑361‑5p mimics and inhibitors, demonstrating that the inhibition of miR‑361‑5p induced the apoptosis of NSCLC cells. To elucidate the function of miR‑361‑5p in vivo, cells transfected with miR‑361‑5p inhibitors were microinjected into zebrafish embryos, and immunostained using antibodies to detect the active form of caspase‑3. Co-transfection with siBcl‑xL and miR‑361‑5p mimics illustrated the association between Bcl‑xL, miR‑361‑5p and apoptosis; miR‑361‑5p mimics blocked the apoptosis initiated by siBcl‑xL. Luciferase reporter assays identified mothers against decapentaplegic homolog 2 (SMAD2) as a novel target of miR‑361‑5p and the reduction of its protein level was validated by western blot analysis. To confirm the molecular mechanisms through which apoptosis is regulated, gene rescue experiments revealed that the ectopic expression of SMAD2 attenuated the inhibitory effects on apoptosis induced by miR‑361‑5p. In this study, to the best of our knowledge, we provide the first evidence that miR‑361‑5p functions as an oncomiR in A549 and SK‑LU‑1 cells through the regulation of SMAD2, suggesting that miR‑361‑5p may be employed as a potential therapeutic target for the miRNA-based therapy of NSCLC.
    Matched MeSH terms: Carcinoma, Non-Small-Cell Lung/metabolism
  6. Chellappan DK, Prasher P, Saravanan V, Vern Yee VS, Wen Chi WC, Wong JW, et al.
    Chem Biol Interact, 2022 Jan 05;351:109706.
    PMID: 34662570 DOI: 10.1016/j.cbi.2021.109706
    The challenges and difficulties associated with conventional drug delivery systems have led to the emergence of novel, advanced targeted drug delivery systems. Therapeutic drug delivery of proteins and peptides to the lungs is complicated owing to the large size and polar characteristics of the latter. Nevertheless, the pulmonary route has attracted great interest today among formulation scientists, as it has evolved into one of the important targeted drug delivery platforms for the delivery of peptides, and related compounds effectively to the lungs, primarily for the management and treatment of chronic lung diseases. In this review, we have discussed and summarized the current scenario and recent developments in targeted delivery of proteins and peptide-based drugs to the lungs. Moreover, we have also highlighted the advantages of pulmonary drug delivery over conventional drug delivery approaches for peptide-based drugs, in terms of efficacy, retention time and other important pharmacokinetic parameters. The review also highlights the future perspectives and the impact of targeted drug delivery on peptide-based drugs in the coming decade.
    Matched MeSH terms: Lung/metabolism*
  7. Mok PL, Anandasayanam ANK, Oscar David HM, Tong J, Farhana A, Khan MSA, et al.
    PLoS One, 2021;16(4):e0250552.
    PMID: 33914777 DOI: 10.1371/journal.pone.0250552
    Multiple matrix metalloproteinases have significant roles in tissue organization during lung development, and repair. Imbalance of proteinases may lead to chronic inflammation, changes in tissue structure, and are also highly associated to cancer development. The role of MMP20 is not well studied in lung organogenesis, however, it was previously shown to be present at high level in lung adenocarcinoma. The current study aimed to identify the functional properties of MMP20 on cell proliferation and motility in a lung adenocarcinoma in vitro cell model, and relate the interaction of MMP20 with other molecular signalling pathways in the lung cells after gaining tumoral properties. In this study, two different single guide RNA (sgRNAs) that specifically targeted on MMP20 sites were transfected into human lung adenocarcinoma A549 cells by using CRISPR-Cas method. Following that, the changes of PI3-K, survivin, and MAP-K mRNA gene expression were determined by Real-Time Polymerase Chain Reaction (RT-PCR). The occurrence of cell death was also examined by Acridine Orange/Propidium Iodide double staining. Meanwhile, the motility of the transfected cells was evaluated by wound healing assay. All the data were compared with non-transfected cells as a control group. Our results demonstrated that the transfection of the individual sgRNAs significantly disrupted the proliferation of the A549 cell line through suppression in the gene expression of PI3-K, survivin, and MAP-K. When compared to non-transfected cells, both experimental cell groups showed reduction in the migration rate, as reflected by the wider gaps in the wound healing assay. The current study provided preliminary evidence that MMP20 could have regulatory role on stemness and proliferative genes in the lung tissues and affect the cell motility. It also supports the notion that targeting MMP20 could be a potential treatment mode for halting cancer progression.
    Matched MeSH terms: Lung/metabolism
  8. Abdullah S, Wendy-Yeo WY, Hosseinkhani H, Hosseinkhani M, Masrawa E, Ramasamy R, et al.
    J Biomed Biotechnol, 2010;2010:284840.
    PMID: 20617146 DOI: 10.1155/2010/284840
    A novel cationic polymer, dextran-spermine (D-SPM), has been found to mediate gene expression in a wide variety of cell lines and in vivo through systemic delivery. Here, we extended the observations by determining the optimal conditions for gene expression of D-SPM/plasmid DNA (D-SPM/pDNA) in cell lines and in the lungs of BALB/c mice via instillation delivery. In vitro studies showed that D-SPM could partially protect pDNA from degradation by nuclease and exhibited optimal gene transfer efficiency at D-SPM to pDNA weight-mixing ratio of 12. In the lungs of mice, the levels of gene expression generated by D-SPM/pDNA are highly dependent on the weight-mixing ratio of D-SPM to pDNA, amount of pDNA in the complex, and the assay time postdelivery. Readministration of the complex at day 1 following the first dosing showed no significant effect on the retention and duration of gene expression. The study also showed that there was a clear trend of increasing size of the complexes as the amount of pDNA was increased, where the sizes of the D-SPM/pDNA complexes were within the nanometer range.
    Matched MeSH terms: Lung/metabolism*
  9. Lai CS, Mas RH, Nair NK, Majid MI, Mansor SM, Navaratnam V
    J Ethnopharmacol, 2008 Jun 19;118(1):14-20.
    PMID: 18436400 DOI: 10.1016/j.jep.2008.02.034
    Typhonium flagelliforme (Lodd.) Blume (Araceae) is a Malaysian plant used locally to combat cancer. In order to evaluate its antiproliferative activity in vitro and to possibly identify the active chemical constituents, a bioactivity guided study was conducted on the extracts of this plant.
    Matched MeSH terms: Carcinoma, Non-Small-Cell Lung/metabolism
  10. Rao GJ
    Asian Pac J Allergy Immunol, 2000 Sep;18(3):169-71.
    PMID: 11270474
    Lecithin, a major surface active substance of the surfactant system of the lung, was estimated in broncho-alveolar lavage (BAL) fluid in four groups of healthy adult male albino rats. Rats from group I were not administered any drug and acted as controls. Group II were administered histamine diphosphate. Group III were given H1 blocker (pyrilamine maleate) followed by histamine diphosphate. Group IV received H2 blocker (ranitidine hydrochloride) followed by histamine diphosphate. Lecithin content of BAL fluid in the control group was compared with that in the other three groups. A significant decrease in lecithin content was observed in the rats that received either histamine diphosphate or H1 blocker followed by histamine diphosphate. However, compared to control rats no significant difference in lecithin content was seen in rats that received H2 blocker followed by histamine diphosphate. The results clearly indicate that the decrease in surface active lecithin content in BAL fluid following administration of histamine diphosphate was unaffected by prior administration of H1 blocker, but was blocked by prior administration of H2 blocker. It was concluded that histamine induced decrease in lecithin content of BAL fluid is mediated through H2 receptors. Since the predominant source of intra-alveolar lecithin are Type II cells of the alveolar epithelium, It is possible that Type II cells have H2 receptors, stimulation of which resulted in decreased intraalveolar lecithin.
    Matched MeSH terms: Lung/metabolism
  11. Ho GF, Chai CS, Alip A, Wahid MIA, Abdullah MM, Foo YC, et al.
    BMC Cancer, 2019 Sep 09;19(1):896.
    PMID: 31500587 DOI: 10.1186/s12885-019-6107-1
    BACKGROUND: This study aimed to evaluate the efficacy, side-effects and resistance mechanisms of first-line afatinib in a real-world setting.

    METHODS: This is a multicenter observational study of first-line afatinib in Malaysian patients with epidermal growth factor receptor (EGFR)-mutant advanced non-small cell lung cancer (NSCLC). Patients' demographic, clinical and treatment data, as well as resistance mechanisms to afatinib were retrospectively captured. The statistical methods included Chi-squared test and independent t-test for variables, Kaplan-Meier curve and log-rank test for survival, and Cox regression model for multivariate analysis.

    RESULTS: Eighty-five patients on first-line afatinib from 1st October 2014 to 30th April 2018 were eligible for the study. EGFR mutations detected in tumors included exon 19 deletion in 80.0%, exon 21 L858R point mutation in 12.9%, and rare or complex EGFR mutations in 7.1% of patients. Among these patients, 18.8% had Eastern Cooperative Oncology Group performance status of 2-4, 29.4% had symptomatic brain metastases and 17.6% had abnormal organ function. Afatinib 40 mg or 30 mg once daily were the most common starting and maintenance doses. Only one-tenth of patients experienced severe side-effects with none having grade 4 toxicities. The objective response rate was 76.5% while the disease control rate was 95.3%. At the time of analysis, 56 (65.9%) patients had progression of disease (PD) with a median progression-free survival (mPFS) of 14.2 months (95% CI, 11.85-16.55 months). Only 12.5% of the progressed patients developed new symptomatic brain metastases. The overall survival (OS) data was not mature. Thirty-three (38.8%) patients had died with a median OS of 28.9 months (95% CI, 19.82-37.99 months). The median follow-up period for the survivors was 20.0 months (95% CI, 17.49-22.51 months). Of patients with PD while on afatinib, 55.3% were investigated for resistance mechanisms with exon 20 T790 M mutation detected in 42.0% of them.

    CONCLUSIONS: Afatinib is an effective first-line treatment for patients with EGFR-mutant advanced NSCLC with a good response rate and long survival, even in patients with unfavorable clinical characteristics. The side-effects of afatinib were manageable and T790 M mutation was the most common resistance mechanism causing treatment failure.

    Matched MeSH terms: Carcinoma, Non-Small-Cell Lung/metabolism
  12. Heng WS, Kruyt FAE, Cheah SC
    Int J Mol Sci, 2021 May 27;22(11).
    PMID: 34071790 DOI: 10.3390/ijms22115697
    Lung cancer is still one of the deadliest cancers, with over two million incidences annually. Prevention is regarded as the most efficient way to reduce both the incidence and death figures. Nevertheless, treatment should still be improved, particularly in addressing therapeutic resistance due to cancer stem cells-the assumed drivers of tumor initiation and progression. Phytochemicals in plant-based diets are thought to contribute substantially to lung cancer prevention and may be efficacious for targeting lung cancer stem cells. In this review, we collect recent literature on lung homeostasis, carcinogenesis, and phytochemicals studied in lung cancers. We provide a comprehensive overview of how normal lung tissue operates and relate it with lung carcinogenesis to redefine better targets for lung cancer stem cells. Nine well-studied phytochemical compounds, namely curcumin, resveratrol, quercetin, epigallocatechin-3-gallate, luteolin, sulforaphane, berberine, genistein, and capsaicin, are discussed in terms of their chemopreventive and anticancer mechanisms in lung cancer and potential use in the clinic. How the use of phytochemicals can be improved by structural manipulations, targeted delivery, concentration adjustments, and combinatorial treatments is also highlighted. We propose that lung carcinomas should be treated differently based on their respective cellular origins. Targeting quiescence-inducing, inflammation-dampening, or reactive oxygen species-balancing pathways appears particularly interesting.
    Matched MeSH terms: Lung/metabolism
  13. Surien O, Ghazali AR, Masre SF
    Histol Histopathol, 2020 Oct;35(10):1159-1170.
    PMID: 32893871 DOI: 10.14670/HH-18-247
    BACKGROUND: Lung cancer is the leading cause of cancer-related deaths, and squamous cell carcinoma (SCC) is one of the most common types of lung cancer. Chemoprevention of lung cancer has gained increasing popularity as an alternative to treatment in reducing the burden of lung cancer. Pterostilbene (PS) may be developed as a chemopreventive agent due to its pharmacological activities, such as anti-proliferative, anti-inflammatory and antioxidant properties. This study aimed to investigate the effect of PS on the development of lung SCC in the mouse model.

    METHODS: A total of 24 seven-week-old female Balb/C mice were randomly categorised into four groups, including two control groups comprising the N-nitroso-trischloroethylurea (NTCU)-induced lung SCC and vehicle control (VC) groups and two treatment groups comprising the 10mg/kg PS (PS10) and 50mg/kg PS (PS50) groups. All lung organs were harvested at week 26 for histopathological analysis.

    RESULTS: All PS treatment groups showed chemopreventive activity by inhibiting the progression of lung SCC formation with PS10, resulting in mild hyperplasia, and PS50 was completely reversed in the normal bronchial epithelium layer compared with the VC group. PS treatment also reduced the expression of cytokeratin 5/6 in the bronchial epithelium layer. Both PS10 and PS50 significantly reduced the epithelium thickness compared to the NTCU group (p<0.05). PS is a potential chemopreventive agent against lung SCC growth by suppressing the progression of pre-malignant lesions and reducing the thickness of the bronchial epithelium.

    CONCLUSIONS: The underlying molecular mechanisms of PS in lung SCC should be further studied.

    Matched MeSH terms: Lung/metabolism
  14. Lipsa D, Barrero-Moreno J, Coelhan M
    Chemosphere, 2018 Jan;191:937-945.
    PMID: 29145138 DOI: 10.1016/j.chemosphere.2017.10.065
    Limonene oxidation products (LOPs) have gained interest on their harmful health effects over time. Recently, studies have shown that the selected LOPs: 4-oxopentanal (4-OPA), 3-isopropenyl-6-oxo-heptanal (IPOH) and 4-acetyl-1-methylcyclohexene (4-AMCH) have sensory irritation effects in mice and inflammatory effects in human lung cells. This study was therefore undertaken to investigate the potential capacity of 4-OPA, IPOH and 4-AMCH to cause cell membrane damage, oxidative stress and inflammation in human bronchial (16HBE14o-) and alveolar (A549) epithelial cell lines. Overall results suggest that 4-OPA, IPOH have cytotoxic effects on human lung cells that might be mediated by ROS: the highest concentration applied of IPOH [500 μM] enhanced ROS generation by 100-fold ± 7.7 (A549) and 230-fold ± 19.9 (16HBE14o-) compared to the baseline. 4-OPA [500 μM] increased ROS levels by 1.4-fold ± 0.3 (A549) and by 127-fold ± 10.5 (16HBE14o-), while treatment with 4-AMCH [500 μM] led to 0.9-fold ± 0.2 (A549) and 49-fold ± 12.8 (16HBE14o-) increase. IPOH [500 μM] caused a decrease in the thiol-state balance (e.g. after 2 h, GSH:GSSG was reduced by 37% compared to the untreated 16HBE14o-cells). 4-OPA [500 μM] decreased the GSH:GSSG by 1.3-fold change in A549 cells and 1.4-fold change in 16HBE14o-cells. No statistically significant decrease in the GSH:GSSG in A549 and 16HBE14o-cell lines was observed for 4-AMCH [500 μM]. In addition, IPOH and 4-OPA [31.2 μM] increased the amount of the inflammatory markers: RANTES, VEGF and EGF. On the other hand, 4-AMCH [31.2 μM] did not show inflammatory effects in A549 or 16HBE14o-cells. The 4-OPA, IPOH and 4-AMCH treatment concentration and time-dependently induce oxidative stress and/or alteration of inflammatory markers on human bronchial and alveolar cell lines.
    Matched MeSH terms: Lung/metabolism
  15. Wan Mohd Tajuddin WNB, Abas F, Othman I, Naidu R
    Int J Mol Sci, 2021 Jul 10;22(14).
    PMID: 34299042 DOI: 10.3390/ijms22147424
    Diarylpentanoid (DAP), an analog that was structurally modified from a naturally occurring curcumin, has shown to enhance anticancer efficacy compared to its parent compound in various cancers. This study aims to determine the cytotoxicity, antiproliferative, and apoptotic activity of diarylpentanoid MS13 on two subtypes of non-small cell lung cancer (NSCLC) cells: squamous cell carcinoma (NCI-H520) and adenocarcinoma (NCI-H23). Gene expression analysis was performed using Nanostring PanCancer Pathways Panel to determine significant signaling pathways and targeted genes in these treated cells. Cytotoxicity screening revealed that MS13 exhibited greater inhibitory effect in NCI-H520 and NCI-H23 cells compared to curcumin. MS13 induced anti-proliferative activity in both cells in a dose- and time-dependent manner. Morphological analysis revealed that a significant number of MS13-treated cells exhibited apoptosis. A significant increase in caspase-3 activity and decrease in Bcl-2 protein concentration was noted in both MS13-treated cells in a time- and dose-dependent manner. A total of 77 and 47 differential expressed genes (DEGs) were regulated in MS13 treated-NCI-H520 and NCI-H23 cells, respectively. Among the DEGs, 22 were mutually expressed in both NCI-H520 and NCI-H23 cells in response to MS13 treatment. The top DEGs modulated by MS13 in NCI-H520-DUSP4, CDKN1A, GADD45G, NGFR, and EPHA2-and NCI-H23 cells-HGF, MET, COL5A2, MCM7, and GNG4-were highly associated with PI3K, cell cycle-apoptosis, and MAPK signaling pathways. In conclusion, MS13 may induce antiproliferation and apoptosis activity in squamous cell carcinoma and adenocarcinoma of NSCLC cells by modulating DEGs associated with PI3K-AKT, cell cycle-apoptosis, and MAPK pathways. Therefore, our present findings could provide an insight into the anticancer activity of MS13 and merits further investigation as a potential anticancer agent for NSCLC cancer therapy.
    Matched MeSH terms: Carcinoma, Non-Small-Cell Lung/metabolism
  16. Leon AJ, Borisevich V, Boroumand N, Seymour R, Nusbaum R, Escaffre O, et al.
    PLoS Negl Trop Dis, 2018 03;12(3):e0006343.
    PMID: 29538374 DOI: 10.1371/journal.pntd.0006343
    Henipavirus infection causes severe respiratory and neurological disease in humans that can be fatal. To characterize the pathogenic mechanisms of henipavirus infection in vivo, we performed experimental infections in ferrets followed by genome-wide gene expression analysis of lung and brain tissues. The Hendra, Nipah-Bangladesh, and Nipah-Malaysia strains caused severe respiratory and neurological disease with animals succumbing around 7 days post infection. Despite the presence of abundant viral shedding, animal-to-animal transmission did not occur. The host gene expression profiles of the lung tissue showed early activation of interferon responses and subsequent expression of inflammation-related genes that coincided with the clinical deterioration. Additionally, the lung tissue showed unchanged levels of lymphocyte markers and progressive downregulation of cell cycle genes and extracellular matrix components. Infection in the brain resulted in a limited breadth of the host responses, which is in accordance with the immunoprivileged status of this organ. Finally, we propose a model of the pathogenic mechanisms of henipavirus infection that integrates multiple components of the host responses.
    Matched MeSH terms: Lung/metabolism
  17. Zakaria N, Yusoff NM, Zakaria Z, Lim MN, Baharuddin PJ, Fakiruddin KS, et al.
    BMC Cancer, 2015;15:84.
    PMID: 25881239 DOI: 10.1186/s12885-015-1086-3
    Despite significant advances in staging and therapies, lung cancer remains a major cause of cancer-related lethality due to its high incidence and recurrence. Clearly, a novel approach is required to develop new therapies to treat this devastating disease. Recent evidence indicates that tumours contain a small population of cells known as cancer stem cells (CSCs) that are responsible for tumour maintenance, spreading and resistant to chemotherapy. The genetic composition of CSCs so far is not fully understood, but manipulation of the specific genes that maintain their integrity would be beneficial for developing strategies to combat cancer. Therefore, the goal of this study isto identify the transcriptomic composition and biological functions of CSCs from non-small cell lung cancer (NSCLC).
    Matched MeSH terms: Carcinoma, Non-Small-Cell Lung/metabolism
  18. Ong LC, Tan YF, Tan BS, Chung FF, Cheong SK, Leong CO
    Toxicol Appl Pharmacol, 2017 08 15;329:347-357.
    PMID: 28673683 DOI: 10.1016/j.taap.2017.06.024
    Single-walled carbon nanotubes (SWCNTs) are carbon-based nanomaterials that possess immense industrial potential. Despite accumulating evidence that exposure to SWCNTs might be toxic to humans, our understanding of the mechanisms for cellular toxicity of SWCNTs remain limited. Here, we demonstrated that acute exposure of short (1-3μm) and regular-length (5-30μm) pristine, carboxylated or hydroxylated SWCNTs inhibited cell proliferation in human somatic and human stem cells in a cell type-dependent manner. The toxicity of regular-length pristine SWCNT was most evidenced in NP69>CYT00086>MCF-10A>MRC-5>HaCaT > HEK-293T>HepG2. In contrast, the short pristine SWCNTs were relatively less toxic in most of the cells being tested, except for NP69 which is more sensitive to short pristine SWCNTs as compared to regular-length pristine SWCNTs. Interestingly, carboxylation and hydroxylation of regular-length SWCNTs, but not the short SWCNTs, significantly reduced the cytotoxicity. Exposure of SWCNTs also induced caspase 3 and 9 activities, mitochondrial membrane depolarization, and significant apoptosis and necrosis in MRC-5 embryonic lung fibroblasts. In contrast, SWCNTs inhibited the proliferation of HaCaT human keratinocytes without inducing cell death. Further analyses by gene expression profiling and Connectivity Map analysis showed that SWCNTs induced a gene expression signature characteristic of heat shock protein 90 (HSP90) inhibition in MRC-5 cells, suggesting that SWCNTs may inhibit the HSP90 signaling pathway. Indeed, exposure of MRC-5 cells to SWCNTs results in a dose-dependent decrease in HSP90 client proteins (AKT, CDK4 and BCL2) and a concomitant increase in HSP70 expression. In addition, SWCNTs also significantly inhibited HSP90-dependent protein refolding. Finally, we showed that ectopic expression of HSP90, but not HSP40 or HSP70, completely abrogated the cytotoxic effects of SWCNTs, suggesting that SWCNT-induced cellular toxicity is HSP90 dependent. In summary, our findings suggest that the toxic effects of SWCNTs are mediated through inhibition of HSP90 in human lung fibroblasts and keratinocytes.
    Matched MeSH terms: Lung/metabolism
  19. Lee YZ, Shaari K, Cheema MS, Tham CL, Sulaiman MR, Israf DA
    Eur J Pharmacol, 2017 Feb 15;797:53-64.
    PMID: 28089919 DOI: 10.1016/j.ejphar.2017.01.011
    2,4,6-Trihydroxy-3-geranyl acetophenone (tHGA) is a synthetic compound that is naturally found in Melicope ptelefolia. We had previously demonstrated that parenteral administration of tHGA reduces pulmonary inflammation in OVA-sensitized mice. In this study, we evaluated the effect of orally administered tHGA upon airway remodeling in a murine model of chronic asthma. Female BALB/C mice were sensitized intraperitoneally with ovalbumin (OVA) on day 0, 7 and 14, followed by aerosolized 1% OVA 3 times per week for 6 weeks. Control groups were sensitized with saline. OVA sensitized animals were either treated orally with vehicle (saline with 1% DMSO and Tween 80), tHGA (80, 40, 20mg/kg) or zileuton (30mg/kg) 1h prior to each aerosolized OVA sensitization. On day 61, mice underwent methacholine challenge to determine airway hyperresponsiveness prior to collection of bronchoalveolar lavage (BAL) fluid and lung samples. BAL fluid inflammatory cell counts and cytokine concentrations were evaluated while histological analysis and extracellular matrix protein concentrations were determined on collected lung samples. Oral tHGA treatment attenuated airway hyperresponsiveness and inhibited airway remodeling in a dose-dependent fashion. tHGA's effect on airway remodeling could be attributed to the reduction of inflammatory cell infiltration and decreased expression of cytokines associated with airway remodeling. Oral administration of tHGA attenuates airway hyperresponsiveness and remodeling in OVA-induced BALB/c mice. tHGA is an interesting compound that should be evaluated further for its possible role as an alternative non-steroidal pharmacological approach in the management of asthma.
    Matched MeSH terms: Lung/metabolism
  20. Baharuddin P, Satar N, Fakiruddin KS, Zakaria N, Lim MN, Yusoff NM, et al.
    Oncol Rep, 2016 Jan;35(1):13-25.
    PMID: 26531053 DOI: 10.3892/or.2015.4371
    Natural compounds such as curcumin have the ability to enhance the therapeutic effectiveness of common chemotherapy agents through cancer stem-like cell (CSC) sensitisation. In the present study, we showed that curcumin enhanced the sensitivity of the double-positive (CD166+/EpCAM+) CSC subpopulation in non-small cell lung cancer (NSCLC) cell lines (A549 and H2170) to cisplatin-induced apoptosis and inhibition of metastasis. Our results revealed that initial exposure of NSCLC cell lines to curcumin (10-40 µM) markedly reduced the percentage of viability to an average of ~51 and ~54% compared to treatment with low dose cisplatin (3 µM) with only 94 and 86% in both the A549 and H2170 cells. Moreover, sensitisation of NSCLC cell lines to curcumin through combined treatment enhanced the single effect induced by low dose cisplatin on the apoptosis of the double-positive CSC subpopulation by 18 and 20% in the A549 and H2170 cells, respectively. Furthermore, we found that curcumin enhanced the inhibitory effects of cisplatin on the highly migratory CD166+/EpCAM+ subpopulation, marked by a reduction in cell migration to 9 and 21% in the A549 and H2170 cells, respectively, indicating that curcumin may increase the sensitivity of CSCs to cisplatin-induced migratory inhibition. We also observed that the mRNA expression of cyclin D1 was downregulated, while a substantial increased in p21 expression was noted, followed by Apaf1 and caspase-9 activation in the double-positive (CD166+/EpCAM+) CSC subpopulation of A549 cells, suggested that the combined treatments induced cell cycle arrest, therefore triggering CSC growth inhibition via the intrinsic apoptotic pathway. In conclusion, we provided novel evidence of the previously unknown therapeutic effects of curcumin, either alone or in combination with cisplatin on the inhibition of the CD166+/EpCAM+ subpopulation of NSCLC cell lines. This finding demonstrated the potential therapeutic approach of using curcumin that may enhance the effects of cisplatin by targeting the CSC subpopulation in NSCLC.
    Matched MeSH terms: Carcinoma, Non-Small-Cell Lung/metabolism*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links