Displaying publications 21 - 40 of 53 in total

Abstract:
Sort:
  1. Azri FA, Eissa S, Zourob M, Chinnappan R, Sukor R, Yusof NA, et al.
    Mikrochim Acta, 2020 04 12;187(5):266.
    PMID: 32279134 DOI: 10.1007/s00604-020-4218-7
    An electrochemical aptasensor is described for determination of the phytohormone of zearalenone (ZEA). The gold electrode was modified with ZEA via covalent attachment using cysteamine-hydrochloride and 1,4-phenylene diisocyanate linker. A truncated ZEA aptamer with a dissociation constant of 13.4 ± 2.1 nM was used in an aptasensor. The electrochemical property was investigated using square wave voltammetry for monitoring the change in the electron transfer using the ferro/ferricyanide system as redox probe. Under optimal experimental conditions, the response was best measured at a potential of 0.20 V (vs. Ag/AgCl). The signals depended on the competitive mechanism between the immobilised ZEA and free ZEA for the aptamer binding site. The aptasensor works in the range 0.01 to 1000 ng·mL-1 ZEA concentration, with a detection limit of 0.017 ng·mL-1. High degree of cross-reactivity with the other analogues of ZEA was observed, whereas none towards other mycotoxins. The aptasensor was further applied for the determination of ZEA in the extract of maize grain and showed good recovery percentages between 87 and 110%. Graphical abstract Schematic representation of the electrochemical determination of zearalenone based on indirect competitive assay. Step a Immobilisation of ZEA on the surface of gold electrode via covalent attachment, b competition for the ZEA aptamer binding site between immobilised and free ZEA, and c current signal of the binding event based on SWV technique.
    Matched MeSH terms: Immobilized Nucleic Acids/chemistry
  2. Nadzirah Sh, Azizah N, Hashim U, Gopinath SC, Kashif M
    PLoS One, 2015;10(10):e0139766.
    PMID: 26445455 DOI: 10.1371/journal.pone.0139766
    Nanoparticle-mediated bio-sensing promoted the development of novel sensors in the front of medical diagnosis. In the present study, we have generated and examined the potential of titanium dioxide (TiO2) crystalline nanoparticles with aluminium interdigitated electrode biosensor to specifically detect single-stranded E.coli O157:H7 DNA. The performance of this novel DNA biosensor was measured the electrical current response using a picoammeter. The sensor surface was chemically functionalized with (3-aminopropyl) triethoxysilane (APTES) to provide contact between the organic and inorganic surfaces of a single-stranded DNA probe and TiO2 nanoparticles while maintaining the sensing system's physical characteristics. The complement of the target DNA of E. coli O157:H7 to the carboxylate-probe DNA could be translated into electrical signals and confirmed by the increased conductivity in the current-to-voltage curves. The specificity experiments indicate that the biosensor can discriminate between the complementary sequences from the base-mismatched and the non-complementary sequences. After duplex formation, the complementary target sequence can be quantified over a wide range with a detection limit of 1.0 x 10(-13)M. With target DNA from the lysed E. coli O157:H7, we could attain similar sensitivity. Stability of DNA immobilized surface was calculated with the relative standard deviation (4.6%), displayed the retaining with 99% of its original response current until 6 months. This high-performance interdigitated DNA biosensor with high sensitivity, stability and non-fouling on a novel sensing platform is suitable for a wide range of biomolecular interactive analyses.
    Matched MeSH terms: Immobilized Nucleic Acids/genetics; Immobilized Nucleic Acids/chemistry
  3. Yang SK, Yusoff K, Ajat M, Wee CY, Yap PS, Lim SH, et al.
    Front Microbiol, 2021;12:635016.
    PMID: 33815320 DOI: 10.3389/fmicb.2021.635016
    Antibiotic-adjuvant combinatory therapy serves as a viable treatment option in addressing antibiotic resistance in the clinical setting. This study was carried out to assess and characterize the adjuvant potential and mode of action of linalool against carbapenemase-producing Klebsiella pneumoniae (KPC-KP). Linalool exhibited bactericidal activity alone (11,250 μg/ml) and in combination with meropenem (5,625 μg/ml). Comparative proteomic analysis showed significant reduction in the number of cytoplasmic and membrane proteins, indicating membrane damage in linalool-treated KPC-KP cells. Upregulation of oxidative stress regulator proteins and downregulation of oxidative stress-sensitive proteins indicated oxidative stress. Zeta potential measurement and outer membrane permeability assay revealed that linalool increases the bacterial surface charge as well as the membrane permeability. Intracellular leakage of nucleic acid and proteins was detected upon linalool treatment. Scanning and transmission electron microscopies further revealed the breakage of bacterial membrane and loss of intracellular materials. Linalool induced oxidative stress by generating reactive oxygen species (ROS) which initiates lipid peroxidation, leading to damage of the bacterial membrane. This leads to intracellular leakage, eventually killing the KPC-KP cells. Our study demonstrated that linalool possesses great potential in future clinical applications as an adjuvant along with existing antibiotics attributed to their ability in disrupting the bacterial membrane by inducing oxidative stress. This facilitates the uptake of antibiotics into the bacterial cells, enhancing bacterial killing.
    Matched MeSH terms: Nucleic Acids
  4. Yang SK, Yusoff K, Ajat M, Yap WS, Lim SE, Lai KS
    J Pharm Anal, 2021 Apr;11(2):210-219.
    PMID: 34012697 DOI: 10.1016/j.jpha.2020.05.014
    Mining of plant-derived antimicrobials is the major focus at current to counter antibiotic resistance. This study was conducted to characterize the antimicrobial activity and mode of action of linalyl anthranilate (LNA) against carbapenemase-producing Klebsiella pneumoniae (KPC-KP). LNA alone exhibited bactericidal activity at 2.5% (V/V), and in combination with meropenem (MPM) at 1.25% (V/V). Comparative proteomic analysis showed a significant reduction in the number of cytoplasmic and membrane proteins, indicating membrane damage in LNA-treated KPC-KP cells. Up-regulation of oxidative stress regulator proteins and down-regulation of oxidative stress-sensitive proteins indicated oxidative stress. Zeta potential measurement and outer membrane permeability assay revealed that LNA increases both bacterial surface charge and membrane permeability. Ethidium bromide influx/efflux assay showed increased uptake of ethidium bromide in LNA-treated cells, inferring membrane damage. Furthermore, intracellular leakage of nucleic acid and proteins was detected upon LNA treatment. Scanning and transmission electron microscopies again revealed the breakage of bacterial membrane and loss of intracellular materials. LNA was found to induce oxidative stress by generating reactive oxygen species (ROS) that initiate lipid peroxidation and damage the bacterial membrane. In conclusion, LNA generates ROS, initiates lipid peroxidation, and damages the bacterial membrane, resulting in intracellular leakage and eventually killing the KPC-KP cells.
    Matched MeSH terms: Nucleic Acids
  5. Foo PC, Nurul Najian AB, Muhamad NA, Ahamad M, Mohamed M, Yean Yean C, et al.
    BMC Biotechnol, 2020 Jun 22;20(1):34.
    PMID: 32571286 DOI: 10.1186/s12896-020-00629-8
    BACKGROUND: This study reports the analytical sensitivity and specificity of a Loop-mediated isothermal amplification (LAMP) and compares its amplification performance with conventional PCR, nested PCR (nPCR) and real-time PCR (qPCR). All the assays demonstrated in this study were developed based on Serine-rich Entamoeba histolytica protein (SREHP) gene as study model.

    RESULTS: A set of SREHP gene specific LAMP primers were designed for the specific detection of Entamoeba histolytica. This set of primers recorded 100% specificity when it was evaluated against 3 medically important Entamoeba species and 75 other pathogenic microorganisms. These primers were later modified for conventional PCR, nPCR and qPCR applications. Besides, 3 different post-LAMP analyses including agarose gel electrophoresis, nucleic acid lateral flow immunoassay and calcein-manganese dye techniques were used to compare their limit of detection (LoD). One E. histolytica trophozoite was recorded as the LoD for all the 3 post-LAMP analysis methods when tested with E. histolytica DNA extracted from spiked stool samples. In contrast, none of the PCR method outperformed LAMP as both qPCR and nPCR recorded LoD of 100 trophozoites while the LoD of conventional PCR was 1000 trophozoites.

    CONCLUSIONS: The analytical sensitivity comparison among the conventional PCR, nPCR, qPCR and LAMP reveals that the LAMP outperformed the others in terms of LoD and amplification time. Hence, LAMP is a relevant alternative DNA-based amplification platform for sensitive and specific detection of pathogens.

    Matched MeSH terms: Nucleic Acids
  6. Leong, Melody Pui Yee, Usman Bala, Lim, Chai Ling, Rozita Rosli, Cheah, Pike-See, Ling, King-Hwa
    Neuroscience Research Notes, 2018;1(1):21-41.
    MyJurnal
    Ts1Cje is a mouse model of Down syndrome (DS) with partial triplication of chromosome 16, which encompasses a high number of human chromosome 21 (HSA21) orthologous genes. The mouse model exhibits muscle weakness resembling hypotonia in DS individuals. The effect of extra gene dosages on muscle weakness or hypotonia in Ts1Cje and DS individuals remains unknown. To identify molecular dysregulation of the skeletal muscle, we compared the transcriptomic signatures of soleus and extensor digitorum longus (EDL) muscles between the adult Ts1Cje and disomic littermates. A total of 166 and 262 differentially expressed protein-coding genes (DEGs) were identified in the soleus and EDL muscles, respectively. The partial trisomy of MMU16 in Ts1Cje mice has a greater effect on gene expression in EDL. Top-down clustering analysis of all DEGs for represented functional ontologies revealed 5 functional clusters in soleus associated with signal transduction, development of reproductive system, nucleic acid biosynthesis, protein modification and metabolism as well as regulation of gene expression. On the other hand, only 3 functional clusters were observed for EDL namely neuron and cell development, protein modification and metabolic processes as well as ion transport. A total of 11 selected DEGs were validated using qPCR (disomic DEGs: Mansc1; trisomic DEGs: Itsn1, Rcan1, Synj1, Donson, Dyrk1a, Ifnar1, Ifnar2, Runx1, Sod1 and Tmem50b). The validated DEGs were implicated in neuromuscular junction signalling (Itsn1, Syn1), oxidative stress (Sod1, Runx1) and chronic inflammation processes (Runx1, Rcan1, Ifnar1, Ifnar2). Other validated DEGs have not been well-documented as involved in the skeletal muscle development or function, thus serve as interesting novel candidates for future investigations. To our knowledge, the study was the first attempt to determine the transcriptomic profiles of both soleus and EDL muscles in Ts1Cje mice. It provides new insights on the possible disrupted molecular pathways associated with hypotonia in DS individuals.
    Matched MeSH terms: Nucleic Acids
  7. Nagappan J, Chin CF, Angel LPL, Cooper RM, May ST, Low EL
    Biotechnol Lett, 2018 Dec;40(11-12):1541-1550.
    PMID: 30203158 DOI: 10.1007/s10529-018-2603-7
    The first and most crucial step of all molecular techniques is to isolate high quality and intact nucleic acids. However, DNA and RNA isolation from fungal samples are usually difficult due to the cell walls that are relatively unsusceptible to lysis and often resistant to traditional extraction procedures. Although there are many extraction protocols for Ganoderma species, different extraction protocols have been applied to different species to obtain high yields of good quality nucleic acids, especially for genome and transcriptome sequencing. Ganoderma species, mainly G. boninense causes the basal stem rot disease, a devastating disease that plagues the oil palm industry. Here, we describe modified DNA extraction protocols for G. boninense, G. miniatocinctum and G. tornatum, and an RNA extraction protocol for G. boninense. The modified salting out DNA extraction protocol is suitable for G. boninense and G. miniatocinctum while the modified high salt and low pH protocol is suitable for G. tornatum. The modified DNA and RNA extraction protocols were able to produce high quality genomic DNA and total RNA of ~ 140 to 160 µg/g and ~ 80 µg/g of mycelia respectively, for Single Molecule Real Time (PacBio Sequel® System) and Illumina sequencing. These protocols will benefit those studying the oil palm pathogens at nucleotide level.
    Matched MeSH terms: Nucleic Acids
  8. Wan Norhana, M. N., Masazurah A. R.
    MyJurnal
    Hepatitis A is a liver infection caused by the hepatitis A virus (HAV). Outbreaks of hepatitis A have been linked to the consumption of both raw and cooked shellfish. These outbreaks could induce a public confidence problem over shellfish safety and may result in important economic losses for the seafood industry. The work presented in this study investigated the presence of HAV in shellfish from Peninsular Malaysia. A total of 365 of cultured and wild shellfish from 36 sampling locations located throughout Peninsular Malaysia were examined using a commercial nucleic acid extraction and reverse transcription -polymerase chain reaction (RT-PCR) kit. HAV was not detected in almost all of the shellfish samples xamined. Only one cockle sample from Changkat, Seberang Perai was positive for HAV. The results suggest the absence of HAV or very low amount of HAV viral particles in most of the shellfish examined.
    Matched MeSH terms: Nucleic Acids
  9. Kurniawati S, Soedarsono S, Aulanni'am A, Mertaniasih NM
    Afr J Infect Dis, 2018;12(2):37-42.
    PMID: 30109284 DOI: 10.21010/ajid.v12i2.6
    Background: Mycobacterium tuberculosis Complex (MTBC) is a group of Mycobacterium that causes tuberculosis (TB). TB is an infectious disease that remains a global health problem. Indonesia is one of the five countries in the world where TB is the most prevalent and became the country with tle second largest rate of TB in 2014 and 2015. MTBC has high pathogenicity that can cause infections in animals and humans. The most common route of transmission is via airborne droplet nuclei and contact with animals or humans infected with TB. MTBC has many virulence factors. One of these factors is EccB5 that is encoded by eccB5 gene. EccB5 is a transmembrane protein-conserved membrane protein and could play a role in inducing damage in host cells, macrophage infection, and may correlate with active disease. The characterization of eccB5 gene needs to be studied to determine the nucleotide sequences, which may be associated with active disease. The aim of this research was to analyze the nuclotide sequences of eccB5 gene of MTBC from suspected pulmonary tuberculosis patients, SNPs of eccB5 gene and possible correlation with the disease, especially in Indonesia.

    Materials and Methods: Samples were collected from the Tuberculosis Laboratory, Clinical Microbiology of Dr. Soetomo Hospital Surabaya Indonesia. DNA extraction used boiling extraction method and continued nucleic acid amplification using PCR techniques. Primer pairs used eccB5 SK.. The positivity of DNA specific revealed amplicon in 1592 bp. PCR product was sequenced by 1st Base (First BASE Laboratories Sdn Bhd, Selangor, Malaysia). The sequence analysis used Genetyx-Win version 10.0 (Genetyx Corporation, Tokyo, Japan).

    Results: Total isolates of Mycobacterium spp. were 28 and those that showed positive MTBC were 24 isolates and 4 nontuberculosis mycobacteria (NTM) using immunochromatographic test (ICT). The amount of homology from MTBC using blast NCBI was 99%-100%. Two SNPs were found in position c.1277 which revealed replacement of amino acid in 426 of codon position.

    Conclusion: The sequence of eccB5 gene of MTBC showed high significant homology, while proposed non-synoymous single nucleotide polymorphisms (nsSNP) may associated with clinical outcomes.

    Matched MeSH terms: Nucleic Acids
  10. Hameed AM, Asiyanbi-H T, Idris M, Fadzillah N, Mirghani MES
    Trop Life Sci Res, 2018 Jul;29(2):213-227.
    PMID: 30112151 MyJurnal DOI: 10.21315/tlsr2018.29.2.15
    Gelatin is a very popular pharmaceutical and food ingredient and the most studied ingredient in Halal researches. Interest in source gelatin authentication is based on religious and cultural beliefs, food fraud prevention and health issues. Seven gelatin authentication methods that have been developed include: nucleic acid based, immunochemical, electrophoretic analysis, spectroscopic, mass-spectrometric, chromatographic-chemometric and chemisorption methods. These methods are time consuming, and require capital intensive equipment with huge running cost. Reliability of gelatin authentication methods is challenged mostly by transformation of gelatin during processing and close similarities among gelatin structures. This review concisely presents findings and challenges in this research area and suggests needs for more researches on development of rapid authentication method and process-transformed gelatins.
    Matched MeSH terms: Nucleic Acids
  11. Abdullah F, Khan Nor-Ashikin MN, Agarwal R, Kamsani YS, Abd Malek M, Bakar NS, et al.
    Asian J Androl, 2021 1 22;23(3):281-287.
    PMID: 33473013 DOI: 10.4103/aja.aja_81_20
    Diabetes mellitus (DM) is known to cause reproductive impairment. In men, it has been linked to altered sperm quality and testicular damage. Oxidative stress (OS) plays a pivotal role in the development of DM complications. Glutathione (GSH) is a part of a nonenzymatic antioxidant defense system that protects lipid, protein, and nucleic acids from oxidative damage. However, the protective effects of exogenous GSH on the male reproductive system have not been comprehensively examined. This study determined the impact of GSH supplementation in ameliorating the adverse effect of type 1 DM on sperm quality and the seminiferous tubules of diabetic C57BL/6NTac mice. GSH at the doses of 15 mg kg-1 and 30 mg kg-1 was given intraperitoneally to mice weekly for 6 consecutive weeks. The mice were then weighed, euthanized, and had their reproductive organs excised. The diabetic (D Group) showed significant impairment of sperm quality and testicular histology compared with the nondiabetic (ND Group). Diameters of the seminiferous lumen in diabetic mice treated with 15 mg kg-1 GSH (DGSH15) were decreased compared with the D Group. Sperm motility was also significantly increased in the DGSH15 Group. Improvement in testicular morphology might be an early indication of the protective roles played by the exogenous GSH in protecting sperm quality from effects of untreated type 1 DM or diabetic complications. Further investigation using different doses and different routes of GSH is necessary to confirm this suggestion.
    Matched MeSH terms: Nucleic Acids
  12. Ahmad Faris AN, Ahmad Najib M, Mohd Nazri MN, Hamzah ASA, Aziah I, Yusof NY, et al.
    Int J Environ Res Public Health, 2022 Aug 25;19(17).
    PMID: 36078284 DOI: 10.3390/ijerph191710570
    Water- and food-related health issues have received a lot of attention recently because food-poisoning bacteria, in particular, are becoming serious threats to human health. Currently, techniques used to detect these bacteria are time-consuming and laborious. To overcome these challenges, the colorimetric strategy is attractive because it provides simple, rapid and accurate sensing for the detection of Salmonella spp. bacteria. The aim of this study is to review the progress regarding the colorimetric method of nucleic acid for Salmonella detection. A literature search was conducted using three databases (PubMed, Scopus and ScienceDirect). Of the 88 studies identified in our search, 15 were included for further analysis. Salmonella bacteria from different species, such as S. Typhimurium, S. Enteritidis, S. Typhi and S. Paratyphi A, were identified using the colorimetric method. The limit of detection (LoD) was evaluated in two types of concentrations, which were colony-forming unit (CFU) and CFU per mL. The majority of the studies used spiked samples (53%) rather than real samples (33%) to determine the LoDs. More research is needed to assess the sensitivity and specificity of colorimetric nucleic acid in bacterial detection, as well as its potential use in routine diagnosis.
    Matched MeSH terms: Nucleic Acids*
  13. Damayanti TA, Alabi OJ, Rauf A, Naidu RA
    Plant Dis, 2010 Apr;94(4):478.
    PMID: 30754487 DOI: 10.1094/PDIS-94-4-0478B
    Yardlong bean (Vigna unguiculata subsp. sesquipedalis) is extensively cultivated in Indonesia for consumption as a green vegetable. During the 2008 season, a severe outbreak of a virus-like disease occurred in yardlong beans grown in farmers' fields in Bogor, Bekasi, Subang, Indramayu, and Cirebon of West Java, Tanggerang of Banten, and Pekalongan and Muntilan of Central Java. Leaves of infected plants showed severe mosaic to bright yellow mosaic and vein-clearing symptoms, and pods were deformed and also showed mosaic symptoms on the surface. In cv. 777, vein-clearing was observed, resulting in a netting pattern on symptomatic leaves followed by death of the plants as the season advanced. Disease incidence in the Bogor region was approximately 80%, resulting in 100% yield loss. Symptomatic leaf samples from five representative plants tested positive in antigen-coated plate-ELISA with potyvirus group-specific antibodies (AS-573/1; DSMZ, German Resource Center for Biological Material, Braunschweig, Germany) and antibodies to Cucumber mosaic virus (CMV; AS-0929). To confirm these results, viral nucleic acids eluted from FTA classic cards (FTA Classic Card, Whatman International Ltd., Maidstone, UK) were subjected to reverse transcription (RT)-PCR using potyvirus degenerate primers (CIFor: 5'-GGIVVIGTIGGIWSIGGIAARTCIAC-3' and CIRev: 5'-ACICCRTTYTCDATDATRTTIGTIGC-3') (3) and degenerate primers (CMV-1F: 5'-ACCGCGGGTCTTATTATGGT-3' and CMV-1R: 5' ACGGATTCAAACTGGGAGCA-3') specific for CMV subgroup I (1). A single DNA product of approximately 683 base pairs (bp) with the potyvirus-specific primers and a 382-bp fragment with the CMV-specific primers were amplified from ELISA-positive samples. These results indicated the presence of a potyvirus and CMV as mixed infections in all five samples. The amplified fragments specific to potyvirus (four samples) and CMV (three samples) were cloned separately into pCR2.1 (Invitrogen Corp., Carlsbad, CA). Two independent clones per amplicon were sequenced from both orientations. Pairwise comparison of these sequences showed 93 to 100% identity among the cloned amplicons produced using the potyvirus-specific primers (GenBank Accessions Nos. FJ653916, FJ653917, FJ653918, FJ653919, FJ653920, FJ653921, FJ653922, FJ653923, FJ653924, FJ653925, and FJ653926) and 92 to 97% with a corresponding nucleotide sequence of Bean common mosaic virus (BCMV) from Taiwan (No. AY575773) and 88 to 90% with BCMV sequences from China (No. AJ312438) and the United States (No. AY863025). The sequence analysis indicated that BCMV isolates from yardlong bean are more closely related to an isolate from Taiwan than with isolates from China and the United States. The CMV isolates (GenBank No. FJ687054) each were 100% identical and 96% identical with corresponding sequences of CMV subgroup I isolates from Thailand (No. AJ810264) and Malaysia (No. DQ195082). Both BCMV and CMV have been documented in soybean, mungbean, and peanut in East Java of Indonesia (2). Previously, BCMV, but not CMV, was documented on yardlong beans in Guam (4). To our knowledge, this study represents the first confirmed report of CMV in yardlong bean in Indonesia and is further evidence that BCMV is becoming established in Indonesia. References: (1) J. Aramburu et al. J. Phytopathol. 155:513, 2007. (2) S. K. Green et al. Plant Dis. 72:994, 1988. (3) C. Ha et al. Arch. Virol. 153:25, 2008. (4) G. C. Wall et al. Micronesica 29:101, 1996.
    Matched MeSH terms: Nucleic Acids
  14. Wong ZW, New SY
    Mikrochim Acta, 2022 Dec 08;190(1):16.
    PMID: 36480078 DOI: 10.1007/s00604-022-05591-0
    A fluorescence biosensor has been developed based on hybridisation chain reaction (HCR) amplification coupled with silver nanoclusters (AgNCs) for nucleic acid detection. The fluorescence was activated via end-to-end transfer of dark AgNCs caged within a DNA template to another DNA sequence that could enhance their red fluorescence emission at 611 nm. Such cluster-transfer approach allows us to introduce fluorogenic AgNCs as external signal transducers, thereby enabling HCR to perform in a predictable manner. The resulted HCR-AgNC biosensor was able to detect target DNA with a detection limit of 3.35 fM, and distinguish the DNA target from single-base mismatch sequences. Moreover, the bright red fluorescence emission was detectable with the naked eye, with concentration of target DNA down to 1 pM. The biosensor also performed well in human serum samples with good recovery. Overall, our cluster-transfer approach provides a good alternative to construct HCR-AgNC assay with less risk of circuit leakage and produce AgNCs in a controllable manner.
    Matched MeSH terms: Nucleic Acids*
  15. Lee JW, Ong EBB
    Front Cell Dev Biol, 2020;8:619126.
    PMID: 33511130 DOI: 10.3389/fcell.2020.619126
    Aging is a complex biological process that occurs in all living organisms. Aging is initiated by the gradual accumulation of biomolecular damage in cells leading to the loss of cellular function and ultimately death. Cellular senescence is one such pathway that leads to aging. The accumulation of nucleic acid damage and genetic alterations that activate permanent cell-cycle arrest triggers the process of senescence. Cellular senescence can result from telomere erosion and ribosomal DNA instability. In this review, we summarize the molecular mechanisms of telomere length homeostasis and ribosomal DNA stability, and describe how these mechanisms are linked to cellular senescence and longevity through lessons learned from budding yeast.
    Matched MeSH terms: Nucleic Acids
  16. Atchison S, Shilling H, Balgovind P, Machalek DA, Hawkes D, Garland SM, et al.
    J Appl Microbiol, 2021 Nov;131(5):2592-2599.
    PMID: 33942451 DOI: 10.1111/jam.15126
    AIM: Validate the Roche, MagNAPure96 (MP96) nucleic acid extraction platform for Seegene Anyplex II HPV28 (Anyplex28) detection of Human Papillomavirus.

    METHODS AND RESULTS: Comparisons were made for Anyplex28 genotyping from 115 cervical samples extracted on the Hamilton, STARlet and the MP96. Two DNA concentrations were used for the MP96, one matched for sample input to the STARlet and another 5× concentration (laboratory standard). Agreement of HPV detection was 89·8% (κ = 0·798; P = 0·007), with HPV detected in 10 more samples for the MP96. There was a high concordance of detection for any oncogenic HPV genotype (κ = 0·77; P = 0·007) and for any low-risk HPV genotype (κ = 0·85; P = 0·008). DNA extracted at laboratory standard had a lower overall agreement 85·2% (κ = 0·708; P 

    Matched MeSH terms: Nucleic Acids*
  17. Yew CT, Azari P, Choi JR, Li F, Pingguan-Murphy B
    Anal Chim Acta, 2018 Jun 07;1009:81-88.
    PMID: 29422135 DOI: 10.1016/j.aca.2018.01.016
    Point-of-care biosensors are important tools developed to aid medical diagnosis and testing, food safety and environmental monitoring. Paper-based biosensors, especially nucleic acid-based lateral flow assays (LFA), are affordable, simple to produce and easy to use in remote settings. However, the sensitivity of such assays to infectious diseases has always been a restrictive challenge. Here, we have successfully electrospun polycaprolactone (PCL) on nitrocellulose (NC) membrane to form a hydrophobic coating to reduce the flow rate and increase the interaction rate between the targets and gold nanoparticles-detecting probes conjugates, resulting in the binding of more complexes to the capture probes. With this approach, the sensitivity of the PCL electrospin-coated test strip has been increased by approximately ten-fold as compared to the unmodified test strip. As a proof of concept, this approach holds great potential for sensitive detection of targets at point-of-care testing.
    Matched MeSH terms: Nucleic Acids/analysis*
  18. Phan CW, Wang JK, Cheah SC, Naidu M, David P, Sabaratnam V
    Crit Rev Biotechnol, 2018 Aug;38(5):762-777.
    PMID: 29124970 DOI: 10.1080/07388551.2017.1399102
    Mushrooms have become increasingly important as a reliable food source. They have also been recognized as an important source of bioactive compounds of high nutritional and medicinal values. The nucleobases, nucleosides and nucleotides found in mushrooms play important roles in the regulation of various physiological processes in the human body via the purinergic and/or pyrimidine receptors. Cordycepin, a 3'-deoxyadenosine found in Cordyceps sinensis has received much attention as it possesses many medicinal values including anticancer properties. In this review, we provide a broad overview of the distribution of purine nucleobases (adenine and guanine); pyrimidine nucleobases (cytosine, uracil, and thymine); nucleosides (uridine, guanosine, adenosine and cytidine); as well as novel nucleosides/tides in edible and nonedible mushrooms. This review also discusses the latest research focusing on the successes, challenges, and future perspectives of the analytical methods used to determine nucleic acid constituents in mushrooms. Besides, the exotic taste and flavor of edible mushrooms are attributed to several nonvolatile and water-soluble substances, including the 5'-nucleotides. Therefore, we also discuss the total flavor 5'-nucleotides: 5'-guanosine monophosphate (5'-GMP), 5'-inosine monophosphate (5'-IMP), and 5'-xanthosine monophosphate (5'-XMP) in edible mushrooms.
    Matched MeSH terms: Nucleic Acids*
  19. Sekaran SD
    MyJurnal
    Dengue is an arthropod borne disease that has become important worldwide. There is still no specific drug available for treatment and also no protective vaccine that can be used. As such, specific diagnosis is essential to enable good management and prevention of large outbreaks. Diagnosis today in many countries is still based on serology though the detection of NS1 has slowly become incorporated. Diagnosis is critical for early intervention with specific preventive health measures to prevent fatalities and also to curtail spread and reduce economic losses. Serological assays mainly detect IgM which now as a single test is invalid unless a second sample is taken to confirm. As such to effectively diagnose dengue at all stages of infection, assays with two or more markers are required or two samples taken a few days apart. Other commonly used tests include NS1 detection, nucleic acid amplification and IgG detection. However the sensitivities of the current commercial kits vary quite considerably and have to be interpreted with caution. Hence knowledge of this disease is essential when conducting diagnostics for dengue.
    Matched MeSH terms: Nucleic Acids
  20. Lee WL, Huang JY, Shyur LF
    Oxid Med Cell Longev, 2013;2013:925804.
    PMID: 24454991 DOI: 10.1155/2013/925804
    Accumulation of oxidized nucleic acids causes genomic instability leading to senescence, apoptosis, and tumorigenesis. Phytoagents are known to reduce the risk of cancer development; whether such effects are through regulating the extent of nucleic acid oxidation remains unclear. Here, we outlined the role of reactive oxygen species in nucleic acid oxidation as a driving force in cancer progression. The consequential relationship between genome instability and cancer progression highlights the importance of modulation of cellular redox level in cancer management. Current epidemiological and experimental evidence demonstrate the effects and modes of action of phytoagents in nucleic acid oxidation and provide rationales for the use of phytoagents as chemopreventive or therapeutic agents. Vitamins and various phytoagents antagonize carcinogen-triggered oxidative stress by scavenging free radicals and/or activating endogenous defence systems such as Nrf2-regulated antioxidant genes or pathways. Moreover, metal ion chelation by phytoagents helps to attenuate oxidative DNA damage caused by transition metal ions. Besides, the prooxidant effects of some phytoagents pose selective cytotoxicity on cancer cells and shed light on a new strategy of cancer therapy. The "double-edged sword" role of phytoagents as redox regulators in nucleic acid oxidation and their possible roles in cancer prevention or therapy are discussed in this review.
    Matched MeSH terms: Nucleic Acids/metabolism*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links