Displaying publications 21 - 40 of 50 in total

Abstract:
Sort:
  1. Umar Mustapha M, Halimoon N, Wan Johari WL, Abd Shukor MY
    Molecules, 2020 Jun 16;25(12).
    PMID: 32560037 DOI: 10.3390/molecules25122771
    Extensive use of carbofuran insecticide harms the environment and human health. Carbofuran is an endocrine disruptor and has the highest acute toxicity to humans than all groups of carbamate pesticides used. Carbofuran is highly mobile in soil and soluble in water with a lengthy half-life (50 days). Therefore, it has the potential to contaminate groundwater and nearby water bodies after rainfall events. A bacterial strain BRC05 was isolated from agricultural soil characterized and presumptively identified as Enterobacter sp. The strain was immobilized using gellan gum as an entrapment material. The effect of different heavy metals and the ability of the immobilized cells to degrade carbofuran were compared with their free cell counterparts. The results showed a significant increase in the degradation of carbofuran by immobilized cells compared with freely suspended cells. Carbofuran was completely degraded within 9 h by immobilized cells at 50 mg/L, while it took 12 h for free cells to degrade carbofuran at the same concentration. Besides, the immobilized cells completely degraded carbofuran within 38 h at 100 mg/L. On the other hand, free cells degraded the compound in 68 h. The viability of the freely suspended cell and degradation efficiency was inhibited at a concentration greater than 100 mg/L. Whereas, the immobilized cells almost completely degraded carbofuran at 100 mg/L. At 250 mg/L concentration, the rate of degradation decreased significantly in free cells. The immobilized cells could also be reused for about nine cycles without losing their degradation activity. Hence, the gellan gum-immobilized cells of Enterobacter sp. could be potentially used in the bioremediation of carbofuran in contaminated soil.
    Matched MeSH terms: Polysaccharides, Bacterial
  2. Ahmad SA, Shamaan NA, Arif NM, Koon GB, Shukor MY, Syed MA
    World J Microbiol Biotechnol, 2012 Jan;28(1):347-52.
    PMID: 22806810 DOI: 10.1007/s11274-011-0826-z
    A locally isolated Acinetobacter sp. Strain AQ5NOL 1 was encapsulated in gellan gum and its ability to degrade phenol was compared with the free cells. Optimal phenol degradation was achieved at gellan gum concentration of 0.75% (w/v), bead size of 3 mm diameter (estimated surface area of 28.26 mm(2)) and bead number of 300 per 100 ml medium. At phenol concentration of 100 mg l(-1), both free and immobilized bacteria exhibited similar rates of phenol degradation but at higher phenol concentrations, the immobilized bacteria exhibited a higher rate of degradation of phenol. The immobilized cells completely degrade phenol within 108, 216 and 240 h at 1,100, 1,500 and 1,900 mg l(-1) phenol, respectively, whereas free cells took 240 h to completely degrade phenol at 1,100 mg l(-1). However, the free cells were unable to completely degrade phenol at higher concentrations. Overall, the rates of phenol degradation by both immobilized and free bacteria decreased gradually as the phenol concentration was increased. The immobilized cells showed no loss in phenol degrading activity after being used repeatedly for 45 cycles of 18 h cycle. However, phenol degrading activity of the immobilized bacteria experienced 10 and 38% losses after the 46 and 47th cycles, respectively. The study has shown an increased efficiency of phenol degradation when the cells are encapsulated in gellan gum.
    Matched MeSH terms: Polysaccharides, Bacterial
  3. Mohd Sauid S, Krishnan J, Huey Ling T, Veluri MV
    Biomed Res Int, 2013;2013:409675.
    PMID: 24350269 DOI: 10.1155/2013/409675
    Volumetric mass transfer coefficient (kLa) is an important parameter in bioreactors handling viscous fermentations such as xanthan gum production, as it affects the reactor performance and productivity. Published literatures showed that adding an organic phase such as hydrocarbons or vegetable oil could increase the kLa. The present study opted for palm oil as the organic phase as it is plentiful in Malaysia. Experiments were carried out to study the effect of viscosity, gas holdup, and kLa on the xanthan solution with different palm oil fractions by varying the agitation rate and aeration rate in a 5 L bench-top bioreactor fitted with twin Rushton turbines. Results showed that 10% (v/v) of palm oil raised the kLa of xanthan solution by 1.5 to 3 folds with the highest kLa value of 84.44 h(-1). It was also found that palm oil increased the gas holdup and viscosity of the xanthan solution. The kLa values obtained as a function of power input, superficial gas velocity, and palm oil fraction were validated by two different empirical equations. Similarly, the gas holdup obtained as a function of power input and superficial gas velocity was validated by another empirical equation. All correlations were found to fit well with higher determination coefficients.
    Matched MeSH terms: Polysaccharides, Bacterial/metabolism*
  4. Bera H, Kumar S, Maiti S
    Int J Biol Macromol, 2018 Oct 15;118(Pt A):149-159.
    PMID: 29932998 DOI: 10.1016/j.ijbiomac.2018.06.085
    Olive oil-entrapped diethanolamine-modified high-methoxyl pectin (DMP)-gellan gum (GG)-bionanofiller composites were developed for controlled intragastric delivery of metformin HCl (MFM). DMP had a degree of amidation of 48.7% and was characterized further by FTIR, XRD and DSC analyses. MFM-loaded composites were subsequently accomplished by green synthesis via ionotropic gelation technique using zinc acetate as cross-linker. The thermal, X-ray and infrared analyses suggested an environment in the composites compatible with the drug, except certain degree of attenuation in drug's crystallinity. Scanning electron microscopy revealed almost spherical shape of the composites. Depending upon the mass ratios of GG:DMP, types of nanofiller (neusilin/bentonite/Florite) and oil inclusion, the composites exhibited variable drug encapsulation efficiency (DEE, 50-85%) and extended drug release behaviours (Q8h, 69-94%) in acetate buffer (pH 4.5). The optimized oil-entrapped Florite R NF/GG: DMP (1:1) composites eluted MFM via case-II transport mechanism and its drug release data was best fitted in zero-order kinetic model. The optimized formulation demonstrated excellent gastroretentive properties and substantial hypoglycemic effect in streptozotocin-induced diabetic rats. These novel hybrid matrices were thus found suitable for controlled intragastric delivery of MFM for the management of type 2 diabetes.
    Matched MeSH terms: Polysaccharides, Bacterial/administration & dosage*; Polysaccharides, Bacterial/chemistry
  5. Lai KC, Lee LY, Hiew BYZ, Thangalazhy-Gopakumar S, Gan S
    Bioresour Technol, 2020 Aug;309:123296.
    PMID: 32330800 DOI: 10.1016/j.biortech.2020.123296
    Xanthan integrated graphene oxide functionalized by titanium dioxide was successfully prepared through facile, eco-friendly and cost effective ice-templating technique. The three-dimensional (3D) graphene composite demonstrated relatively high temperature stability, chemical functionalities and porous sponge-like structure. The adsorption of lead was favored by high initial concentration and shaking speed at the operational solution pH. The process equilibrium and kinetic adhered to the Langmuir and pseudo-second-order correlations, respectively. The biomass integrated graphene composite showed maximum adsorption capacities ranging from 132.18 to 199.22 mg/g for 30-70 °C. Moreover, it was highly regenerable under mild conditions (0.1 M hydrochloric acid, 30 °C) and used repeatedly while retaining 84.78% of its initial adsorption capacity at the fifth adsorption-regeneration cycle. With comparatively high lead adsorption capacities, adequate recyclability and environmentally friendliness, the as-prepared 3D graphene composite has high application potential in heavy metal-wastewater separation for protection of the environment and human health.
    Matched MeSH terms: Polysaccharides, Bacterial
  6. Billa N, Yuen KH
    AAPS PharmSciTech, 2000;1(4):E30.
    PMID: 14727895
    The purpose of this research was to study processing variables at the laboratory and pilot scales that can affect hydration rates of xanthan gum matrices containing diclofenac sodium and the rate of drug release. Tablets from the laboratory scale and pilot scale proceedings were made by wet granulation. Swelling indices of xanthan gum formulations prepared with different amounts of water were measured in water under a magnifying lens. Granules were thermally treated in an oven at 60 degrees C, 70 degrees C, and 80 degrees C to study the effects of elevated temperatures on drug release from xanthan gum matrices. Granules from the pilot scale formulations were bulkier compared to their laboratory scale counterparts, resulting in more porous, softer tablets. Drug release was linear from xanthan gum matrices prepared at the laboratory scale and pilot scales; however, release was faster from the pilot scales. Thermal treatment of the granules did not affect the swelling index and rate of drug release from tablets in both the pilot and laboratory scale proceedings. On the other hand, the release from both proceedings was affected by the amount of water used for granulation and the speed of the impeller during granulation. The data suggest that processing variables that affect the degree of wetness during granulation, such as increase in impeller speed and increase in amount of water used for granulation, also may affect the swelling index of xanthan gum matrices and therefore the rate of drug release.
    Matched MeSH terms: Polysaccharides, Bacterial/metabolism*; Polysaccharides, Bacterial/chemistry
  7. Razavi M, Karimian H, Yeong CH, Sarji SA, Chung LY, Nyamathulla S, et al.
    Drug Des Devel Ther, 2015;9:3125-39.
    PMID: 26124637 DOI: 10.2147/DDDT.S82935
    The purpose of this study is to evaluate the in vitro and in vivo performance of gastro-retentive matrix tablets having Metformin HCl as model drug and combination of natural polymers. A total of 16 formulations were prepared by a wet granulation method using xanthan, tamarind seed powder, tamarind kernel powder and salep as the gel-forming agents and sodium bicarbonate as a gas-forming agent. All the formulations were evaluated for compendial and non-compendial tests and in vitro study was carried out on a USP-II dissolution apparatus at a paddle speed of 50 rpm. MOX2 formulation, composed of salep and xanthan in the ratio of 4:1 with 96.9% release, was considered as the optimum formulation with more than 90% release in 12 hours and short floating lag time. In vivo study was carried out using gamma scintigraphy in New Zealand White rabbits, optimized formulation was incorporated with 10 mg of (153)Sm for labeling MOX2 formulation. The radioactive samarium oxide was used as the marker to trace transit of the tablets in the gastrointestinal tract. The in vivo data also supported retention of MOX2 formulation in the gastric region for 12 hours and were different from the control formulation without a gas and gel forming agent. It was concluded that the prepared floating gastro-retentive matrix tablets had a sustained-release effect in vitro and in vivo, gamma scintigraphy played an important role in locating the oral transit and the drug-release pattern.
    Matched MeSH terms: Polysaccharides, Bacterial/chemistry
  8. Billa N, Yuen KH, Khader MA, Omar A
    Int J Pharm, 2000 May 15;201(1):109-20.
    PMID: 10867269
    A xanthan gum matrix controlled release tablet formulation containing diclofenac sodium was evaluated in vitro and was found to release the drug at a uniform rate. The gastrointestinal transit behaviour of the formulation as determined by gamma scintigraphy, using healthy male volunteers under fasted and fed conditions, indicated that gastric emptying was delayed with food intake. In contrast, the small intestinal transit remained practically unchanged under both food statuses. Therefore, the delay in caecal arrival observed in the fed state can be attributed to the delay in gastric emptying. Rate of diclofenac sodium absorption was generally higher in the fed state compared to the fasted state, however the total amount absorbed under both food statuses remained practically the same. The rate of in vivo dissolution of the drug in the fed state was faster compared to that in the fasted state. Thus, at the time of caecal arrival, in vivo dissolution was complete in the fed state, unlike in the fasted state, where almost 60% of the drug was delivered to the colon.
    Matched MeSH terms: Polysaccharides, Bacterial
  9. Wang J, Goh KM, Salem DR, Sani RK
    Sci Rep, 2019 02 07;9(1):1608.
    PMID: 30733471 DOI: 10.1038/s41598-018-36983-z
    Geobacillus sp. WSUCF1 is a Gram-positive, spore-forming, aerobic and thermophilic bacterium, isolated from a soil sample obtained from a compost facility. Strain WSUCF1 demonstrated EPS producing capability using different sugars as the carbon source. The whole-genome analysis of WSUCF1 was performed to disclose the essential genes correlated with nucleotide sugar precursor biosynthesis, assembly of monosaccharide units, export of the polysaccharide chain, and regulation of EPS production. Both the biosynthesis pathway and export mechanism of EPS were proposed based on functional annotation. Additionally, the genome description of strain WSUCF1 suggests sophisticated systems for its adaptation under thermophilic conditions. The presence of genes associated with CRISPR-Cas system, quorum quenching lactonase, polyketide synthesis and arsenic resistance makes this strain a potential candidate for various applications in biotechnology and biomedicine. The present study indicates that strain WSUCF1 has promise as a thermophilic EPS producer for a broad range of industrial applications. To the best of our knowledge, this is the first report on genome analysis of a thermophilic Geobacillus species focusing on its EPS biosynthesis and transportation, which will likely pave the way for both enhanced yield and tailor-made EPS production by thermophilic bacteria.
    Matched MeSH terms: Polysaccharides, Bacterial/biosynthesis*
  10. Goh KGK, Phan MD, Forde BM, Chong TM, Yin WF, Chan KG, et al.
    mBio, 2017 10 24;8(5).
    PMID: 29066548 DOI: 10.1128/mBio.01558-17
    Uropathogenic Escherichia coli (UPEC) is a major cause of urinary tract and bloodstream infections and possesses an array of virulence factors for colonization, survival, and persistence. One such factor is the polysaccharide K capsule. Among the different K capsule types, the K1 serotype is strongly associated with UPEC infection. In this study, we completely sequenced the K1 UPEC urosepsis strain PA45B and employed a novel combination of a lytic K1 capsule-specific phage, saturated Tn5 transposon mutagenesis, and high-throughput transposon-directed insertion site sequencing (TraDIS) to identify the complement of genes required for capsule production. Our analysis identified known genes involved in capsule biosynthesis, as well as two additional regulatory genes (mprA and lrhA) that we characterized at the molecular level. Mutation of mprA resulted in protection against K1 phage-mediated killing, a phenotype restored by complementation. We also identified a significantly increased unidirectional Tn5 insertion frequency upstream of the lrhA gene and showed that strong expression of LrhA induced by a constitutive Pcl promoter led to loss of capsule production. Further analysis revealed loss of MprA or overexpression of LrhA affected the transcription of capsule biosynthesis genes in PA45B and increased sensitivity to killing in whole blood. Similar phenotypes were also observed in UPEC strains UTI89 (K1) and CFT073 (K2), demonstrating that the effects were neither strain nor capsule type specific. Overall, this study defined the genome of a UPEC urosepsis isolate and identified and characterized two new regulatory factors that affect UPEC capsule production.IMPORTANCE Urinary tract infections (UTIs) are among the most common bacterial infections in humans and are primarily caused by uropathogenic Escherichia coli (UPEC). Many UPEC strains express a polysaccharide K capsule that provides protection against host innate immune factors and contributes to survival and persistence during infection. The K1 serotype is one example of a polysaccharide capsule type and is strongly associated with UPEC strains that cause UTIs, bloodstream infections, and meningitis. The number of UTIs caused by antibiotic-resistant UPEC is steadily increasing, highlighting the need to better understand factors (e.g., the capsule) that contribute to UPEC pathogenesis. This study describes the original and novel application of lytic capsule-specific phage killing, saturated Tn5 transposon mutagenesis, and high-throughput transposon-directed insertion site sequencing to define the entire complement of genes required for capsule production in UPEC. Our comprehensive approach uncovered new genes involved in the regulation of this key virulence determinant.
    Matched MeSH terms: Polysaccharides, Bacterial/biosynthesis*
  11. Romero M, Silistre H, Lovelock L, Wright VJ, Chan KG, Hong KW, et al.
    Nucleic Acids Res, 2018 Jul 27;46(13):6823-6840.
    PMID: 29718466 DOI: 10.1093/nar/gky324
    Pseudomonads typically carry multiple non-identical alleles of the post-transcriptional regulator rsmA. In Pseudomonas aeruginosa, RsmN is notable in that its structural rearrangement confers distinct and overlapping functions with RsmA. However, little is known about the specificities of RsmN for its target RNAs and overall impact on the biology of this pathogen. We purified and mapped 503 transcripts directly bound by RsmN in P. aeruginosa. About 200 of the mRNAs identified encode proteins of demonstrated function including some determining acute and chronic virulence traits. For example, RsmN reduces biofilm development both directly and indirectly via multiple pathways, involving control of Pel exopolysaccharide biosynthesis and c-di-GMP levels. The RsmN targets identified are also shared with RsmA, although deletion of rsmN generally results in less pronounced phenotypes than those observed for ΔrsmA or ΔrsmArsmNind mutants, probably as a consequence of different binding affinities. Targets newly identified for the Rsm system include the small non-coding RNA CrcZ involved in carbon catabolite repression, for which differential binding of RsmN and RsmA to specific CrcZ regions is demonstrated. The results presented here provide new insights into the intricacy of riboregulatory networks involving multiple but distinct RsmA homologues.
    Matched MeSH terms: Polysaccharides, Bacterial/biosynthesis
  12. Razavi M, Nyamathulla S, Karimian H, Moghadamtousi SZ, Noordin MI
    Molecules, 2014;19(9):13909-31.
    PMID: 25197930 DOI: 10.3390/molecules190913909
    The gastroretentive dosage form of famotidine was modified using tamarind seed powders to prolong the gastric retention time. Tamarind seeds were used in two different forms having different swelling and gelling properties: with husk (TSP) or without husk (TKP). TKP (TKP1 to TKP 6) and TSP (TSP1 to TSP 6) series were prepared using tamarind powder:xanthan in the ratios of 5:0, 4:1, 3:2, 2:3, 1:4, 0:5, respectively. The matrix tablets were prepared by the wet granulation method and evaluated for pharmacopoeial requirements. TKP2 was the optimum formulation as it had a short floating lag time (FLT<30 s) and more than 98.5% drug release in 12 h. The dissolution data were fitted to popular mathematical models to assess the mechanism of drug release, and the optimum formulation showed a predominant first order release and diffusion mechanism. It was concluded that the TKP2 prepared using tamarind kernel powder:xanthan (4:1) was the optimum formulation with shortest floating lag time and more than 90% release in the determined period of time.
    Matched MeSH terms: Polysaccharides, Bacterial/chemistry*
  13. Razali, M.H., Ismail, N.A., Osman, U.M., Amin, K.A.M.
    ASM Science Journal, 2018;11(101):158-165.
    MyJurnal
    The aim of this work was to investigate the effect of glycerol concentration on mechanical
    and physical properties of gellan gum (GG) biofilm. The biofilm was prepared using solvent
    casting method and the effective glycerol concentration was found to be within 30-50%
    w/w (based on GG weight). At 60 and 70 w/w% of glycerol, the films started to distort
    because the films was flexible and brittle. As glycerol concentration was increased the tensile
    strength (TS) and Youngs modulus (E) of films decreased. Somehow, elongation at break
    (EAB), water vapor transmission rate (WVTR) and swelling of films was increased. Glycerol
    plasticized GG biofilm was thermally stable and flexible, proposed its can be exploited as
    film-forming material and with optimized glycerol concentration it has good mechanical and
    physical properties for edible biofilm.
    Matched MeSH terms: Polysaccharides, Bacterial
  14. Romero Soto L, Thabet H, Maghembe R, Gameiro D, Van-Thuoc D, Dishisha T, et al.
    Microbiologyopen, 2021 01;10(1):e1160.
    PMID: 33650793 DOI: 10.1002/mbo3.1160
    Yangia sp. ND199 is a moderately halophilic bacterium isolated from mangrove samples in Northern Vietnam, which was earlier reported to grow on several sugars and glycerol to accumulate poly(hydroxyalkanoates) (PHA). In this study, the potential of the bacterium for co-production of exopolysaccharides (EPS) and PHA was investigated. Genome sequence analysis of the closely related Yangia sp. CCB-M3 isolated from mangroves in Malaysia revealed genes encoding enzymes participating in different EPS biosynthetic pathways. The effects of various cultivation parameters on the production of EPS and PHA were studied. The highest level of EPS (288 mg/L) was achieved using sucrose and yeast extract with 5% NaCl and 120 mM phosphate salts but with modest PHA accumulation (32% of cell dry weight, 1.3 g/L). Growth on fructose yielded the highest PHA concentration (85% of CDW, 3.3 g/L) at 90 mM phosphate and higher molecular weight EPS at 251 mg/L yield at 120 mM phosphate concentration. Analysis of EPS showed a predominance of glucose, followed by fructose and galactose, and minor amounts of acidic sugars.
    Matched MeSH terms: Polysaccharides, Bacterial/biosynthesis*
  15. Tang SS, Tan WS, Devi S, Wang LF, Pang T, Thong KL
    Clin Diagn Lab Immunol, 2003 Nov;10(6):1078-84.
    PMID: 14607870
    The capsular polysaccharide Vi antigen (ViCPS) is an essential virulence factor and also a protective antigen of Salmonella enterica serovar Typhi. A random 12-mer phage-displayed peptide library was used to identify mimotopes (epitope analogues) of this antigen by panning against a ViCPS-specific monoclonal antibody (MAb) ATVi. Approximately 75% of the phage clones selected in the fourth round carried the peptide sequence TSHHDSHGLHRV, and the rest of the clones harbored ENHSPVNIAHKL and other related sequences. These two sequences were also obtained in a similar panning process by using pooled sera from patients with a confirmed diagnosis of typhoid fever, suggesting they mimic immunodominant epitopes of ViCPS antigens. Binding of MAb ATVi to the mimotopes was specifically blocked by ViCPS, indicating that they interact with the same binding site (paratope) of the MAb. Data and reagents generated in this study have important implications for the development of peptide-base diagnostic tests and peptide vaccines and may also provide a better understanding of the pathogenesis of typhoid fever.
    Matched MeSH terms: Polysaccharides, Bacterial/immunology*
  16. Syafiq, A., Amir, I.Z., Sharon, W.X.R.
    MyJurnal
    The impacts on both rheological parameters; Casson yield stress and Casson viscosity were determined. The interactions among blend’s components; xanthan gum (XG), corn starch (CS), glycerin (GL) and their relationship with both flow parameters were also investigated by using D-Optimal mixture design. Three levels of cocoa butter substitution assigned in chocolate production were at 5%, 10% and 15% level with random proportions of each component generated by Design Expert software. An appropriate mathematical model was applied to evaluate each response as a function of the proportions of the components enabling in prediction of future response by using any blend of components. As the incorporation of the blends (XG/CS/GL) in chocolate production was elevated from 5% to 15%, both parameters; viscosity and yield stress of chocolate were gradually increased, as in range 7.819 to 10.529 Pa, and 2.372 to 3.727 Pa.s, respectively. Neither binary nor ternary component-component interaction exhibited synergistic effect. Nevertheless, strongest antagonistic effect on both rheological parameters of substituted chocolate at 5% level and 10% level were respectively observed at ternary interaction region for the former, and at binary interaction area of CS:GL, closer to CS corner as for the latter. This study somehow provides ideas on how component-component interactions influence experimented response.
    Matched MeSH terms: Polysaccharides, Bacterial
  17. Gadhave D, Tupe S, Tagalpallewar A, Gorain B, Choudhury H, Kokare C
    Int J Pharm, 2021 Sep 25;607:121050.
    PMID: 34454028 DOI: 10.1016/j.ijpharm.2021.121050
    Unfavorable side effects of available antipsychotics limit the use of conventional delivery systems, where limited exposure of the drugs to the systemic circulation could reduce the associated risks. The potential of intranasal delivery is gaining interest to treat brain disorders by delivering the drugs directly to the brain circumventing the tight junctions of the blood-brain barrier with limited systemic exposure of the entrapped therapeutic. Therefore, the present research was aimed to fabricate, optimize and investigate the therapeutic efficacy of amisulpride (AMS)-loaded intranasal in situ nanoemulgel (AMS-NG) in the treatment of schizophrenia. In this context, AMS nanoemulsion (AMS-NE) was prepared by employing aqueous-titration method and optimized using Box-Behnken statistical design. The optimized nanoemulsion was subjected to evaluation of globule size, transmittance, zeta potential, and mucoadhesive strength, which were found to be 92.15 nm, 99.57%, -18.22 mV, and 8.90 g, respectively. The AMS-NE was converted to AMS-NG using poloxamer 407 and gellan gum. Following pharmacokinetic evaluation in Wistar rats, the brain Cmax for intranasal AMS-NG was found to be 1.48-folds and 3.39-folds higher when compared to intranasal AMS-NE and intravenous AMS-NE, respectively. Moreover, behavioral investigations of developed formulations were devoid of any extrapyramidal side effects in the experimental model. Finally, outcomes of the in vivo hematological study confirmed that intranasal administration of formulation for 28 days did not alter leukocytes and agranulocytes count. In conclusion, the promising results of the developed and optimized intranasal AMS-NG could provide a novel platform for the effective and safe delivery of AMS in schizophrenic patients.
    Matched MeSH terms: Polysaccharides, Bacterial
  18. Gadhave D, Rasal N, Sonawane R, Sekar M, Kokare C
    Int J Biol Macromol, 2021 Jan 15;167:906-920.
    PMID: 33186648 DOI: 10.1016/j.ijbiomac.2020.11.047
    The research work was intended to formulate teriflunomide (TFM) loaded nano lipid-based (TNLC) carbopol-gellan gum in situ gel (TNLCGHG) and to investigate its therapeutic efficacy against glioma, a brain and spine tumor. Nanoformulation was developed using gellan gum and carbopol 974P as gelling and mucoadhesive agents, respectively, Glyceryl di-behenate and Glyceryl mono-linoleate blend as lipids, and Gelucire 44/14: water blend as surfactant system. Globule size, PDI, zeta potential, encapsulation efficiency, mucoadhesive strength, and nasal permeation were found to be 117.80 nm, 0.56, -21.86 mV, 81.16%, 4.80 g, and 904 μg/cm2, respectively. Anticancer efficacy of TFM-loaded nano lipid-based carbopol-gellan gum in situ gel (TNLCGHG) was determined in human U-87MG glioma cell line. IC50 was found 7.0 μg/mL for TNLCGHG, 4.8 μg/mL for pure TFM, and 78.5 μg/mL for TNLC, which approve the superiority of surfactant along with gellan gum as permeation enhancer. Brain Cmax for technetium (99mTC) labeled intranasal (i.n.) 99mTC-TNLCGHG was found 2-folds higher than 99mTC-TNLC (i.n.) and 99mTC-TNLC intravenous (i.v.) because the TNLCGHG formulation contains surfactant with natural gelling polymers, which promisingly improved drug permeability. Finally, this research revealed encouraging outcomes and successfully developed intranasal TNLCGHG nanoformulation as a novel tool for safe delivery of TFM in glioma patients.
    Matched MeSH terms: Polysaccharides, Bacterial/chemistry*
  19. Azarakhsh, N., Azizah, O., Ghazali H.M., Tan, C.P., Mohd Adzahan, N.
    MyJurnal
    The effects of alginate-based [sodium alginate, 0-2% (w/v), glycerol, 0-2% (w/v) and sunflower oil 0.025% (w/v)] and gellan-based [gellan, 0-1% (w/v), glycerol, 0-1% (w/v) and sunflower oil 0.025% (w/v)] edible coatings on fresh-cut pineapple were evaluated by response surface methodology (RSM). Weight loss, firmness and respiration rate were considered as response variables. The results showed that for all response variables the RSM models were significantly (p0.05) difference between predicted and experimental values. The overall optimum region predicted by RSM indicated that alginate and gellan-based coatings containing 1.29% (w/v) sodium alginate, 1.16% (w/v) glycerol and 0.56% (w/v) gellan gum, 0.89% (w/v) glycerol were optimized formulations respectively.
    Matched MeSH terms: Polysaccharides, Bacterial
  20. Thong KL, Tang SS, Tan WS, Devi S
    Microbiol. Immunol., 2007;51(11):1045-52.
    PMID: 18037781
    Polyclonal sera from typhoid patients and a monoclonal antibody, mAb ATVi, which recognizes the capsular polysaccharide Vi antigen (ViCPS), were used to select for peptides that mimic the ViCPS by using a phage-displayed random 12-mer peptide library. Two major common mimotopes selected from the library carried the amino acid sequences TSHHDSHGLHRV and ENHSPVNIAHKL. Enzyme-linked immunosorbent assays (ELISAs) showed that these peptides carry mimotopes to ViCPS. Phage clones that contained the 12-mer peptides were also tested against pooled/individual typhoid patients' sera and found to have 3 to 5 times higher binding compared to normal sera. By using Phage-ELISA assays, the derived synthetic peptides, TSHHDSHGLHRV and ENHSPVNIAHKL, were tested against a monoclonal antibody mAb ATVi and over 2-fold difference in binding was found between these peptides and a control unrelated peptide, CTLTTKLYC. Inhibition of the mAb's binding to ViCPS indicated that the synthetic peptides successfully competed with the capsular polysaccharide for antibody binding.
    Matched MeSH terms: Polysaccharides, Bacterial/immunology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links