Displaying publications 21 - 40 of 106 in total

Abstract:
Sort:
  1. Sharma D, Kumar S, Narasimhan B, Ramasamy K, Lim SM, Shah SAA, et al.
    BMC Chem, 2019 Dec;13(1):60.
    PMID: 31384808 DOI: 10.1186/s13065-019-0575-x
    In order to overcome the challenges of microbial resistance as well as to improve the effectiveness and selectivity of chemotherapeutic agents against cancer, a novel series of 4-(4-bromophenyl)-thiazol-2-amine derivatives was synthesized and its molecular structures were confirmed by physicochemical and spectral characteristics. The synthesized compounds were further evaluated for their in vitro antimicrobial activity using turbidimetric method and anticancer activity against oestrogen receptor positive human breast adenocarcinoma cancer cell line (MCF7) by Sulforhodamine B (SRB) assay. The antimicrobial activity results revealed that compound p2, p3, p4 and p6 exhibited promising antimicrobial activity that are comparable to standard norfloxacin (antibacterial) and fluconazole (antifungal). Anticancer screening results demonstrated that compound p2 was found to be the most active one against cancer cell line when compared to the rest of the compounds and comparable to the standard drug (5-fluorouracil). The molecular docking study demonstrated that compounds, p2, p3, p4 and p6 displayed good docking score within binding pocket of the selected PDB ID (1JIJ, 4WMZ and 3ERT) and showed promising ADME properties.
    Matched MeSH terms: Receptors, Estrogen
  2. Sharma D, Kumar S, Narasimhan B, Ramasamy K, Lim SM, Shah SAA, et al.
    BMC Chem, 2019 Dec;13(1):46.
    PMID: 31384794 DOI: 10.1186/s13065-019-0564-0
    To combat the antimicrobial and anticancer drug resistance by pathogens and cancerous cells, efforts has been made to study the pharmacological activities of newly synthesized N-(4-(4-bromophenyl)thiazol-2-yl)-2-chloroacetamide derivatives. The molecular structures of the synthesized derivatives were confirmed by their physicochemical properties and spectroanalytical data (NMR, IR and elemental). The synthesized compounds were evaluated for their in vitro antimicrobial activity against bacterial (Gram positive and Gram negative) and fungal species using turbidimetric method and anticancer activity against oestrogen receptor positive human breast adenocarcinoma cancer cell line (MCF7) by Sulforhodamine B (SRB) assay. Molecular docking studies were carried out to study the binding mode of active compounds with receptor using Schrodinger v11.5. The antimicrobial activity results revealed that compounds d1, d2 and d3 have promising antimicrobial activity. Anticancer screening results indicated that compounds d6 and d7 were found to be the most active ones against breast cancer cell line. Furthermore, the molecular docking study demonstrated that compounds d1, d2, d3, d6 and d7 displayed good docking score within binding pocket of the selected PDB ID (1JIJ, 4WMZ and 3ERT) and has the potential to be used as lead compounds for rational drug designing.
    Matched MeSH terms: Receptors, Estrogen
  3. Dharmani M, Kamarulzaman K, Giribabu N, Choy KW, Zuhaida MZ, Aladdin NA, et al.
    Phytomedicine, 2019 Dec;65:153101.
    PMID: 31648126 DOI: 10.1016/j.phymed.2019.153101
    BACKGROUND: Oestrogen deficiency leads to metabolic disturbances such as insulin resistance and impairment of adipose tissue or lipid metabolism. Marantodes pumilum (Blume) Kuntze (Primulaceae) is believed to have phytoestrogenic properties and is claimed to have beneficial effects in the treatment of diabetes mellitus (DM), but the mechanism behind its phytoestrogenic effects on estrogen-deficient diabetic condition have not been fully examined.

    PURPOSE: The present study investigated the effects of oral treatment with M. pumilum var. alata (MPA) extracts on the estrogen receptor, metabolic characteristics and insulin signaling pathway in pancreas and liver of ovariectomised nicotidamide streptozotocin-induced diabetes in female rats.

    MATERIALS AND METHODS: Ovariectomised diabetic (OVXS) Sprague-Dawley rats were orally administered with either aqueous leaf extract and ethanol (50%) stem-root extract of MPA (50 or 100 mg/kg) respectively for 28 days. Metabolic parameters were evaluated by measuring fasting blood glucose, serum insulin, oral glucose and insulin tolerance test. Distribution and expression level of insulin, oxidative stress and inflammatory marker in the pancreatic islets and liver were evaluated by immunohistochemistry and western blot, respectively.

    RESULTS: Oral treatment with aqueous leaf and ethanol (50%) stem-root extracts of MPA (100 mg/kg) significantly reversed the elevated fasting blood glucose, impaired glucose and insulin tolerance. The protein expression of insulin, glucose transporter (GLUT-2 and GLUT-4) increased in the pancreatic islets and liver. Furthermore, marked improvement in the tissue morphology following treatment with MPA was observed. Similarly, the western blots analysis denotes improved insulin signaling in the liver and decreased reactive oxygen species producing enzymes, inflammatory and pro-apoptotic molecules with MPA treatment.

    CONCLUSIONS: Taken together, this work demonstrate that 100 mg/kg of aqueous leaf extract and ethanol (50%) stem-root extract of MPA improves β-cell function and insulin signaling in postmenopausal diabetes through attenuation of oxidative stress and partially mediated by oestrogen receptor stimulation.

    Matched MeSH terms: Receptors, Estrogen/metabolism
  4. Rajaratinam H, Nafi SNM
    Malays J Med Sci, 2019 Sep;26(5):6-20.
    PMID: 31728115 MyJurnal DOI: 10.21315/mjms2019.26.5.2
    Oestrogen receptor (ER)-positive breast cancer is one of the common forms of breast cancer affecting women worldwide. ER-positive breast cancer patients are subjected to anti-oestrogen therapy such as selective oestrogen receptor modulator (SERM) and aromatase inhibitors (AIs). Recently, the emergence of resistance to anti-oestrogen treatment is under intensive focus. The different mechanisms postulated to explain the occurrence of resistance in ER-positive breast cancer treatment include the loss of ER function and the crosstalk between signalling pathways in cancer cells. Recent literature highlighted that the cholesterol biosynthesis pathway acts as a novel mechanism underlying resistance to oestrogen deprivation. The present study aimed to highlight the role of cholesterol biosynthesis in anti-oestrogen treatment resistance, putatively suggesting an alternative plant-based treatment using andrographolide from Andrographis paniculata. The hypolipidaemic effect of andrographolide can be utilised to prevent the resistance in the treatment of ER-positive breast cancer contributed by cholesterol biosynthesis.
    Matched MeSH terms: Receptors, Estrogen
  5. Lin SC, Ko RT, Kang BH, Wang JS
    Malays J Pathol, 2019 Aug;41(2):207-211.
    PMID: 31427558
    INTRODUCTION: Salivary gland intraductal carcinoma (IDC) is rare. We present the second case of IDC originating from an intraparotid lymph node (LN) with a more detailed description of the histogenesis, immunohistochemistry (IHC) and updated molecular information.

    CASE REPORT: An 87-year-old male had a tumour nodule over the left parotid tail for about 20 years. Physical examinations revealed a 4.5 cm soft, non-tender and fixed mass. After the left parotidectomy, pathology confirmed the diagnosis of IDC arising within an intraparotid lymph node. The cystic component of the tumour was lined by single to multilayered ductal cells with micropapillary growth pattern. The solid part showed intraductal proliferation of neoplastic cells in solid, cribriform, micropapillary and Roman bridge-like structure. By immunohistochemistry (IHC), the tumour cells were positive for S-100, CK (AE1/AE3), mammaglobin, SOX10, and estrogen receptor (ER), with myoepithelial cell rimming highlighted by positive p63 and calponin IHC stains. The prognosis of this patient is excellent after complete excision.

    DISCUSSION: The mechanism of salivary gland tumour arising in the intra-parotid gland LN was assumed to be related to salivary duct inclusion within the intraparotid gland LN which is a normal occurrence during embryology development. Although the terminology may raise some confusion about the relationship between IDC and conventional salivary duct carcinoma (SDA), they are different in immunophenotype and clinicopathologic features. IDC is characterised by S100 (+) ER (+) with predominant intraductal growth and excellent prognosis; while SDC features S100 (-) androgen receptor (+) with predominant invasive growth and aggressive behavior. Recent discovery of recurrent RET gene rearrangement in IDC but not SDC also supports that IDC is not precursor lesion of the SDC.

    Matched MeSH terms: Receptors, Estrogen
  6. Wong SK, Chin KY, Ima-Nirwana S
    Drug Des Devel Ther, 2019;13:3497-3514.
    PMID: 31631974 DOI: 10.2147/DDDT.S227738
    Kaempferol is a dietary bioflavonoid ubiquitously found in various types of plant. It possesses a wide range of medicinal properties suggesting its potential clinical utility that requires further investigation. The present review intends to highlight the efficacy of kaempferol and its molecular mechanisms of action in regulating bone metabolism. Many reports have acknowledged the bone-protecting property of kaempferol and kaempferol-containing plants using in vitro and in vivo experimental models. Kaempferol supplementation showed bone-sparing effects in newborn rats, glucocorticoid-induced and ovariectomy-induced osteoporotic models as well as bone fracture models. It achieves the bone-protective effects by inhibiting adipogenesis, inflammation, oxidative stress, osteoclastic autophagy and osteoblastic apoptosis while activating osteoblastic autophagy. The anti-osteoporotic effects of kaempferol are mediated through regulation of estrogen receptor, bone morphogenetic protein-2 (BMP-2), nuclear factor-kappa B (NF-κB), mitogen-activated protein kinase (MAPK) and mammalian target of rapamycin (mTOR) signaling pathways. In summary, kaempferol exhibits beneficial effects on skeleton, thus is potentially effective for the prophylaxis and treatment of osteoporosis.
    Matched MeSH terms: Receptors, Estrogen
  7. Mohamad Hanif EA, Shah SA
    Asian Pac J Cancer Prev, 2018 Dec 25;19(12):3341-3351.
    PMID: 30583339
    Breast cancer treatments leads to variable responses. Hormonal therapy is beneficial to receptor positive breast cancer
    subtypes and display better clinical outcome than triple negative breast cancers (TNBCs) with FEC (5-Fluorouracil,
    Epirubicin and Cyclophosphamide) the mainstay chemotherapy regiment. Owning to their negative expressions of
    estrogen (ER), progesterone (PR) and HER2 receptors, disease recurrence and metastasis befalls some patients indicating
    resistance to FEC. Involvement of epigenetic silencing through DNA methylation, histone methylation, acetylation and
    sumoylation may be the key player in FEC chemoresistance. Epigenetic and molecular profiling successfully classified
    breast cancer subtypes, indicating potential driver mechanisms to the progression of TNBCs but functional mechanisms
    behind chemoresistance of these molecular markers are not well defined. Several epigenetic inhibitors and drugs have
    been used in the management of cancers but these attempts are mainly beneficial in hematopoietic cancers and not
    specifically favourable in solid tumours. Hypothetically, upon administration of epigenetic drugs, recovery of tumour
    suppressor genes is expected. However, high tendency of switching on global metastatic genes is predicted. Polycomb
    repressive complex (PRC) such as EZH2, SETD1A, DNMT, is known to have repressive effects in gene regulation and
    shown to inhibit cell proliferation and invasion in breast cancers. Individual epigenetic regulators may be an option
    to improve chemo-drug delivery in cancers. This review discussed on molecular signatures of various breast cancer
    subtypes and on-going attempts in understanding underlying molecular mechanisms of epigenetic regulators as well
    as providing insights on possible ways to utilize epigenetic enzymes/inhibitors with responses to chemotherapeutic
    drugs to re-program cellular and biological outcome in TNBCs.
    Matched MeSH terms: Receptors, Estrogen/genetics
  8. Li K, Anderson G, Viallon V, Arveux P, Kvaskoff M, Fournier A, et al.
    Breast Cancer Res, 2018 12 03;20(1):147.
    PMID: 30509329 DOI: 10.1186/s13058-018-1073-0
    BACKGROUND: Few published breast cancer (BC) risk prediction models consider the heterogeneity of predictor variables between estrogen-receptor positive (ER+) and negative (ER-) tumors. Using data from two large cohorts, we examined whether modeling this heterogeneity could improve prediction.

    METHODS: We built two models, for ER+ (ModelER+) and ER- tumors (ModelER-), respectively, in 281,330 women (51% postmenopausal at recruitment) from the European Prospective Investigation into Cancer and Nutrition cohort. Discrimination (C-statistic) and calibration (the agreement between predicted and observed tumor risks) were assessed both internally and externally in 82,319 postmenopausal women from the Women's Health Initiative study. We performed decision curve analysis to compare ModelER+ and the Gail model (ModelGail) regarding their applicability in risk assessment for chemoprevention.

    RESULTS: Parity, number of full-term pregnancies, age at first full-term pregnancy and body height were only associated with ER+ tumors. Menopausal status, age at menarche and at menopause, hormone replacement therapy, postmenopausal body mass index, and alcohol intake were homogeneously associated with ER+ and ER- tumors. Internal validation yielded a C-statistic of 0.64 for ModelER+ and 0.59 for ModelER-. External validation reduced the C-statistic of ModelER+ (0.59) and ModelGail (0.57). In external evaluation of calibration, ModelER+ outperformed the ModelGail: the former led to a 9% overestimation of the risk of ER+ tumors, while the latter yielded a 22% underestimation of the overall BC risk. Compared with the treat-all strategy, ModelER+ produced equal or higher net benefits irrespective of the benefit-to-harm ratio of chemoprevention, while ModelGail did not produce higher net benefits unless the benefit-to-harm ratio was below 50. The clinical applicability, i.e. the area defined by the net benefit curve and the treat-all and treat-none strategies, was 12.7 × 10- 6 for ModelER+ and 3.0 × 10- 6 for ModelGail.

    CONCLUSIONS: Modeling heterogeneous epidemiological risk factors might yield little improvement in BC risk prediction. Nevertheless, a model specifically predictive of ER+ tumor risk could be more applicable than an omnibus model in risk assessment for chemoprevention.

    Matched MeSH terms: Receptors, Estrogen/metabolism*
  9. Abubakar M, Sung H, Bcr D, Guida J, Tang TS, Pfeiffer RM, et al.
    Breast Cancer Res, 2018 09 18;20(1):114.
    PMID: 30227867 DOI: 10.1186/s13058-018-1033-8
    BACKGROUND: Limited evidence, mostly from studies in Western populations, suggests that the prognostic effects of lifestyle-related risk factors may be molecular subtype-dependent. Here, we examined whether pre-diagnostic lifestyle-related risk factors for breast cancer are associated with clinical outcomes by molecular subtype among patients from an understudied Asian population.

    METHODS: In this population-based case series, we evaluated breast cancer risk factors in relation to 10-year all-cause mortality (ACM) and 5-year recurrence by molecular subtype among 3012 women with invasive breast cancer in Sarawak, Malaysia. A total of 579 deaths and 314 recurrence events occurred during a median follow-up period of ~ 24 months. Subtypes (luminal A-like, luminal B-like, HER2-enriched, triple-negative) were defined using immunohistochemical markers for hormone receptors and human epidermal growth factor receptor 2 (HER2) in conjunction with histologic grade. Hazard ratios (HRs) and 95% confidence intervals (CIs) for the associations between risk factors and ACM/recurrence were estimated in subtype-specific Cox regression models.

    RESULTS: We observed heterogeneity in the relationships between parity/breastfeeding, age at first full-term pregnancy (FFP), family history, body mass index (BMI), and tumor subtype (p value  30 vs 

    Matched MeSH terms: Receptors, Estrogen/metabolism
  10. Lertjanyakun V, Chaiyakunapruk N, Kunisawa S, Imanaka Y
    Pharmacoeconomics, 2018 09;36(9):1113-1124.
    PMID: 29707743 DOI: 10.1007/s40273-018-0660-3
    BACKGROUND: Exemestane (EXE), exemestane + everolimus (EXE + EVE), toremifene (TOR), and fulvestrant (FUL) are second-line endocrine therapies for postmenopausal hormone receptor-positive (HR +)/human epidermal growth factor receptor 2-negative (HER2 -) metastatic breast cancer (mBC) in Japan. Although the efficacy of these therapies has been shown in recent studies, cost-effectiveness has not yet been determined in Japan.

    OBJECTIVE: This study aimed to examine the cost-effectiveness of second-line endocrine therapies for the treatment of postmenopausal women with HR + and HER2 - mBC.

    METHODS: A Markov model was developed to analyze the cost-effectiveness of the therapies over a 15-year time horizon from a public healthcare payer's perspective. The efficacy and utility parameters were determined via a systematic search of the literature. Direct medical care costs were used. A discount rate of 2% was applied for costs and outcomes. Subgroup analysis was performed for non-visceral metastasis. A series of sensitivity analyses, including probabilistic sensitivity analysis (PSA) and threshold analysis were performed.

    RESULTS: Base-case analyses estimated incremental cost-effectiveness ratios (ICERs) of 3 million and 6 million Japanese yen (JPY)/quality-adjusted life year (QALY) gained for TOR and FUL 500 mg relative to EXE, respectively. FUL 250 mg and EXE + EVE were dominated. The overall survival (OS) highly influenced the ICER. With a willingness-to-pay (WTP) threshold of 5 million JPY/QALY, the probability of TOR being cost-effective was the highest. Subgroup analysis in non-visceral metastasis revealed 0.4 and 10% reduction in ICER from the base-case results of FUL5 500 mg versus EXE and TOR versus EXE, respectively, while threshold analysis indicated EVE and FUL prices should be reduced 73 and 30%, respectively.

    CONCLUSION: As a second-line therapy for postmenopausal women with HR +/HER2 - mBC, TOR may be cost-effective relative to other alternatives and seems to be the most favorable choice, based on a WTP threshold of 5 million JPY/QALY. FUL 250 mg is expected to be as costly and effective as EXE. The cost-effectiveness of EXE + EVE and FUL 500 mg could be improved by a large price reduction. However, the results are highly sensitive to the hazard ratio of OS. Policy makers should carefully interpret and utilize these findings.

    Matched MeSH terms: Receptors, Estrogen/immunology
  11. Ahmad Hairi H, Jamal JA, Aladdin NA, Husain K, Mohd Sofi NS, Mohamed N, et al.
    Molecules, 2018 Jul 11;23(7).
    PMID: 29997309 DOI: 10.3390/molecules23071686
    Phytoestrogens have attracted considerable attention for their potential in the prevention of postmenopausal osteoporosis. Recently, a phytoestrogen-rich herbal plant, Marantodes pumilum var. alata (Blume) Kuntze was reported to protect against bone loss in ovariectomized rat. However, the bioactive compound responsible for these effects and the underlying mechanism were not known. Through bioassay-guided isolation, demethylbelamcandaquinone B (Dmcq B) was isolated and identified from Marantodes pumilum var. alata leaf extract. In terms of its bone anabolic effects, Dmcq B was at par with 17β-estradiol (E2), in promoting the proliferation, differentiation and mineralization of osteoblast cells. Dmcq-B increased early differentiation markers, collagen content and enzymatic ALP activity. It was demonstrated to regulate BMP2 signaling pathway which further activated the transcription factor, osterix. Subsequently, Dmcq B was able to increase the osteocalcin expression which promoted matrix mineralization as evidenced by the increase in calcium deposition. Dmcq B also reduced the protein level of receptor activator of NF-κβ ligand (RANKL) and promoted osteoprotegerin (OPG) protein expression by osteoblast cells, therefore hastening bone formation rate by decreasing RANKL/OPG ratio. Moreover, Dmcq B was able to increase ER expression, postulating its phytoestrogen property. As the conclusion, Dmcq B is the active compound isolated from Marantodes pumilum var. alata leaves, regulating osteoanabolic activities potentially through the BMP2 and ER signaling pathways.
    Matched MeSH terms: Receptors, Estrogen/metabolism
  12. Nordin ML, Abdul Kadir A, Zakaria ZA, Abdullah R, Abdullah MNH
    BMC Complement Altern Med, 2018 Mar 12;18(1):87.
    PMID: 29530022 DOI: 10.1186/s12906-018-2153-5
    BACKGROUND: Ardisia crispa Thunb. D.C is used mostly in some parts of the Asian region by traditional practitioners to treat certain diseases associated with oxidative stress and inflammation including cancer and rheumatism. In Malaysia, it is popularly known as 'Mata Ayam' and local traditional practitioners believed that the root of the plant is therapeutically beneficial.

    METHODS: The cytotoxic effect of hydromethanolic extract of A. crispa and its solvents partitions (ethyl acetate and aqueous extracts) against breast cancer cells were evaluated by using MTT assay. The cells were treated with concentration of extracts ranging from 15.63 μg/mL- 1000 μg/mL for 72 h. The quantification of phenolic and flavonoid contents of the extracts were carried out to determine the relationship between of phytochemical compounds responsible for cytotoxic and antioxidative activities. The antioxidant capacity was measured by DPPH and ABTS free radical scavenging assay and expressed as milligram (mg) Trolox equivalent antioxidant capacity per 1 g (g) of tested extract.

    RESULTS: The hydromethanolic and ethyl acetate extracts showed moderate cytotoxic effect against MCF-7 with IC50 values of 57.35 ± 19.33 μg/mL, and 54.98 ± 14.10 μg/mL, respectively but aqueous extract was inactive against MCF-7. For MDA-MB-231, hydromethanolic, ethyl acetate and aqueous extracts exhibited weak cytotoxic effects against MDA-MB-231 with IC50 values more than 100 μg/mL. The plant revealed high total phenolic content, total flavonoid and antioxidant capacity.

    CONCLUSION: The response of different type of breast cancer cell lines towards A. crispa extract and its partitions varied. Accordingly, hydromethanolic and ethyl acetate extracts appear to be more cytotoxic to oestrogen receptor (ER) positive breast cancer than oestrogen receptor (ER) negative breast cancer. However, aqueous extract appears to have poor activity to both types of breast cancer. Besides that, hydromethanolic and ethyl acetate extracts exhibit higher TPC, TFC and antioxidant capacity compared to aqueous extract. Synergistic effect of anticancer and antioxidant bioactives compounds of A. crispa plausibly contributed to the cytotoxic effects of the extract.

    Matched MeSH terms: Receptors, Estrogen/metabolism
  13. Li G, Tang H, Chen Y, Yin Y, Ogawa S, Liu M, et al.
    Mol Cell Endocrinol, 2018 02 05;461:1-11.
    PMID: 28801227 DOI: 10.1016/j.mce.2017.08.003
    The LHb expression is up-regulated during puberty in female zebrafish. However, the molecular mechanism underlying how LHb expression is regulated during puberty remains largely unknown. In this study, we found that the mRNA expression levels of lhb, fshb and cyp19a1b were up-regulated along with the puberty onset in zebrafish. Among the three nuclear estrogen receptors (nERs), the esr2b is the only type whose expression is significantly up-regulated during puberty onset in the pituitary. However, in situ hybridization results revealed that lhb mRNA was colocalized with esr1 and esr2a but not esr2b. Exposure to estradiol (E2) significantly stimulates LHb expression in both wild-type and kiss1-/-;kiss2-/-;gnrh3-/- triple knockout pubertal zebrafish. Moreover, exposure of cultured pituitary cells to E2 increased the LHb expression, indicating that the estrogenic effect on LHb expression could be acted at the pituitary level. Finally, we cloned and analyzed the promoter of lhb by luciferase assay. Our results indicated that the E2 responsive regions of lhb promoter for ERα and ERβ2 are identical, suggesting that ERα and ERβ2 could bind to the same half ERE region of the promoter of lhb, exhibiting a classical ERE-dependent pathway. In summary, we demonstrate that E2 could directly act on the pituitary level to stimulate LHb transcription during puberty in zebrafish.
    Matched MeSH terms: Receptors, Estrogen/metabolism
  14. Albishtue AA, Yimer N, Zakaria MZA, Haron AW, Yusoff R, Assi MA, et al.
    Vet World, 2018 Jan;11(1):71-79.
    PMID: 29479160 DOI: 10.14202/vetworld.2018.71-79
    Aim: This study aimed to evaluate the effect of edible bird's nest (EBN) supplementation on the uteri of rats based on analyses of the morphological and histomorphometric changes, and expressions of epidermal growth factor (EGF) and its receptor (REGF) genes, vascular endothelial growth factor (VEGF), proliferating cell nuclear antigen (PCNA), and steroid receptors.

    Materials and Methods: Twenty-four: Sprague Dawley rats were equally distributed into the following four groups: G1 (control), G2, G3, and G4 represented the groups treated with EBN at graded concentrations of 0, 30, 60, and 120 mg/kg body weight (BW) per day for 8 weeks, respectively. During the experimental period, the BW of each rat was recorded weekly. At the proestrus stage of estrous cycle, blood samples were collected from the hearts of anesthetized rats that were later sacrificed. The uteri were removed for histological and immunohistochemical analyses.

    Results: The EBN-treated groups showed an increase in the weights and lengths of uteri as compared to the control. Results showed that relative to G1 and G2, G3 and G4 exhibited proliferation in their uterine luminal and glandular epithelia and uterine glands, and up-regulated expressions of EGF, REGF, VEGF, PCNA, and progesterone receptor, and estrogen receptor in their uteri. The EBN increased the antioxidant (AO) and total AO capacities and reduced the oxidative stress (OS) levels in non-pregnant rats.

    Conclusion: Findings of this study revealed that EBN promotes proliferation of the uterine structures as evidenced by the upregulation of the expressions of steroid receptors, EGF, REGF, VEGF, and PCNA in the uterus and increased in the plasma concentrations of AO and reduced levels of OS.

    Matched MeSH terms: Receptors, Estrogen
  15. Milne RL, Kuchenbaecker KB, Michailidou K, Beesley J, Kar S, Lindström S, et al.
    Nat Genet, 2017 Dec;49(12):1767-1778.
    PMID: 29058716 DOI: 10.1038/ng.3785
    Most common breast cancer susceptibility variants have been identified through genome-wide association studies (GWAS) of predominantly estrogen receptor (ER)-positive disease. We conducted a GWAS using 21,468 ER-negative cases and 100,594 controls combined with 18,908 BRCA1 mutation carriers (9,414 with breast cancer), all of European origin. We identified independent associations at P < 5 × 10-8 with ten variants at nine new loci. At P < 0.05, we replicated associations with 10 of 11 variants previously reported in ER-negative disease or BRCA1 mutation carrier GWAS and observed consistent associations with ER-negative disease for 105 susceptibility variants identified by other studies. These 125 variants explain approximately 16% of the familial risk of this breast cancer subtype. There was high genetic correlation (0.72) between risk of ER-negative breast cancer and breast cancer risk for BRCA1 mutation carriers. These findings may lead to improved risk prediction and inform further fine-mapping and functional work to better understand the biological basis of ER-negative breast cancer.
    Matched MeSH terms: Receptors, Estrogen/metabolism
  16. Chajès V, Assi N, Biessy C, Ferrari P, Rinaldi S, Slimani N, et al.
    Ann Oncol, 2017 Nov 01;28(11):2836-2842.
    PMID: 28950350 DOI: 10.1093/annonc/mdx482
    BACKGROUND: Intakes of specific fatty acids have been postulated to impact breast cancer risk but epidemiological data based on dietary questionnaires remain conflicting.

    MATERIALS AND METHODS: We assessed the association between plasma phospholipid fatty acids and breast cancer risk in a case-control study nested within the European Prospective Investigation into Cancer and Nutrition study. Sixty fatty acids were measured by gas chromatography in pre-diagnostic plasma phospholipids from 2982 incident breast cancer cases matched to 2982 controls. Conditional logistic regression models were used to estimate relative risk of breast cancer by fatty acid level. The false discovery rate (q values) was computed to control for multiple comparisons. Subgroup analyses were carried out by estrogen receptor (ER) and progesterone receptor expression in the tumours.

    RESULTS: A high level of palmitoleic acid [odds ratio (OR) for the highest quartile compared with the lowest OR (Q4-Q1) 1.37; 95% confidence interval (CI), 1.14-1.64; P for trend = 0.0001, q value = 0.004] as well as a high desaturation index (DI16) (16:1n-7/16:0) [OR (Q4-Q1), 1.28; 95% C, 1.07-1.54; P for trend = 0.002, q value = 0.037], as biomarkers of de novo lipogenesis, were significantly associated with increased risk of breast cancer. Levels of industrial trans-fatty acids were positively associated with ER-negative tumours [OR for the highest tertile compared with the lowest (T3-T1)=2.01; 95% CI, 1.03-3.90; P for trend = 0.047], whereas no association was found for ER-positive tumours (P-heterogeneity =0.01). No significant association was found between n-3 polyunsaturated fatty acids and breast cancer risk, overall or by hormonal receptor.

    CONCLUSION: These findings suggest that increased de novo lipogenesis, acting through increased synthesis of palmitoleic acid, could be a relevant metabolic pathway for breast tumourigenesis. Dietary trans-fatty acids derived from industrial processes may specifically increase ER-negative breast cancer risk.

    Matched MeSH terms: Receptors, Estrogen/metabolism
  17. Chinigarzadeh A, Karim K, Muniandy S, Salleh N
    J Biochem Mol Toxicol, 2017 Apr;31(4).
    PMID: 27891704 DOI: 10.1002/jbt.21878
    We hypothesized that genistein could affect the chloride (Cl(-) ) and bicarbonate (HCO3(-) ) secretory mechanisms in uterus. Ovariectomized female rats were given estradiol or estradiol plus progesterone with 25, 50, or 100 mg/kg/day genistein. Following completion of the treatment, uterine fluid Cl(-) and HCO3(-) concentrations were determined by in vivo uterine perfusion. Uteri were subjected for molecular biological analysis (Western blot, qPCR, and immunohistochemistry) to detect levels of expression of Cystic Fibrosis transmembrane regulator (CFTR), Cl(-) /HCO3(-) exchanger (SLC26a6), Na(+) /HCO3(-) cotransporter (SLC4a4), and estrogen receptor (ER)-α and β. Coadministration of genistein resulted in decrease in Cl(-) and HCO3(-) concentrations and expression of CFTR, SLC26a6, SLC4a4, and ER-α and ER-β in the uteri of estradiol-treated rats. In estradiol plus progesterone-treated rats, a significant increase in the above parameters were observed following high-dose genistein treatment except for the SLC24a4 level. In conclusion, genistein-induced changes in the uterus could affect the reproductive processes that might result in infertility.
    Matched MeSH terms: Receptors, Estrogen/drug effects; Receptors, Estrogen/genetics
  18. Chinigarzadeh A, Muniandy S, Salleh N
    Steroids, 2016 11;115:47-55.
    PMID: 27521800 DOI: 10.1016/j.steroids.2016.08.007
    In this study, effects of estradiol, progesterone and genistein on uterine aquaporin (AQP)-1, 2, 5 and 7 expression were investigated in sex-steroid deficient state which could help to elucidate the mechanisms underlying uterine fluid volume changes that were reported under these hormone and hormone-like compound influences.

    METHODS: Uteri from ovariectomized, female Sprague-Dawley rats receiving seven days estradiol, progesterone or genistein (25, 50 and 100mg/kg/day) were harvested and levels of AQP-1, 2, 5 and 7 proteins and mRNAs were determined by Western blotting and Real-time PCR (qPCR) respectively. Distribution of these proteins in uterus was observed by immunohistochemistry.

    RESULTS: Genistein caused a dose-dependent increase in uterine AQP-1, 2, 5 and 7 protein and mRNA expression, however at the levels lower than following estradiol or progesterone stimulations. Effects of genistein were antagonized by estradiol receptor blocker, ICI 182780. Estradiol caused the highest AQP-2 protein and mRNA expression while progesterone caused the highest AQP-1, 5 and 7 protein and mRNA expression in uterus. AQP-1, 2, 5 and 7 protein were found to be distributed in the myometrium as well as in uterine luminal and glandular epithelia and endometrial blood vessels. In conclusion, the observed effects of estradiol, progesterone and genistein on uterine AQP-1, 2, 5 and 7 expression could help to explain the differences in the amount of fluid accumulated in the uterus under these different conditions.

    Matched MeSH terms: Receptors, Estrogen/antagonists & inhibitors; Receptors, Estrogen/metabolism
  19. Ghoussaini M, French JD, Michailidou K, Nord S, Beesley J, Canisus S, et al.
    Am J Hum Genet, 2016 Oct 06;99(4):903-911.
    PMID: 27640304 DOI: 10.1016/j.ajhg.2016.07.017
    Genome-wide association studies (GWASs) have revealed increased breast cancer risk associated with multiple genetic variants at 5p12. Here, we report the fine mapping of this locus using data from 104,660 subjects from 50 case-control studies in the Breast Cancer Association Consortium (BCAC). With data for 3,365 genotyped and imputed SNPs across a 1 Mb region (positions 44,394,495-45,364,167; NCBI build 37), we found evidence for at least three independent signals: the strongest signal, consisting of a single SNP rs10941679, was associated with risk of estrogen-receptor-positive (ER+) breast cancer (per-g allele OR ER+ = 1.15; 95% CI 1.13-1.18; p = 8.35 × 10-30). After adjustment for rs10941679, we detected signal 2, consisting of 38 SNPs more strongly associated with ER-negative (ER-) breast cancer (lead SNP rs6864776: per-a allele OR ER- = 1.10; 95% CI 1.05-1.14; p conditional = 1.44 × 10-12), and a single signal 3 SNP (rs200229088: per-t allele OR ER+ = 1.12; 95% CI 1.09-1.15; p conditional = 1.12 × 10-05). Expression quantitative trait locus analysis in normal breast tissues and breast tumors showed that the g (risk) allele of rs10941679 was associated with increased expression of FGF10 and MRPS30. Functional assays demonstrated that SNP rs10941679 maps to an enhancer element that physically interacts with the FGF10 and MRPS30 promoter regions in breast cancer cell lines. FGF10 is an oncogene that binds to FGFR2 and is overexpressed in ∼10% of human breast cancers, whereas MRPS30 plays a key role in apoptosis. These data suggest that the strongest signal of association at 5p12 is mediated through coordinated activation of FGF10 and MRPS30, two candidate genes for breast cancer pathogenesis.
    Matched MeSH terms: Receptors, Estrogen/metabolism*
  20. Couch FJ, Kuchenbaecker KB, Michailidou K, Mendoza-Fandino GA, Nord S, Lilyquist J, et al.
    Nat Commun, 2016 Apr 27;7:11375.
    PMID: 27117709 DOI: 10.1038/ncomms11375
    Common variants in 94 loci have been associated with breast cancer including 15 loci with genome-wide significant associations (P<5 × 10(-8)) with oestrogen receptor (ER)-negative breast cancer and BRCA1-associated breast cancer risk. In this study, to identify new ER-negative susceptibility loci, we performed a meta-analysis of 11 genome-wide association studies (GWAS) consisting of 4,939 ER-negative cases and 14,352 controls, combined with 7,333 ER-negative cases and 42,468 controls and 15,252 BRCA1 mutation carriers genotyped on the iCOGS array. We identify four previously unidentified loci including two loci at 13q22 near KLF5, a 2p23.2 locus near WDR43 and a 2q33 locus near PPIL3 that display genome-wide significant associations with ER-negative breast cancer. In addition, 19 known breast cancer risk loci have genome-wide significant associations and 40 had moderate associations (P<0.05) with ER-negative disease. Using functional and eQTL studies we implicate TRMT61B and WDR43 at 2p23.2 and PPIL3 at 2q33 in ER-negative breast cancer aetiology. All ER-negative loci combined account for ∼11% of familial relative risk for ER-negative disease and may contribute to improved ER-negative and BRCA1 breast cancer risk prediction.
    Matched MeSH terms: Receptors, Estrogen/genetics*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links