Displaying publications 21 - 36 of 36 in total

Abstract:
Sort:
  1. Sindi R, Wong YH, Yeong CH, Sun Z
    Quant Imaging Med Surg, 2020 Jun;10(6):1237-1248.
    PMID: 32550133 DOI: 10.21037/qims-20-251
    Background: Despite increasing reports of 3D printing in medical applications, the use of 3D printing in breast imaging is limited, thus, personalized 3D-printed breast model could be a novel approach to overcome current limitations in utilizing breast magnetic resonance imaging (MRI) for quantitative assessment of breast density. The aim of this study is to develop a patient-specific 3D-printed breast phantom and to identify the most appropriate materials for simulating the MR imaging characteristics of fibroglandular and adipose tissues.

    Methods: A patient-specific 3D-printed breast model was generated using 3D-printing techniques for the construction of the hollow skin and fibroglandular region shells. Then, the T1 relaxation times of the five selected materials (agarose gel, silicone rubber with/without fish oil, silicone oil, and peanut oil) were measured on a 3T MRI system to determine the appropriate ones to represent the MR imaging characteristics of fibroglandular and adipose tissues. Results were then compared to the reference values of T1 relaxation times of the corresponding tissues: 1,324.42±167.63 and 449.27±26.09 ms, respectively. Finally, the materials that matched the T1 relaxation times of the respective tissues were used to fill the 3D-printed hollow breast shells.

    Results: The silicone and peanut oils were found to closely resemble the T1 relaxation times and imaging characteristics of these two tissues, which are 1,515.8±105.5 and 405.4±15.1 ms, respectively. The agarose gel with different concentrations, ranging from 0.5 to 2.5 wt%, was found to have the longest T1 relaxation times.

    Conclusions: A patient-specific 3D-printed breast phantom was successfully designed and constructed using silicone and peanut oils to simulate the MR imaging characteristics of fibroglandular and adipose tissues. The phantom can be used to investigate different MR breast imaging protocols for the quantitative assessment of breast density.

    Matched MeSH terms: Sepharose
  2. Liu M, Li H, Bai L, Zheng K, Zhao Z, Chen Z, et al.
    J Hazard Mater, 2021 07 05;413:125291.
    PMID: 33588337 DOI: 10.1016/j.jhazmat.2021.125291
    Real-time and visual monitoring of pollutants in the air is of great importance since they are usually cannot be seen, smelled, or touched. Lanthanide nano-cluster is a kind of luminescent sensor for various species. However, controlling synthesis of lanthanide nano-cluster remains experimentally challenging. In this work, four series of lanthanide-barium (Ln-Ba) nano-clusters of Dy2Ba (1), Tb2Ba2 (2), Ln4Ba3 (Ln = Tb, 3a; Eu, 3b), Tb4Ba4 (4) were assembled through precisely controlling the pH of the reactant solutions. The work features the first example that the number of cluster's nuclei changes regularly with the pH. Moreover, investigation reveals that nano-cluster 3a is a highly selective and sensitive sensor towards acetylacetone (acac) and aniline. Interestingly, easy-to-use sensing devices of test paper, agarose gel, and five kinds of film on CaCO3, polyfoam, coin, mask, and wall that based on 3a were fabricated by facile methods. The seven sensing devices showed remarkable ability to sense aniline and acac vapors with visibility to the naked eyes. This is the first work on multiple real-time and visual sensing devices based on the lanthanide nano-cluster.
    Matched MeSH terms: Sepharose
  3. Ky, H., Yeap, S. K., Napis, S. B.
    MyJurnal
    Plant tissues, especially durian tissues contain high content of polysaccharides, polyphenols and other secondary metabolites which can co-precipitate with RNA causing problem in further transcriptomic study. In this experiment, three basic chaotic agents, CTAB, SDS and guanidine are used in three basic protocols for RNA isolation. The effectiveness of each method was determined by spectrophotometer, denaturing agarose gels analysis and northern blot hybridization. CTAB combining with additional sodium acetate precipitation step showed highest yield and best quality of isolated RNA which was free from contaminations of polysaccharides, polyphenols and other secondary metabolites. Furthermore, the total RNA from 4-month old durian flesh of clone D24 was successfully used to construct a cDNA library. In conclusion, CTAB method is effective to isolate total RNA on various types of durian tissues for further gene expression analysis.
    Matched MeSH terms: Sepharose
  4. Tan, J. A. M. A., George, E., Lim, E. J., Zakaria, Z., Hassan, R., Wee, Y. C., et al.
    MyJurnal
    Objectives: This study aimed to evaluate the UBI MAGIWELTM ζ-GLOBIN ELISA Kit for the presumptive diagnosis of αo-thalassaemia. The ELISA results obtained were confirmed by molecular characterisation of αo-thalassaemia using a Duplex-PCR. Methods: Routine peripheral blood counts and red cell indices were determined in 94 blood samples sent for Hb analysis. Hb subtypes were quantified by high performance liquid chromatography (HPLC) and Hb electrophoresis conducted on agarose gel at pH 8.5. Zeta-globin chain levels were determined using the UBI MAGIWELTM ζ-GLOBIN ELISA Kit. Molecular analysis was performed using a duplex-PCR which simultaneously amplifies
    a normal 136 bp sequence between the ψα−α2-globin genes and a 730 bp Southeast Asian deletion-specific sequence (–SEA) between the ψα2−θ1-globin genes. Results: Using the ELISA assay kit, 20 blood samples were presumptively identified as α-thalassaemia carriers from elevated ζ-globin chains (OD>0.3) while the remaining 74 blood samples showed OD
    Matched MeSH terms: Sepharose
  5. Nazerian E, Sijam K, Mior Ahmad ZA, Vadamalai G
    Plant Dis, 2011 Apr;95(4):491.
    PMID: 30743350 DOI: 10.1094/PDIS-09-10-0683
    Cabbage (Brassica oleracea L. var. capitata L.) is one of the most important vegetables cultivated in Pahang and Kelantan, Malaysia. Pectobacterium carotovorum can cause soft rot on a wide range of crops worldwide, especially in countries with warm and humid climates such as Malaysia. Cabbage with symptoms of soft rot from commercial fields were sampled and brought to the laboratory during the winter of 2010. Disease symptoms were a gray to pale brown discoloration and expanding water-soaked lesions on leaves. Several cabbage fields producing white cultivars were investigated and 27 samples were collected. Small pieces of leaf samples were immersed in 5 ml of saline solution (0.80% NaCl) for 20 min to disperse the bacterial cells. Fifty microliters of the resulting suspension was spread on nutrient agar (NA) and King's B medium and incubated at 30°C for 48 h. Purification of cultures was repeated twice on these media. Biochemical and phenotypical tests gave these results: gram negative, rod shaped, ability to grow under liquid paraffin (facultative anaerobe); oxidase negative; phosphatase negative; positive degradation of pectate; sensitive to erythromycin; negative to Keto-methyl glucoside utilization, indole production and reduction sugars from sucrose were negative; acid production from sorbitol and arabitol was negative and from melibiose, citrate, and raffinose was positive. Hypersensitivity reaction on tobacco leaf with the injection of 106 CFU/ml of bacterial suspension for all strains was positive. Four representative strains were able to cause soft rot using cabbage slices (three replications) inoculated with a bacterial suspension at 106 CFU/ml. Inoculated cabbage slices were incubated in a moist chamber at 80% relative humidity and disease symptoms occurred after 24 h. Cabbage slices inoculated with water as a control remained healthy. The bacteria reisolated from rotted cabbage slices on NA had P. carotovorum cultural characteristics and could cause soft rot in subsequent tests. PCR amplification with Y1 and Y2 primers (1), which are specific for P. carotovorum, produced a 434-bp band with 15 strains. PCR amplification of the 16S-23S rRNA intergenic transcribed spacer region (ITS) using G1 and L1 primers gave two main bands approximately 535 and 580 bp and one faint band approximately 740 bp when electrophoresed through a 1.5% agarose gel. The ITS-PCR products were digested with RsaI restriction enzyme. According to biochemical and physiological characterictics (2), PCR-based pel gene (1), and analysis by ITS-PCR and ITS-restriction fragment length polymorphism (3), all isolates were identified as P. carotovorum subsp. carotovorum. This pathogen has been reported from Thailand, Indonesia, and Singapore with whom Malaysia shares its boundaries. To our knowledge, this is the first report of P. carotovorum subsp. carotovorum in cabbage from Malaysia. References: (1) A. Darraas et al. Appl. Environ. Microbiol. 60:1437, 1994. (2) N. W. Schaad et al. Laboratory Guide for the Identification of Plant Pathogenic Bacteria. 3rd ed. The American Phytopathological Society, St. Paul, 2001. (3) I. K. Toth et al. Appl. Environ. Microbiol. 67:4070, 2001.
    Matched MeSH terms: Sepharose
  6. Sanagi MM, Loh SH, Wan Ibrahim WA, Hasan MN
    J Chromatogr A, 2012 Nov 2;1262:43-8.
    PMID: 23021646 DOI: 10.1016/j.chroma.2012.09.007
    Agarose film liquid phase microextraction (AF-LPME) procedure for the extraction and preconcentration of polycyclic aromatic hydrocarbons (PAHs) in water has been investigated. Agarose film was used for the first time as an interface between donor and acceptor phases in liquid phase microextraction which allowed for selective extraction of the analytes prior to gas chromatography-mass spectrometry. Using 1-octanol as acceptor phase, high enrichment factors in the range of 57-106 for the targeted analytes (fluorene, phenanthrene, fluoranthene and pyrene) were achieved. Under the optimum extraction conditions, the method showed good linearity in the range of 0.1-200 μgL(-1), good correlation coefficients in the range of 0.9963-0.9999, acceptable reproducibility (RSD 6.1-9.2%, n=3), low limits of detection (0.01-0.04 μgL(-1)) and satisfactory relative recoveries (92.9-104.7%). As the AF-LPME device was non-expensive, reuse or recycle of the film was not required, thus eliminating the possibility of analytes carry-over between runs. The AF-LPME technique is environment-friendly and compatible with the green chemistry concept as agarose is biodegradable polysaccharide extracted from seaweed and the procedure requires small volume of organic solvent and generates little waste. The validated method was successfully applied to the analysis of the four analytes in river water samples.
    Matched MeSH terms: Sepharose/chemistry*
  7. Nair S, Karim R, Cardosa MJ, Ismail G, Pang T
    J Microbiol Methods, 1999 Oct;38(1-2):63-7.
    PMID: 10520586
    We describe a convenient, versatile and safe method for preparing bacterial DNA for ribotyping analysis. In this method, extraction of bacterial DNA from Salmnonella typhi and Burkholderia pseudomallei. and subsequent restriction endonuclease digestion, was performed in agarose blocks/plugs thus minimizing shearing and loss of DNA, problems commonly associated with liquid phase phenol extraction. Digested DNA in the plugs was then electrophoresed directly, transferred to nylon membranes and hybridized with labeled rDNA probes in the usual manner to provide reproducible restriction patterns. This method is particularly useful for bacterial species where standard DNA extraction in the liquid phase using phenol has been problematic (e.g. B. pseudomallei) but can be used for any bacterial species. The DNA extracted within the agarose plugs can be stored for long periods and can be used in other, widely-used typing methods such as pulsed-field gel electrophoresis (PFGE) and PCR-based techniques. Embedding live cells directly in agarose plugs also minimizes the risk of exposure to these virulent human pathogens among laboratory workers.
    Matched MeSH terms: Sepharose*
  8. Rozaini MNH, Semail NF, Saad B, Kamaruzaman S, Abdullah WN, Rahim NA, et al.
    Talanta, 2019 Jul 01;199:522-531.
    PMID: 30952293 DOI: 10.1016/j.talanta.2019.02.096
    Molecularly imprinted silica gel (MISG) was incorporated through dispersion in agarose polymer matrix to form a mixed matrix membrane (MMM) and was applied for the determination of three sulfonamide antibiotic compounds (i.e. sulfamethoxazole (SMX), sulfamonomethoxine (SMM), and sulfadiazine (SDZ)) from environmental water samples. Several important microextraction conditions, such as type of desorption solvent, extraction time, amount of sorbent, sample volume, pH, and effect of desorption time, were comprehensively optimized. A preconcentration factors of ≥ 20 was achieved by the extraction of 12.5 mL of water samples using the developed method. This microextraction-HPLC method demonstrated good linearity (1-500 μg L-1) with a coefficient of determination (R2) of 0.9959-0.9999, low limits of detection (0.06-0.17 μg L-1) and limits of quantification (0.20-0.56 μg L-1), good analyte recoveries (80-96%), and acceptable relative standard deviations (< 10%) under the optimized conditions. The method is systematically compared to those reported in the literature.
    Matched MeSH terms: Sepharose/chemistry*
  9. Masani MY, Noll G, Parveez GK, Sambanthamurthi R, Prüfer D
    Plant Sci, 2013 Sep;210:118-27.
    PMID: 23849119 DOI: 10.1016/j.plantsci.2013.05.021
    Oil palm protoplasts are suitable as a starting material for the production of oil palm plants with new traits using approaches such as somatic hybridization, but attempts to regenerate viable plants from protoplasts have failed thus far. Here we demonstrate, for the first time, the regeneration of viable plants from protoplasts isolated from cell suspension cultures. We achieved a protoplast yield of 1.14×10(6) per gram fresh weight with a viability of 82% by incubating the callus in a digestion solution comprising 2% cellulase, 1% pectinase, 0.5% cellulase onuzuka R10, 0.1% pectolyase Y23, 3% KCl, 0.5% CaCl2 and 3.6% mannitol. The regeneration of protoplasts into viable plants required media optimization, the inclusion of plant growth regulators and the correct culture technique. Microcalli derived from protoplasts were obtained by establishing agarose bead cultures using Y3A medium supplemented with 10μM naphthalene acetic acid, 2μM 2,4-dichlorophenoxyacetic acid, 2μM indole-3-butyric acid, 2μM gibberellic acid and 2μM 2-γ-dimethylallylaminopurine. Small plantlets were regenerated from microcalli by somatic embryogenesis after successive subculturing steps in medium with limiting amounts of growth regulators supplemented with 200mg/l ascorbic acid.
    Matched MeSH terms: Sepharose
  10. Halim NFAA, Ali MSM, Leow ATC, Rahman RNZRA
    Int J Biol Macromol, 2021 Jun 01;180:242-251.
    PMID: 33737181 DOI: 10.1016/j.ijbiomac.2021.03.072
    Fatty acid desaturase catalyzes the desaturation reactions by insertion of double bonds into the fatty acyl chain, producing unsaturated fatty acids. Though soluble fatty acid desaturases have been studied widely in advanced organisms, there are very limited studies of membrane fatty acid desaturases due to the difficulty of generating recombinant desaturase. Brassica napus is a rapeseed, which possesses a range of different membrane-bound desaturases capable of producing fatty acids including Δ3, Δ4, Δ8, Δ9, Δ12, and Δ15 fatty acids. The 1155 bp open reading frame of Δ12 fatty acid desaturase (FAD12) from Brassica napus codes for 383 amino acid residues with a molecular weight of 44 kDa. It was expressed in Escherichia coli at 37 °C in soluble and insoluble forms when induced with 0.5 mM IPTG. Soluble FAD12 has been purified using Ni2+-Sepharose affinity chromatography with a total protein yield of 0.728 mg/mL. Gas chromatography-mass spectrometry (GC-MS) analysis revealed that desaturase activity of FAD12 could produce linoleic acid from oleic acid at a retention time of 17.6 with a conversion rate of 47%. Characterization of purified FAD12 revealed the optimal temperature of FAD12 was 50 °C with 2 mM preferred substrate concentration of oleic acid. Analysis of circular dichroism (CD) showed FAD12 was made up of 47.3% and 0.9% of alpha-helix and β-sheet secondary structures. The predicted Tm value was 50.2 °C.
    Matched MeSH terms: Sepharose
  11. Rehman U, Sarfraz RM, Mahmood A, Hussain Z, Thu HE, Zafar N, et al.
    Curr Drug Deliv, 2021 Feb 11.
    PMID: 33583374 DOI: 10.2174/1567201818666210212085912
    BACKGROUND: Despite exhibiting promising anticancer potential, the clinical significance of capecitabine (a potent prodrug of 5-fluorouracil used for treatment of colorectal cancer) is limited owing to its acidic and enzymatic hydrolysis, lower absorption following the oral administration, poor bioavailability, short plasma half-life and poor patient compliance.

    OBJECTIVES: The present study was aimed to fabricate the capecitabine as smart pH-responsive hydrogel network to efficiently facilitate its oral delivery while shielding its stability in the gastric media.

    METHODS: The smart pH sensitive HP-β-CD/agarose-g-poly(MAA) hydrogel network was developed using an aqueous free radical polymerization technique. The developed hydrogels were characterized for drug-loading efficiency, structural and compositional features, thermal stability, swelling behaviour, morphology, physical form, and release kinetics. The pH-responsive behaviour of developed hydrogels was established by conducting the swelling and release behaviour at different pH values (1.2 and 7.4), demonstrating significantly higher swelling and release at pH 7.4 as compared with pH 1.2. The capecitabine-loaded hydrogels were also screened for acute oral toxicity in animals by analysing the body weight, water and food intake, dermal toxicity, ocular toxicity, biochemical analysis, and histological examination.

    RESULTS: The characteristic evaluations revealed that capecitabine (anticancer agent) was successfully loaded into the hydrogel network. Capecitabine loading was ranged from 71.22% to 90.12%. An interesting feature of hydrogel was its pH-responsive behaviour which triggers release at basic pH (94.25%). Optimum swelling (95%) was seen at pH 7.4. Based upon regression coefficient R2 (0.96 - 0.99) best fit model was zero order. The extensive toxicity evaluations evidenced good safety profile with no signs of oral, dermal or ocular toxicities, as well as no variations in blood parameters and histology of vital organs.

    CONCLUSION: Our findings conclusively evinced that the developed hydrogel exhibited excellent pharmaceutical and therapeutic potential and thus can be employed as pH-responsive system for controlled delivery of anticancer agents.

    Matched MeSH terms: Sepharose
  12. Tay ST, Devi S, Puthucheary SD, Kautner IM
    J Med Microbiol, 1995 Mar;42(3):175-80.
    PMID: 7884798
    There are several methods for the detection of haemolytic activity in campylobacters. However, we found the haemolytic effect of campylobacters on conventional blood agar plates to be variable, inconsistent and difficult to interpret. Blood agarose plates showed campylobacter haemolytic activity more clearly. The incubation conditions (temperature and gaseous) appear to be important for the expression of this activity. Ninety four percent of the Campylobacter isolates examined were found to be haemolytic by the microplate assay with minimal haemolytic units that ranged from 1 to 64. Haemolytic activity was detected only from live bacterial cultures and not from any of the 50 bacterial culture supernates, which suggests that campylobacters may possess a cell-associated haemolysin. The identification of such haemolytic activity in a large number of campylobacters (94%) suggests its potential role as a virulence factor in campylobacter gastroenteritis.
    Matched MeSH terms: Sepharose
  13. Tan YH, Alias Z
    Trop Biomed, 2020 Sep 01;37(3):744-755.
    PMID: 33612787 DOI: 10.47665/tb.37.3.744
    The study was aimed to investigate the expression of cytosolic and thiolated proteins of Musca domestica larvae under oxidative stress. Proteins from acute treatment of hydrogen peroxide (LC50 = 21.52% (v/v)) on 3rd stage larvae of housefly were extracted and purified using an activated Thiol Sepharose® for thiolated protein purification. Two dimensional gel electrophoresis was used for visualizing and analyzing expression of cytosolic and thiolated proteins. Protein spots with more than 5 fold of expression change were identified using liquid chromatography- tandem mass spectrometry (LC-MS/MS). The cytosolic proteins were actin, tropomyosin, ubiquitin, arginine kinase, pheromone binding protein/general odorant binding protein, and ATP: guanidino phosphotransferase. The thiolated proteins with more than 5 fold change in expression as an effect to the acute treatment were fructose bisphosphate aldolase, short chain dehydrogenase and lactate/malate dehydrogenase. The proteins identified in the study should provide vital information for future reference in oxidative stress defence and response occurring in houseflies.
    Matched MeSH terms: Sepharose
  14. Khor, Chai Wey, Ahmad Azlina, Ponnuraj, Kannan Thirumulu, Noor Hayati Abdul Razak
    MyJurnal
    Xeroderma pigmentosum-D (XPD) is one of the genes that play a role in the Nucleotide-Excision Repair (NER). Polymorphisms in XPD gene have been identified and reported to be associated with many types of cancer with two common single nucleotide polymorphisms (SNPs), namely, XPD312 and XPD751. The XPD312 polymorphism is at exon 10 codon 312 Asp to Asn (A→G) and the association of this polymorphism with oral cancer is very little known, especially, in Malaysia. The aim of this study was to screen for XPD312 gene polymorphisms in human oral cancer patients attending Hospital Universiti Sains Malaysia (HUSM), Malaysia. Blood samples were collected from 10 oral cancer and 10 normal healthy subjects with their consent. DNA was extracted using commercial DNA extraction kit and Polymerase Chain Reaction (PCR) was performed to amplify the XPD312 gene. The PCR products were digested using restriction enzyme, Sty I and analyzed on a 3% agarose gel for the detection of polymorphisms. This was followed by DNA sequencing to confirm the findings. In the current study, only homozygous wild type polymorphisms in the XPD312 gene was noticed in the oral cancer tissues as revealed by the restriction enzyme and DNA sequencing analyses.
    Matched MeSH terms: Sepharose
  15. Jindal HM, Zandi K, Ong KC, Velayuthan RD, Rasid SM, Samudi Raju C, et al.
    PeerJ, 2017;5:e3887.
    PMID: 29018620 DOI: 10.7717/peerj.3887
    BACKGROUND: Antimicrobial peptides (AMPs) are of great potential as novel antibiotics for the treatment of broad spectrum of pathogenic microorganisms including resistant bacteria. In this study, the mechanisms of action and the therapeutic efficacy of the hybrid peptides were examined.

    METHODS: TEM, SEM and ATP efflux assay were used to evaluate the effect of hybrid peptides on the integrity of the pneumococcal cell wall/membrane. DNA retardation assay was assessed to measure the impact of hybrid peptides on the migration of genomic DNA through the agarose gel. In vitro synergistic effect was checked using the chequerboard assay. ICR male mice were used to evaluate the in vivo toxicity and antibacterial activity of the hybrid peptides in a standalone form and in combination with ceftriaxone.

    RESULTS: The results obtained from TEM and SEM indicated that the hybrid peptides caused significant morphological alterations in Streptococcus pneumoniae and disrupting the integrity of the cell wall/membrane. The rapid release of ATP from pneumococcal cells after one hour of incubation proposing that the antibacterial action for the hybrid peptides is based on membrane permeabilization and damage. The DNA retardation assay revealed that at 62.5 µg/ml all the hybrid peptides were capable of binding and preventing the pneumococcal genomic DNA from migrating through the agarose gel. In vitro synergy was observed when pneumococcal cells treated with combinations of hybrid peptides with each other and with conventional drugs erythromycin and ceftriaxone. The in vivo therapeutic efficacy results revealed that the hybrid peptide RN7-IN8 at 20 mg/kg could improve the survival rate of pneumococcal bacteremia infected mice, as 50% of the infected mice survived up to seven days post-infection. In vivo antibacterial efficacy of the hybrid peptide RN7-IN8 was signficantly improved when combined with the standard antibiotic ceftriaxone at (20 mg/kg + 20 mg/kg) as 100% of the infected mice survived up to seven days post-infection.

    DISCUSSION: Our results suggest that attacking and breaching the cell wall/membrane is most probably the principal mechanism for the hybrid peptides. In addition, the hybrid peptides could possess another mechanism of action by inhibiting intracellular functions such as DNA synthesis. AMPs could play a great role in combating antibiotic resistance as they can reduce the therapeutic concentrations of standard drugs.

    Matched MeSH terms: Sepharose
  16. Pingguan-Murphy B, Nawi I
    Clinics (Sao Paulo), 2012 Aug;67(8):939-44.
    PMID: 22948463
    OBJECTIVES: The promotion of extracellular matrix synthesis by chondrocytes is a requisite part of an effective cartilage tissue engineering strategy. The aim of this in vitro study was to determine the effect of bi-axial cyclic mechanical loading on cell proliferation and the synthesis of glycosaminoglycans by chondrocytes in three-dimensional cultures.

    METHOD: A strain comprising 10% direct compression and 1% compressive shear was applied to bovine chondrocytes seeded in an agarose gel during two 12-hour conditioning periods separated by a 12-hour resting period.

    RESULTS: The bi-axial-loaded chondrocytes demonstrated a significant increase in glycosaminoglycan synthesis compared with samples exposed to uni-axial or no loading over the same period (p<0.05). The use of a free-swelling recovery period prior to the loading regime resulted in additional glycosaminoglycan production and a significant increase in DNA content (p<0.05), indicating cell proliferation.

    CONCLUSIONS: These results demonstrate that the use of a bi-axial loading regime results in increased matrix production compared with uni-axial loading.

    Matched MeSH terms: Sepharose
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links