Displaying publications 21 - 40 of 105 in total

Abstract:
Sort:
  1. Safwani WK, Makpol S, Sathapan S, Chua KH
    Appl Biochem Biotechnol, 2012 Apr;166(8):2101-13.
    PMID: 22391697 DOI: 10.1007/s12010-012-9637-4
    Human adipose-derived stem cells (ASCs) have generated a great deal of excitement in regenerative medicine. However, their safety and efficacy issue remain a major concern especially after long-term in vitro expansion. The aim of this study was to investigate the fundamental changes of ASCs in long-term culture by studying the morphological feature, growth kinetic, surface marker expressions, expression level of the senescence-associated genes, cell cycle distribution and ß-galactosidase activity. Human ASCs were harvested from lipoaspirate obtained from 6 patients. All the parameters mentioned above were measured at P5, P10, P15 and P20. Data were subjected to one-way analysis of variance with a Tukey post hoc test to determine significance difference (P < 0.05). The data showed that growth of ASCs reduced in long-term culture and the ß-galactosidase activity was significantly increased at later passage (P20). The morphology of ASCs in long-term culture showed the manifestation of senescent feature at P15 and P20. Significant alteration in the senescence-associated genes expression levels was observed in MMP1, p21, Rb and Cyclin D1 at P15 and P20. Significant increase in CD45 and HLA DR DQ DP surface marker was observed at P20. While cell cycle analysis showed significant decrease in percentage of ASCs at S and G2/M phase at later passage (P15). Our data showed ASCs cultured beyond P10 favours the senescence pathway and its clinical usage in cell-based therapy may be limited.
    Matched MeSH terms: Stem Cells/metabolism*
  2. Wan Safwani WK, Makpol S, Sathapan S, Chua KH
    Biotechnol Appl Biochem, 2011 Jul-Aug;58(4):261-70.
    PMID: 21838801 DOI: 10.1002/bab.38
    One of the advantages of human adipose-derived stem cells (ASCs) in regenerative medicine is that they can be harvested in abundance. However, the stemness biomarkers, which marked the safety and efficacy of ASCs in accordance with the good manufacturing practice guidelines, is not yet well established. This study was designed to investigate the effect of long-term culture on the stemness properties of ASCs using quantitative real-time polymerase chain reaction and flow cytometry. Results showed the growth rate of ASCs was at its peak when they reached P10 (population doubling; PD = 26) but started to decrease when they were expanded to P15 (PD = 36) and P20 (PD = 46). The ASCs can be culture expanded with minimal alteration in the stemness genes and cluster of differentiation (CD) markers expression up to P10. Expression level of Sox2, Nestin, and Nanog3 was significantly decreased at later passage. CD31, CD45, CD117, and human leukocyte antigen DR, DQ, and DP were lowly expressed at P5 and P10 but their expressions increased significantly at P15 or P20. The differentiation ability of ASCs (adipogenesis, osteogenesis, and neurogenesis) also decreased in long-term culture. Our findings suggested that P10 (PD = 26) should be the "cutoff point" for clinical usage because ASCs at passage 15 onward showed significant changes in the stemness genes, CD markers expression, and differentiation capability.
    Matched MeSH terms: Stem Cells/metabolism*
  3. Wan Safwani WK, Makpol S, Sathapan S, Chua KH
    PMID: 22221649 DOI: 10.1186/1477-5751-11-3
    Adipose tissue is a source of multipotent adult stem cells and it has the ability to differentiate into several types of cell lineages such as neuron cells, osteogenic cells and adipogenic cells. Several reports have shown adipose-derived stem cells (ASCs) have the ability to undergo cardiomyogenesis. Studies have shown 5-azacytidine can successfully drive stem cells such as bone marrow derived stem cells to differentiate into cardiomyogenic cells. Therefore, in this study, we investigated the effect 5-azacytidine on the cardiogenic ability of ASCs.
    Matched MeSH terms: Stem Cells/metabolism; Embryonic Stem Cells/metabolism
  4. Rozila I, Azari P, Munirah S, Wan Safwani WK, Gan SN, Nur Azurah AG, et al.
    J Biomed Mater Res A, 2016 Feb;104(2):377-87.
    PMID: 26414782 DOI: 10.1002/jbm.a.35573
    The osteogenic potential of human adipose-derived stem cells (HADSCs) co-cultured with human osteoblasts (HOBs) using selected HADSCs/HOBs ratios of 1:1, 2:1, and 1:2, respectively, is evaluated. The HADSCs/HOBs were seeded on electrospun three-dimensional poly[(R)-3-hydroxybutyric acid] (PHB) blended with bovine-derived hydroxyapatite (BHA). Monocultures of HADSCs and HOBs were used as control groups. The effects of PHB-BHA scaffold on cell proliferation and cell morphology were assessed by AlamarBlue assay and field emission scanning electron microscopy. Cell differentiation, cell mineralization, and osteogenic-related gene expression of co-culture HADSCs/HOBs were examined by alkaline phosphatase (ALP) assay, alizarin Red S assay, and quantitative real time PCR, respectively. The results showed that co-culture of HADSCs/HOBs, 1:1 grown into PHB-BHA promoted better cell adhesion, displayed a significant higher cell proliferation, higher production of ALP, extracellular mineralization and osteogenic-related gene expression of run-related transcription factor, bone sialoprotein, osteopontin, and osteocalcin compared to other co-culture groups. This result also suggests that the use of electrospun PHB-BHA in a co-culture HADSCs/HOBs system may serve as promising approach to facilitate osteogenic differentiation activity of HADSCs through direct cell-to-cell contact with HOBs.
    Matched MeSH terms: Stem Cells/metabolism*
  5. Lim YC, Quek H, Offenhäuser C, Fazry S, Boyd A, Lavin M, et al.
    J Neurooncol, 2018 Jul;138(3):509-518.
    PMID: 29564746 DOI: 10.1007/s11060-018-2838-0
    Glioblastoma (GBM) is a highly fatal disease with a 5 year survival rate of less than 22%. One of the most effective treatment regimens to date is the use of radiotherapy which induces lethal DNA double-strand breaks to prevent tumour growth. However, recurrence occurs in the majority of patients and is in-part a result of robust radioresistance mechanisms. In this study, we demonstrate that the multifunctional cytokine, interleukin-6 (IL-6), confers a growth advantage in GBM cells but does not have the same effect on normal neural progenitor cells. Further analysis showed IL-6 can promote radioresistance in GBM cells when exposed to ionising radiation. Ablation of the Ataxia-telangiectasia mutated serine/threonine kinase that is recruited and activated by DNA double-strand breaks reverses the effect of radioresistance and re-sensitised GBM to DNA damage thus leading to increase cell death. Our finding suggests targeting the signaling cascade of DNA damage response is a potential therapeutic approach to circumvent IL-6 from promoting radioresistance in GBM.
    Matched MeSH terms: Neural Stem Cells/metabolism
  6. Senthilkumar S, Venugopal C, Parveen S, K S, Rai KS, Kutty BM, et al.
    Neurotoxicology, 2020 12;81:89-100.
    PMID: 32905802 DOI: 10.1016/j.neuro.2020.08.006
    Stem cell therapy provides a ray of hope for treating neurodegenerative diseases (ND). Bone marrow mesenchymal stem cells (BM-MSC) were extensively investigated for their role in neuroregeneration. However, drawbacks like painful bone marrow extraction, less proliferation and poor CNS engraftment following systemic injections of BM-MSC prompt us to search for alternate/appropriate source of MSC for treating ND. In this context, dental pulp stem cells (DPSC) could be an alternative to BM-MSC as it possess both mesenchymal and neural characteristic features due to its origin from ectoderm, ease of isolation, higher proliferation index and better neuroprotection. A study on the migration potential of DPSC compared to BM-MSC in a neurodegenerative condition is warranted. Given the neural crest origin, we hypothesize that DPSC possess better migration towards neurodegenerative milieu as compared to BM-MSC. In this prospect, we investigated the migration potential of DPSC in an in vitro neurodegenerative condition. Towards this, transwell, Matrigel and chorioallantoic membrane (CAM) migration assays were carried-out by seeding hippocampal neurons in the lower chamber and treated with 300 μM kainic acid (KA) for 6 h to induce neurodegeneration. Subsequently, the upper chamber of transwell was loaded with DPSC/BM-MSC and their migration potential was assessed following 24 h of incubation. Our results revealed that the migration potential of DPSC/BM-MSC was comparable in non-degenerative condition. However, following injury the migration potential of DPSC towards the degenerating site was significantly higher as compared to BM-MSC. Furthermore, upon exposure of naïve DPSC/BM-MSCs to culture medium derived from neurodegenerative milieu resulted in significant upregulation of homing factors like SDF-1alpha, CXCR-4, VCAM-1, VLA-4, CD44, MMP-2 suggesting that the superior migration potential of DPSC might be due to prompt expression of homing factors in DPSC compared to BM-MSCs.
    Matched MeSH terms: Stem Cells/metabolism
  7. Tan GC, Chan E, Molnar A, Sarkar R, Alexieva D, Isa IM, et al.
    Nucleic Acids Res, 2014 Aug;42(14):9424-35.
    PMID: 25056318 DOI: 10.1093/nar/gku656
    We have sequenced miRNA libraries from human embryonic, neural and foetal mesenchymal stem cells. We report that the majority of miRNA genes encode mature isomers that vary in size by one or more bases at the 3' and/or 5' end of the miRNA. Northern blotting for individual miRNAs showed that the proportions of isomiRs expressed by a single miRNA gene often differ between cell and tissue types. IsomiRs were readily co-immunoprecipitated with Argonaute proteins in vivo and were active in luciferase assays, indicating that they are functional. Bioinformatics analysis predicts substantial differences in targeting between miRNAs with minor 5' differences and in support of this we report that a 5' isomiR-9-1 gained the ability to inhibit the expression of DNMT3B and NCAM2 but lost the ability to inhibit CDH1 in vitro. This result was confirmed by the use of isomiR-specific sponges. Our analysis of the miRGator database indicates that a small percentage of human miRNA genes express isomiRs as the dominant transcript in certain cell types and analysis of miRBase shows that 5' isomiRs have replaced canonical miRNAs many times during evolution. This strongly indicates that isomiRs are of functional importance and have contributed to the evolution of miRNA genes.
    Matched MeSH terms: Stem Cells/metabolism
  8. Muhammad SA, Nordin N, Hussin P, Mehat MZ, Abu Kasim NH, Fakurazi S
    PLoS One, 2020;15(9):e0238449.
    PMID: 32886713 DOI: 10.1371/journal.pone.0238449
    Treatment of osteoarthritis (OA) is still a major clinical challenge due to the limited inherent healing capacity of cartilage. Recent studies utilising stem cells suggest that the therapeutic benefits of these cells are mediated through the paracrine mechanism of bioactive molecules. The present study evaluates the regenerative effect of stem cells from human exfoliated deciduous teeth (SHED) conditioned medium (CM) on OA chondrocytes. The CM was collected after the SHED were cultured in serum-free medium (SFM) for 48 or 72 h and the cells were characterised by the expression of MSC and pluripotency markers. Chondrocytes were stimulated with interleukin-1β and treated with the CM. Subsequently, the expression of aggrecan, collagen type 2 (COL 2), matrix metalloproteinase-13 (MMP-13), nuclear factor-kB (NF-kB) and the level of inflammatory and anti-inflammatory markers were evaluated. SHED expressed mesenchymal stromal cell surface proteins but were negative for haematopoietic markers. SHED also showed protein expression of NANOG, OCT4 and SOX2 with differential subcellular localisation. Treatment of OA chondrocytes with CM enhanced anti-inflammation compared to control cells treated with SFM. Furthermore, the expression of MMP-13 and NF-kB was significantly downregulated in stimulated chondrocytes incubated in CM. The study also revealed that CM increased the expression of aggrecan and COL 2 in OA chondrocytes compared to SFM control. Both CM regenerate extracellular matrix proteins and mitigate increased MMP-13 expression through inhibition of NF-kB in OA chondrocytes due to the presence of bioactive molecules. The study underscores the potential of CM for OA treatment.
    Matched MeSH terms: Stem Cells/metabolism
  9. Chan EWL, Krishnansamy S, Wong C, Gan SY
    Neurotoxicology, 2019 01;70:91-98.
    PMID: 30408495 DOI: 10.1016/j.neuro.2018.11.001
    The cognitive impairment caused by Alzheimer's disease (AD) is associated with beta-amyloid (Aβ) and tau proteins, and is accompanied by inflammation. Recently, a novel inflammasome signaling pathway has been uncovered. Inflammasomes are implicated in the execution of inflammatory responses and pyroptotic death leading to neurodegeneration. Thus, the inflammasome signaling pathway could be a potential therapeutic target for AD. Neural stem cells (NSCs) are multipotent cells that can self-renew and differentiate into distinct neural cells. NSC therapy has been considered to be a promising therapeutic approach in protecting the central nervous system and restoring it following damage. However, the mechanisms involved remain unclear. The aims of this study were to investigate the protective effects of NE4C neural stem cells against microglia-mediated neurotoxicity and to explore molecular mechanisms mediating their actions. NE4C decreased the levels of caspase-1 and IL-1β, and attenuated the level of the NLRP3 inflammasome and its associated protein adapter, apoptosis-associated speck-like protein containing a C-terminal caspase recruitment domain (ASC) in LPS-stimulated BV2 microglial cells, possibly by regulating the phosphorylation of p38α MAPK. The conditioned media obtained from co-culture of LPS-stimulated BV2 and NE4C cells exhibited protective effects on SH-SY5Y cells against microglia-mediated neurotoxicity; this was associated with an attenuation of tau phosphorylation and amyloidogenesis and accompanied by down-regulation of GSK-3β and p38α MAPK signalling pathways. In conclusion, the present study suggested that NSC therapy could be a potential strategy against microglia-mediated neurotoxicity. NSCs regulate NLRP3 activation and IL-1β secretion, which are critical in the initiation of the inflammatory responses, hence preventing the release of neurotoxic pro-inflammatory factors by microglia. This eventually reduces tau hyperphosphylation and amyloidogenesis, possibly through the regulation of GSK-3β and p38α MAPK signalling pathways, and thus protects SH-SY5Y cells against microglia-mediated neurotoxicity.
    Matched MeSH terms: Neural Stem Cells/metabolism*
  10. Suk KH, Gopinath SCB
    Curr Med Chem, 2017;24(30):3310-3321.
    PMID: 28464786 DOI: 10.2174/0929867324666170502122444
    BACKGROUND: Drug encapsulated nanoparticle has the potency to act as an effective antidote for various diseases. It is possible to enhance the bioavailability of drug encapsulated nanoparticle, whereby the yield is significantly higher compared to the standard formulation. The development with drug encapsulated nanoparticle has been improved drastically after demonstrating its capability of showing the enhanced thermophysical properties and stability of the drug. It is also utilized widely in cancer diagnoses, whereby the surface of the nanoparticle can be modified to enable the nanocarriers to reach the targeted location. Thus, the encapsulated nanoparticle can reveal neural stem cell differentiation due to the multifaceted nature and the biophysical cues to control the cell differentiation.

    OBJECTIVE: In this overview, different advantages of the drug encapsulated nanoparticle for the downstream applications are narrated with its appealing characteristics.

    CONCLUSION: The application of the drug encapsulated nanoparticle is unrestricted as it can be customized to the specific target cell in the living system.

    Matched MeSH terms: Neural Stem Cells/metabolism
  11. Sulong AF, Hassan NH, Hwei NM, Lokanathan Y, Naicker AS, Abdullah S, et al.
    Adv Clin Exp Med, 2014 May-Jun;23(3):353-62.
    PMID: 24979505
    Autologous nerve grafts to bridge nerve gaps pose various drawbacks. Nerve tissue engineering to promote nerve regeneration using artificial neural conduits has emerged as a promising alternative.
    Matched MeSH terms: Neural Stem Cells/metabolism
  12. Golbabapour S, Abdulla MA, Hajrezaei M
    Int J Mol Sci, 2011;12(12):8661-94.
    PMID: 22272098 DOI: 10.3390/ijms12128661
    Epigenetic mechanisms are responsible for the regulation of transcription of imprinted genes and those that induce a totipotent state. Starting just after fertilization, DNA methylation pattern undergoes establishment, reestablishment and maintenance. These modifications are important for normal embryo and placental developments. Throughout life and passing to the next generation, epigenetic events establish, maintain, erase and reestablish. In the context of differentiated cell reprogramming, demethylation and activation of genes whose expressions contribute to the pluripotent state is the crux of the matter. In this review, firstly, regulatory epigenetic mechanisms related to somatic cell nuclear transfer (SCNT) reprogramming are discussed, followed by embryonic development, and placental epigenetic issues.
    Matched MeSH terms: Embryonic Stem Cells/metabolism*
  13. Fani S, Kamalidehghan B, Lo KM, Nigjeh SE, Keong YS, Dehghan F, et al.
    Sci Rep, 2016 Dec 15;6:38992.
    PMID: 27976692 DOI: 10.1038/srep38992
    In the present study, we examined the cytotoxic effects of Schiff base complex, [N-(3,5-dichloro-2-oxidobenzylidene)-4-chlorobenzyhydrazidato](o-methylbenzyl)aquatin(IV) chloride, and C1 on MDA-MB-231 cells and derived breast cancer stem cells from MDA-MB-231 cells. The acute toxicity experiment with compound C1 revealed no cytotoxic effects on rats. Fluorescent microscopic studies using Acridine Orange/Propidium Iodide (AO/PI) staining and flow cytometric analysis using an Annexin V probe confirmed the occurrence of apoptosis in C1-treated MDA-MB-231 cells. Compound C1 triggered intracellular reactive oxygen species (ROS) production and lactate dehydrogenase (LDH) releases in treated MDA-MB-231 cells. The Cellomics High Content Screening (HCS) analysis showed the induction of intrinsic pathways in treated MDA-MB-231 cells, and a luminescence assay revealed significant increases in caspase 9 and 3/7 activity. Furthermore, flow cytometric analysis showed that compound C1 induced G0/G1 arrest in treated MDA-MB-231 cells. Real time PCR and western blot analysis revealed the upregulation of the Bax protein and the downregulation of the Bcl-2 and HSP70 proteins. Additionally, this study revealed the suppressive effect of compound C1 against breast CSCs and its ability to inhibit the Wnt/β-catenin signaling pathways. Our results demonstrate the chemotherapeutic properties of compound C1 against breast cancer cells and derived breast cancer stem cells, suggesting that the anticancer capabilities of this compound should be clinically assessed.
    Matched MeSH terms: Neoplastic Stem Cells/metabolism*
  14. Fariha MM, Chua KH, Tan GC, Lim YH, Hayati AR
    J Cell Mol Med, 2013 May;17(5):681-92.
    PMID: 23551495 DOI: 10.1111/jcmm.12051
    Human chorion-derived stem cells (hCDSC) were previously shown to demonstrate multipotent properties with promising angiogenic characteristics in monolayer-cell culture system. In our study, we investigated the angiogenic capability of hCDSC in 3-dimensional (3D) in vitro and in vivo angiogenic models for the purpose of future application in the treatment of ischaemic diseases. Human CDSC were evaluated for angiogenic and endogenic genes expressions by quantitative PCR. Growth factors secretions were quantified using ELISA. In vitro and in vivo vascular formations were evaluated by histological analysis and confocal microscopic imaging. PECAM-1(+) and vWF(+) vascular-like structures were observed in both in vitro and in vivo angiogenesis models. High secretions of VEGF and bFGF by hCDSC with increased expressions of angiogenic and endogenic genes suggested the possible angiogenic promoting mechanisms by hCDSC. The cooperation of hCDSC with HUVECS to generate vessel-like structures in our systems is an indication that there will be positive interactions of hCDSC with existing endothelial cells when injected into ischaemic tissues. Hence, hCDSC is suggested as the novel approach in the future treatment of ischaemic diseases.
    Matched MeSH terms: Stem Cells/metabolism*
  15. Fariha MM, Chua KH, Tan GC, Tan AE, Hayati AR
    Cytotherapy, 2011 May;13(5):582-93.
    PMID: 21231803 DOI: 10.3109/14653249.2010.549121
    BACKGROUND AIMS: Fetal membrane from human placenta tissue has been described as a potential source of stem cells. Despite abundant literature on amnion stem cells, there are limited studies on the stem cell properties of chorion-derived stem cells.

    METHODS: The main aim was to determine the stemness properties of serial-passaged human chorion-derived stem cells (hCDSC). Quantitative polymerase chain reaction (PCR) was performed to reveal the following stemness gene expression in serial-passaged hCDSC: Oct-4, Sox-2, FGF-4, Rex-1, TERT, Nanog (3), Nestin, FZD-9, ABCG-2 and BST-1. Cell growth rate was evaluated from passage (P) 1 until P5. The colony-forming unit-fibroblast (CFU-F) frequency of P3 and P5 cells and multilineage differentiation potential of P5 cells were determined. The immunophenotype of hCDSC was compared using the surface markers CD9, CD31, CD34, CD44, CD45, CD73, CD90, CD117, HLA-ABC and HLA-DR, -DP and -DQ. Immunostaining for trophoblast markers was done on P0, P1, P3 and P5 cells to detect the contamination of trophoblasts in culture, while chromosomal abnormality was screened by cytogenetic analysis of P5 cells.

    RESULTS: The surface markers for mesenchymal lineage in hCDSC were more highly expressed at P5 compared with P3 and P0, indicating the increased purity of these stem cells after serial passage. Indeed, all the stemness genes except TERT were expressed at P1, P3 and P5 hCDSC. Furthermore, human chorion contained high clonogenic precursors with a 1:30 CFU-F frequency. Successful adipogenic, chondrogenic and osteogenic differentiation demonstrated the multilineage potential of hCDSC. The karyotyping analysis showed hCDSC maintained chromosomal stability after serial passage.

    CONCLUSIONS: hCDSC retain multipotent potential even at later passages, hence are a promising source for cell therapy in the future.

    Matched MeSH terms: Multipotent Stem Cells/metabolism; Embryonic Stem Cells/metabolism
  16. Nur Fariha MM, Chua KH, Tan GC, Lim YH, Hayati AR
    Cell Biol Int, 2012;36(12):1145-53.
    PMID: 22957758 DOI: 10.1042/CBI20120044
    Cell-based therapy using stem cells has emerged as one of the pro-angiogenic methods to enhance blood vessel growth and sprouting in ischaemic conditions. This study investigated the endogenous and induced angiogenic characteristics of hCDSC (human chorion-derived stem cell) using QPCR (quantitative PCR) method, immunocytochemistry and fibrin-matrigel migration assay. The results showed that cultured hCDSC endogenously expressed angiogenic-endogenic-associated genes (VEGF, bFGF, PGF, HGF, Ang-1, PECAM-1, eNOS, Ve-cad, CD34, VEGFR-2 and vWF), with significant increase in mRNA levels of PGF, HGF, Ang-1, eNOS, VEGFR-2 and vWF following induction by bFGF (basic fibroblast growth factor) and VEGF (vascular endothelial growth factor). These enhanced angiogenic properties suggest that induced hCDSC provides a stronger angiogenic effect for the treatment of ischaemia. After angiogenic induction, hCDSC showed no reduction in the expression of the stemness genes, but had significantly higher levels of mRNA of Oct-4, Nanog (3), FZD9, ABCG-2 and BST-1. The induced cells were positive for PECAM-1 (platelet/endothelial cell adhesion molecule 1) and vWF (von Willebrand factor) with immunocytochemistry staining. hCDSC also showed endothelial migration behaviour when cultured in fibrin-matrigel construct and were capable of forming vessels in vivo after implanting into nude mice. These data suggest that hCDSC could be the cells of choice in the cell-based therapy for pro-angiogenic purpose.
    Matched MeSH terms: Stem Cells/metabolism*
  17. Yap MS, Tang YQ, Yeo Y, Lim WL, Lim LW, Tan KO, et al.
    Virol J, 2016 Jan 06;13:5.
    PMID: 26738773 DOI: 10.1186/s12985-015-0454-6
    The incidence of neurological complications and fatalities associated with Hand, Foot & Mouth disease has increased over recent years, due to emergence of newly-evolved strains of Enterovirus 71 (EV71). In the search for new antiviral therapeutics against EV71, accurate and sensitive in vitro cellular models for preliminary studies of EV71 pathogenesis is an essential prerequisite, before progressing to expensive and time-consuming live animal studies and clinical trials.
    Matched MeSH terms: Neural Stem Cells/metabolism
  18. Kumar SS, Alarfaj AA, Munusamy MA, Singh AJ, Peng IC, Priya SP, et al.
    Int J Mol Sci, 2014;15(12):23418-47.
    PMID: 25526563 DOI: 10.3390/ijms151223418
    Human pluripotent stem cells, including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), hold promise as novel therapeutic tools for diabetes treatment because of their self-renewal capacity and ability to differentiate into beta (β)-cells. Small and large molecules play important roles in each stage of β-cell differentiation from both hESCs and hiPSCs. The small and large molecules that are described in this review have significantly advanced efforts to cure diabetic disease. Lately, effective protocols have been implemented to induce hESCs and human mesenchymal stem cells (hMSCs) to differentiate into functional β-cells. Several small molecules, proteins, and growth factors promote pancreatic differentiation from hESCs and hMSCs. These small molecules (e.g., cyclopamine, wortmannin, retinoic acid, and sodium butyrate) and large molecules (e.g. activin A, betacellulin, bone morphogentic protein (BMP4), epidermal growth factor (EGF), fibroblast growth factor (FGF), keratinocyte growth factor (KGF), hepatocyte growth factor (HGF), noggin, transforming growth factor (TGF-α), and WNT3A) are thought to contribute from the initial stages of definitive endoderm formation to the final stages of maturation of functional endocrine cells. We discuss the importance of such small and large molecules in uniquely optimized protocols of β-cell differentiation from stem cells. A global understanding of various small and large molecules and their functions will help to establish an efficient protocol for β-cell differentiation.
    Matched MeSH terms: Pluripotent Stem Cells/metabolism
  19. Chen DC, Chen LY, Ling QD, Wu MH, Wang CT, Suresh Kumar S, et al.
    Biomaterials, 2014 May;35(14):4278-87.
    PMID: 24565521 DOI: 10.1016/j.biomaterials.2014.02.004
    The purification of human adipose-derived stem cells (hADSCs) from human adipose tissue cells (stromal vascular fraction) was investigated using membrane filtration through poly(lactide-co-glycolic acid)/silk screen hybrid membranes. Membrane filtration methods are attractive in regenerative medicine because they reduce the time required to purify hADSCs (i.e., less than 30 min) compared with conventional culture methods, which require 5-12 days. hADSCs expressing the mesenchymal stem cell markers CD44, CD73, and CD90 were concentrated in the permeation solution from the hybrid membranes. Expression of the surface markers CD44, CD73, and CD99 on the cells in the permeation solution from the hybrid membranes, which were obtained using 18 mL of feed solution containing 50 × 10⁴ cells, was statistically significantly higher than that of the primary adipose tissue cells, indicating that the hADSCs can be purified in the permeation solution by the membrane filtration method. Cells expressing the stem cell-associated marker CD34 could be successfully isolated in the permeation solution, whereas CD34⁺ cells could not be purified by the conventional culture method. The hADSCs in the permeation solution demonstrated a superior capacity for osteogenic differentiation based on their alkali phosphatase activity, their osterix gene expression, and the results of mineralization analysis by Alizarin Red S and von Kossa staining compared with the cells from the suspension of human adipose tissue. These results suggest that the hADSCs capable of osteogenic differentiation preferentially permeate through the hybrid membranes.
    Matched MeSH terms: Stem Cells/metabolism
  20. Man RC, Yong TK, Hwei NM, Halim WHWA, Zahidin AZM, Ramli R, et al.
    Mol Vis, 2017;23:810-822.
    PMID: 29225457
    Various clinical disorders and injuries, such as chemical, thermal, or mechanical injuries, may lead to corneal loss that results in blindness. PURPOSE: The aims of this study were to differentiate human buccal mucosa (BMuc) into corneal epithelial-like cells, to fabricate engineered corneal tissue using buccal mucosal epithelial cells, and to reconstruct a damaged corneal epithelium in a nude rat model.

    Methods: BMuc were subjected to 10 d of induction factors to investigate the potential of cells to differentiate into corneal lineages.

    Results: Corneal stem cell markers β1-integrin, C/EBPδ, ABCG2, p63, and CK3 were upregulated in the gene expression analysis in induced BMuc, whereas CK3 and p63 showed significant protein expression in induced BMuc compared to the uninduced cells. BMuc were then left to reach 80% confluency after differential trypsinization. The cells were harvested and cultivated on a commercially available untreated air-dried amniotic membrane (AM) in a Transwell system in induction medium. The corneal constructs were fabricated and then implanted into damaged rat corneas for up to 8 weeks. A significant improvement was detected in the treatment group at 8 weeks post-implantation, as revealed by slit lamp biomicroscopy analysis. The structure and thickness of the corneal layer were also analyzed using histological staining and time-domain optical coherence tomography scans and were found to resemble a native corneal layer. The protein expression for CK3 and p63 were continuously detected throughout the corneal epithelial layer in the corneal construct.

    Conclusions: In conclusion, human BMuc can be induced to express a corneal epithelial-like phenotype. The addition of BMuc improves corneal clarity, prevents vascularization, increases corneal thickness and stromal alignment, and appears to have no adverse effect on the host after implantation.

    Matched MeSH terms: Stem Cells/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links