Displaying publications 1 - 20 of 59 in total

Abstract:
Sort:
  1. Tan WL, Subha ST, Mohtarrudin N, Cheah YK
    Mol Biol Rep, 2023 Jun;50(6):5395-5405.
    PMID: 37074612 DOI: 10.1007/s11033-023-08421-5
    The self-renew ability of cancer stem cells (CSCs) continues to challenge our determination for accomplishing cancer therapy breakthrough. Ineffectiveness of current cancer therapies to eradicate CSCs has contributed to chemoresistance and tumor recurrence. Yet, the discoveries of highly effective therapies have not been thoroughly developed. Further insights into cancer metabolomics and gene-regulated mechanisms of mitochondria in CSCs can expedite the development of novel anticancer drugs. In cancer cells, the metabolism is reprogrammed from oxidative phosphorylation (OXPHOS) to glycolysis. This alteration allows the cancer cell to receive continuous energy supplies and avoid apoptosis. The pyruvate obtained from glycolysis produces acetyl-coenzyme A (Acetyl-CoA) via oxidative decarboxylation and enters the tricarboxylic acid cycle for adenosine triphosphate generation. Mitochondrial calcium ion (Ca2+) uptake is responsible for mitochondrial physiology regulation, and reduced uptake of Ca2+  inhibits apoptosis and enhances cell survival in cancer. There have been many discoveries of mitochondria-associated microRNAs (miRNAs) stimulating the metabolic alterations in mitochondria via gene regulation which promote cancer cell survival. These miRNAs are also found in CSCs where they regulate genes and activate different mechanisms to destroy the mitochondria and enhance CSCs survival. By targeting the miRNAs that induced mitochondrial destruction, the mitochondrial functions can be restored; thus, it triggers CSCs apoptosis and completely eliminates the CSCs. In general, this review article aims to address the associations between miRNAs with mitochondrial activities in cancer cells and cancer stem cells that support cancer cell survival and self-renewal.
    Matched MeSH terms: Neoplastic Stem Cells/metabolism
  2. Aldoghachi AF, Chong ZX, Yeap SK, Cheong SK, Ho WY, Ong AHK
    Int J Mol Sci, 2023 Jan 05;24(2).
    PMID: 36674525 DOI: 10.3390/ijms24021012
    Cancer recurrence and drug resistance following treatment, as well as metastatic forms of cancer, are trends that are commonly encountered in cancer management. Amidst the growing popularity of personalized medicine and targeted therapy as effective cancer treatment, studies involving the use of stem cells in cancer therapy are gaining ground as promising translational treatment options that are actively pursued by researchers due to their unique tumor-homing activities and anti-cancer properties. Therefore, this review will highlight cancer interactions with commonly studied stem cell types, namely, mesenchymal stroma/stem cells (MSC), induced pluripotent stem cells (iPSC), iPSC-derived MSC (iMSC), and cancer stem cells (CSC). A particular focus will be on the effects of paracrine signaling activities and exosomal miRNA interaction released by MSC and iMSCs within the tumor microenvironment (TME) along with their therapeutic potential as anti-cancer delivery agents. Similarly, the role of exosomal miRNA released by CSCs will be further discussed in the context of its role in cancer recurrence and metastatic spread, which leads to a better understanding of how such exosomal miRNA could be used as potential forms of non-cell-based cancer therapy.
    Matched MeSH terms: Neoplastic Stem Cells
  3. Fuloria S, Subramaniyan V, Gupta G, Sekar M, Meenakshi DU, Sathasivam K, et al.
    PMID: 37017676 DOI: 10.1615/JEnvironPatholToxicolOncol.2022044456
    Technological advancement to enhance tumor cells (TC) has allowed discovery of various cellular bio-markers: cancer stem cells (CSC), circulating tumor cells (CTC), and endothelial progenitor cells (EPC). These are responsible for resistance, metastasis, and premetastatic conditions of cancer. Detection of CSC, CTC, and EPC assists in early diagnosis, recurrence prediction, and treatment efficacy. This review describes various methods to detect TC subpopulations such as in vivo assays (sphere-forming, serial dilution, and serial transplantation), in vitro assays (colony-forming cells, microsphere, side-population, surface antigen staining, aldehyde dehydrogenase activity, and Paul Karl Horan label-retaining cells, surface markers, nonenriched and enriched detection), reporter systems, and other analytical methods (flow cytometry, fluorescence microscopy/spectroscopy, etc.). The detailed information on methods to detect CSC, CTC, and EPC in this review will assist investigators in successful prognosis, diagnosis, and cancer treatment with greater ease.
    Matched MeSH terms: Neoplastic Stem Cells/pathology
  4. Osei GY, Adu-Amankwaah J, Koomson S, Beletaa S, Ahmad MK, Asiamah EA, et al.
    Future Oncol, 2023 Nov;19(35):2369-2382.
    PMID: 37970643 DOI: 10.2217/fon-2023-0426
    Colorectal cancer (CRC) is a significant contributor to cancer mortality worldwide, and the presence of cancer stem cells (CSC) represents a major challenge for achieving effective treatment. miRNAs have emerged as critical regulators of gene expression, and recent studies have highlighted their role in regulating stemness and therapeutic resistance in CRC stem cells. This review highlights the mechanisms of CSC development, therapy resistance and the potential of miRNAs as therapeutic targets for CRC. It emphasizes the promise of miRNAs as a novel approach to CRC treatment and calls for further research to explore effective miRNA-based therapies and strategies for delivering miRNAs to CSCs in vivo.
    Matched MeSH terms: Neoplastic Stem Cells/metabolism
  5. Vazifehmand R, Ali DS, Othman Z, Chau DM, Stanslas J, Shafa M, et al.
    J Neurovirol, 2022 Dec;28(4-6):566-582.
    PMID: 35951174 DOI: 10.1007/s13365-022-01089-w
    Glioblastoma multiforme is the most aggressive astrocytes brain tumor. Glioblastoma cancer stem cells and hypoxia conditions are well-known major obstacles in treatment. Studies have revealed that non-coding RNAs serve a critical role in glioblastoma progression, invasion, and resistance to chemo-radiotherapy. The present study examined the expression levels of microRNAs (in normoxic condition) and long non-coding RNAs (in normoxic and hypoxic conditions) in glioblastoma stem cells treated with the HSV-G47∆. The expression levels of 43 miRNAs and 8 lncRNAs isolated from U251-GBM-CSCs were analyzed using a miRCURY LNA custom PCR array and a quantitative PCR assay, respectively. The data revealed that out of 43 miRNAs that only were checked in normoxic condition, the only 8 miRNAs, including miR-7-1, miR-let-7b, miR-130a, miR-137, miR-200b, miR-221, miR-222, and miR-874, were markedly upregulated. The expression levels of lncRNAs, including LEF1 antisense RNA 1 (LEF1-AS1), metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), long intergenic non-protein coding RNA 470 (LINC00470), tumor suppressor candidate 7 (TUSC7), HOX transcript antisense RNA (HOTAIR), nuclear paraspeckle assembly transcript 1 (NEAT1), and X inactive specific transcript (XIST), were markedly downregulated in the hypoxic microenvironment, and H19-imprinted maternally expressed transcript (H19) was not observed to be dysregulated in this environment. Under normoxic conditions, LEF1-AS1, MALAT1, LINC00470, H19, HOTAIR, NEAT1, and XIST were downregulated and TUSC7 was not targeted by HSV-G47∆. Overall, the present data shows HSVG47Δ treatment deregulates non-coding RNA expression in GBM-CSC tumor microenvironments.
    Matched MeSH terms: Neoplastic Stem Cells/metabolism; Neoplastic Stem Cells/pathology
  6. Pandrangi SL, Chittineedi P, Chalumuri SS, Meena AS, Neira Mosquera JA, Sánchez Llaguno SN, et al.
    Molecules, 2022 May 07;27(9).
    PMID: 35566360 DOI: 10.3390/molecules27093011
    Iron is a crucial element required for the proper functioning of the body. For instance, hemoglobin is the vital component in the blood that delivers oxygen to various parts of the body. The heme protein present in hemoglobin comprises iron in the form of a ferrous state which regulates oxygen delivery. Excess iron in the body is stored as ferritin and would be utilized under iron-deficient conditions. Surprisingly, cancer cells as well as cancer stem cells have elevated ferritin levels suggesting that iron plays a vital role in protecting these cells. However, apart from the cytoprotective role iron also has the potential to induce cell death via ferroptosis which is a non-apoptotic cell death dependent on iron reserves. Apoptosis a caspase-dependent cell death mechanism is effective on cancer cells however little is known about its impact on cancer stem cell death. This paper focuses on the molecular characteristics of apoptosis and ferroptosis and the importance of switching to ferroptosis to target cancer stem cells death thereby preventing cancer relapse. To the best of our knowledge, this is the first review to demonstrate the importance of intracellular iron in regulating the switching of tumor cells and therapy resistant CSCs from apoptosis to ferroptosis.
    Matched MeSH terms: Neoplastic Stem Cells/metabolism
  7. Heng WS, Pore M, Meijer C, Hiltermann TJN, Cheah SC, Gosens R, et al.
    Lung Cancer, 2021 04;154:13-22.
    PMID: 33607458 DOI: 10.1016/j.lungcan.2021.02.002
    OBJECTIVES: Cancer stem cells (CSCs) have been implicated in disease progression of aggressive cancers including small cell lung carcinoma (SCLC). Here, we have examined the possible contribution of CSCs to SCLC progression and aggressiveness.

    MATERIALS AND METHODS: GLC-14, GLC-16 and GLC-19 SCLC cell lines derived from one patient, representing increasing progressive stages of disease were used. CSC marker expressions was determined by RT-qPCR and western blotting analyses, and heterogeneity was studied by CSC marker expression by immunofluorescence microscopy and flow cytometry. Colony formation assays were used to assess stem cell properties and therapy sensitivity.

    RESULTS: Increasing expression of stem cell markers MYC, SOX2 and particularly CD44 were found in association with advancing disease. Single and overlapping expression of these markers indicated the presence of different CSC populations. The accumulation of more homogeneous double- and triple-positive CSC populations evolved with disease progression. Functional characterization of CSC properties affirmed higher proficiency of colony forming ability and increased resistance to γ-irradiation in GLC-16 and GLC-19 compared to GLC-14. GLC-19 colony formation was significantly inhibited by a human anti-CD44 antibody.

    CONCLUSION: The progressive increase of MYC, SOX2 and particularly CD44 expression that was accompanied with enhanced colony forming capacity and resistance in the in vitro GLC disease progression model, supports the potential clinical relevance of CSC populations in malignancy and disease relapse of SCLC.

    Matched MeSH terms: Neoplastic Stem Cells
  8. Wong MM, Chan HY, Aziz NA, Ramasamy TS, Bong JJ, Ch'ng ES, et al.
    Mol Biol Rep, 2021 Apr;48(4):3695-3717.
    PMID: 33893928 DOI: 10.1007/s11033-021-06334-9
    Liver cancer is the sixth most common cancer and the fourth leading cause of cancer deaths in the world. The most common type of liver cancers is hepatocellular carcinoma (HCC). Autophagy is the cellular digestion of harmful components by sequestering the waste products into autophagosomes followed by lysosomal degradation for the maintenance of cellular homeostasis. The impairment of autophagy is highly associated with the development and progression of HCC although autophagy may be involved in tumour-suppressing cellular events. In regards to its protecting role, autophagy also shelters the cells from anoikis- a programmed cell death in anchorage-dependent cells detached from the surrounding extracellular matrix which facilitates metastasis in HCC. Liver cancer stem cells (LCSCs) have the ability for self-renewal and differentiation and are associated with the development and progression of HCC by regulating stemness, resistance and angiogenesis. Interestingly, autophagy is also known to regulate normal stem cells by promoting cellular survival and differentiation and maintaining cellular homeostasis. In this review, we discuss the basal autophagic mechanisms and double-faceted roles of autophagy as both tumour suppressor and tumour promoter in HCC, as well as its association with and contribution to self-renewal and differentiation of LCSCs.
    Matched MeSH terms: Neoplastic Stem Cells/metabolism*
  9. Rengganaten V, Huang CJ, Wang ML, Chien Y, Tsai PH, Lan YT, et al.
    BMC Cancer, 2023 Nov 10;23(1):1088.
    PMID: 37950151 DOI: 10.1186/s12885-023-11571-1
    BACKGROUND: Cancer stem cells form a rare cell population in tumors that contributes to metastasis, recurrence and chemoresistance in cancer patients. Circular RNAs (circRNAs) are post-transcriptional regulators of gene expression that sponge targeted microRNA (miRNAs) to affect a multitude of downstream cellular processes. We previously showed in an expression profiling study that circZNF800 (hsa_circ_0082096) was up-regulated in cancer stem cell-enriched spheroids derived from colorectal cancer (CRC) cell lines.

    METHODS: Spheroids were generated in suspension spheroidal culture. The ZNF800 mRNA, pluripotency stem cell markers and circZNF800 levels were determined by quantitative RT-PCR. CircZNF800-miRNA interactions were shown in RNA pulldown assays and the miRNA levels determined by stem-loop qRT-PCR. The effects of circZNF800 on cell proliferation were tested by EdU staining followed by flowcytometry. Expression of stem cell markers CD44/CD133, Lgr5 and SOX9 was demonstrated in immunofluorescence microscopy. To manipulate the cellular levels of circZNF800, circZNF800 over-expression was achieved via transfection of in vitro synthesized and circularized circZNF800, and knockdown attained using a CRISPR-Cas13d-circZNF800 vector system. Xenografted nude mice were used to demonstrate effects of circZNF800 over-expression and knockdown on tumor growth in vivo.

    RESULTS: CircZNF800 was shown to be over-expressed in late-stage tumor tissues of CRC patients. Data showed that circZNF800 impeded expression of miR-140-3p, miR-382-5p and miR-579-3p while promoted the mRNA levels of ALK/ACVR1C, FZD3 and WNT5A targeted by the miRNAs, as supported by alignments of seed sequences between the circZNF800-miRNA, and miRNA-mRNA paired interactions. Analysis in CRC cells and biopsied tissues showed that circZNF800 positively regulated the expression of intestinal stem cell, pluripotency and cancer stem cell markers, and promoted CRC cell proliferation, spheroid and colony formation in vitro, all of which are cancer stem cell properties. In xenografted mice, circZNF800 over-expression promoted tumor growth, while circZNF800 knockdown via administration of CRISPR Cas13d-circZNF800 viral particles at the CRC tumor sites impeded tumor growth.

    CONCLUSIONS: CircZNF800 is an oncogenic factor that regulate cancer stem cell properties to lead colorectal tumorigenesis, and may be used as a predictive marker for tumor progression and the CRISPR Cas13d-circZNF800 knockdown strategy for therapeutic intervention of colorectal cancer.

    Matched MeSH terms: Neoplastic Stem Cells/metabolism
  10. Wong RS, Cheong SK
    Malays J Pathol, 2012 Dec;34(2):77-88.
    PMID: 23424769 MyJurnal
    Although there have been many new developments in the treatment of leukaemia with the use of new anti-leukaemic agents and stem cell transplantation, drug resistance and treatment failure remain a great challenge for the attending physician. Several studies have suggested that leukaemic stem cells (LSCs) play a pivotal role in chemoresistance and metastasis and the mechanisms by which these cells do so have also been elucidated. There is increasing evidence to show that there exists a large pool of therapeutic targets in LSCs and that the eradication of these cells is feasible with some promising results. This article gives an overview of different types of cancer stem cells (CSCs) derived from various types of leukaemia, the mechanisms by which LSCs contribute to drug resistance and metastasis and some recent advances in targeted therapy against LSCs.
    Matched MeSH terms: Neoplastic Stem Cells/drug effects; Neoplastic Stem Cells/immunology; Neoplastic Stem Cells/pathology*
  11. Goh, Iris Wen Li, Kien, Yip Wai, Fong, Seow Heng
    MyJurnal
    In this study, tumorspheres were generated from TW06 nasopharyngeal carcinoma cell line and examined their expression of putative cancer stem-like cell surface markers and drug sensitivity. The rate of tumorsphere expansion from dissociated late passage TW06 tumorspheres (≥ passage 15) was higher than that from parental cells and dissociated 10-day-old (passage 0) tumorspheres. The expression of CD24 surface marker was lost in the generation of tumorspheres and the loss was reversible after differentiating the tumorspheres in monolayer culture conditions. Drug sensitivity assay showed that late passage tumorspheres were resistant to docetaxel and oxaliplatin treatment. Our data suggest that serially passaged tumorspheres possess the characteristics of CSCs that render them a suitable preclinical in vitro model for evaluating anticancer drug efficacy and elucidating the underlying mechanisms of drug resistance.
    Matched MeSH terms: Neoplastic Stem Cells
  12. Ivan Kok Seng Yap, Ammu Kutty Radhakrishnan, Chee Onn Leong
    MyJurnal
    Cancer research is an extremely broad topic covering many scientific disciplines including biology (e.g. biochemistry and signal transduction), chemistry (e.g. drug discover and development), physics (e.g. diagnostic devices) and even computer science (e.g. bioinformatics). Some would argue that
    cancer research will continue in much the same way as it is by adding further layers of complexity to the scientific knowledge that is already complex and almost beyond measure. But we anticipate that cancer research will undergo a dramatic paradigm shift due to the recent explosion of new discoveries in cancer biology. This review article focuses on the latest horizons in cancer research concerning cancer epigenetics, cancer stem cells, cancer immunology and cancer metabolism.
    Matched MeSH terms: Neoplastic Stem Cells
  13. Lee SH, Reed-Newman T, Anant S, Ramasamy TS
    Stem Cell Rev Rep, 2020 12;16(6):1185-1207.
    PMID: 32894403 DOI: 10.1007/s12015-020-10031-8
    Quiescence in cancer cells is considered a therapeutic challenge as it confers dormancy in tumour, hence circumventing inherent anti-neoplastic surveillance system and standard-of-care cancer therapeutics including chemotherapy and radiotherapy. Since majority of the therapeutics target actively proliferating cancer cells, cancer cells eventually develop quiescent nature as mechanism of survival and cancer progression under both niche and therapeutic pressures. Quiescence state in cancer cells, eventually, confers resistant and aggressive nature to conventional cancer therapies, resulting in disease progression and relapse. Therefore, targeting quiescent cancer cells or cancer stem cells is a promising therapeutic approach, however an extensive review of the relevant information is needed in order to device an effective therapy. While the evidence of quiescence regulation in CSCs is rather a complex molecular and cellular network, herein, we aim to provide a comprehensive understanding of both intrinsic and extrinsic regulation in association with the function of CSCs. Findings on induction of quiescent state in CSCs population, its regulation at both cellular and molecular level, key molecular regulators, cellular events and processes including potential targets to develop therapeutics are extensively reviewed. This review also highlights the impact of CSC plasticity on quiescence which capturing the key challenge of targeting the cells in this state. Beyond understanding the mechanisms underlying quiescence nature of cancer cells, this review provides insightful perspective and future direction on insight in targeting these populations, hence collapse the tumour dormancy programme in order to eradicate tumour mass as a whole. Capability of CSCs to establish quiescent state as a mechanism of survival during unfavorable conditions, as well as its impact in cancer progression and subsequent relapse, including the potential therapeutic strategy to eradicate this CSCs sub-population in the tumor mass as an effective cancer therapy.
    Matched MeSH terms: Neoplastic Stem Cells/drug effects; Neoplastic Stem Cells/pathology*
  14. Hassn Mesrati M, Behrooz AB, Y Abuhamad A, Syahir A
    Cells, 2020 05 16;9(5).
    PMID: 32429463 DOI: 10.3390/cells9051236
    Gliomas are the most frequent and deadly form of human primary brain tumors. Among them, the most common and aggressive type is the high-grade glioblastoma multiforme (GBM), which rapidly grows and renders patients a very poor prognosis. Meanwhile, cancer stem cells (CSCs) have been determined in gliomas and play vital roles in driving tumor growth due to their competency in self-renewal and proliferation. Studies of gliomas have recognized CSCs via specific markers. This review comprehensively examines the current knowledge of the most significant CSCs markers in gliomas in general and in glioblastoma in particular and specifically focuses on their outlook and importance in gliomas CSCs research. We suggest that CSCs should be the superior therapeutic approach by directly targeting the markers. In addition, we highlight the association of these markers with each other in relation to their cascading pathways, and interactions with functional miRNAs, providing the role of the networks axes in glioblastoma signaling pathways.
    Matched MeSH terms: Neoplastic Stem Cells/metabolism; Neoplastic Stem Cells/pathology
  15. Fani S, Kamalidehghan B, Lo KM, Nigjeh SE, Keong YS, Dehghan F, et al.
    Sci Rep, 2016 Dec 15;6:38992.
    PMID: 27976692 DOI: 10.1038/srep38992
    In the present study, we examined the cytotoxic effects of Schiff base complex, [N-(3,5-dichloro-2-oxidobenzylidene)-4-chlorobenzyhydrazidato](o-methylbenzyl)aquatin(IV) chloride, and C1 on MDA-MB-231 cells and derived breast cancer stem cells from MDA-MB-231 cells. The acute toxicity experiment with compound C1 revealed no cytotoxic effects on rats. Fluorescent microscopic studies using Acridine Orange/Propidium Iodide (AO/PI) staining and flow cytometric analysis using an Annexin V probe confirmed the occurrence of apoptosis in C1-treated MDA-MB-231 cells. Compound C1 triggered intracellular reactive oxygen species (ROS) production and lactate dehydrogenase (LDH) releases in treated MDA-MB-231 cells. The Cellomics High Content Screening (HCS) analysis showed the induction of intrinsic pathways in treated MDA-MB-231 cells, and a luminescence assay revealed significant increases in caspase 9 and 3/7 activity. Furthermore, flow cytometric analysis showed that compound C1 induced G0/G1 arrest in treated MDA-MB-231 cells. Real time PCR and western blot analysis revealed the upregulation of the Bax protein and the downregulation of the Bcl-2 and HSP70 proteins. Additionally, this study revealed the suppressive effect of compound C1 against breast CSCs and its ability to inhibit the Wnt/β-catenin signaling pathways. Our results demonstrate the chemotherapeutic properties of compound C1 against breast cancer cells and derived breast cancer stem cells, suggesting that the anticancer capabilities of this compound should be clinically assessed.
    Matched MeSH terms: Neoplastic Stem Cells/metabolism*; Neoplastic Stem Cells/pathology
  16. Rengganaten V, Huang CJ, Tsai PH, Wang ML, Yang YP, Lan YT, et al.
    Int J Mol Sci, 2020 Oct 23;21(21).
    PMID: 33114016 DOI: 10.3390/ijms21217864
    Spheroidal cancer cell cultures have been used to enrich cancer stem cells (CSC), which are thought to contribute to important clinical features of tumors. This study aimed to map the regulatory networks driven by circular RNAs (circRNAs) in CSC-enriched colorectal cancer (CRC) spheroid cells. The spheroid cells established from two CRC cell lines acquired stemness properties in pluripotency gene expression and multi-lineage differentiation capacity. Genome-wide sequencing identified 1503 and 636 circRNAs specific to the CRC parental and spheroid cells, respectively. In the CRC spheroids, algorithmic analyses unveiled a core network of mRNAs involved in modulating stemness-associated signaling pathways, driven by a circRNA-microRNA (miRNA)-mRNA axis. The two major circRNAs, hsa_circ_0066631 and hsa_circ_0082096, in this network were significantly up-regulated in expression levels in the spheroid cells. The two circRNAs were predicted to target and were experimentally shown to down-regulate miR-140-3p, miR-224, miR-382, miR-548c-3p and miR-579, confirming circRNA sponging of the targeted miRNAs. Furthermore, the affected miRNAs were demonstrated to inhibit degradation of six mRNA targets, viz. ACVR1C/ALK7, FZD3, IL6ST/GP130, SKIL/SNON, SMAD2 and WNT5, in the CRC spheroid cells. These mRNAs encode proteins that are reported to variously regulate the GP130/Stat, Activin/Nodal, TGF-β/SMAD or Wnt/β-catenin signaling pathways in controlling various aspects of CSC stemness. Using the CRC spheroid cell model, the novel circRNA-miRNA-mRNA axis mapped in this work forms the foundation for the elucidation of the molecular mechanisms of the complex cellular and biochemical processes that determine CSC stemness properties of cancer cells, and possibly for designing therapeutic strategies for CRC treatment by targeting CSC.
    Matched MeSH terms: Neoplastic Stem Cells/pathology; Neoplastic Stem Cells/chemistry
  17. Boo L, Ho WY, Mohd Ali N, Yeap SK, Ky H, Chan KG, et al.
    PeerJ, 2017;5:e3551.
    PMID: 28717596 DOI: 10.7717/peerj.3551
    Breast cancer spheroids have been widely used as in vitro models of cancer stem cells (CSCs), yet little is known about their phenotypic characteristics and microRNAs (miRNAs) expression profiles. The objectives of this research were to evaluate the phenotypic characteristics of MDA-MB-231 spheroid-enriched cells for their CSCs properties and also to determine their miRNAs expression profile. Similar to our previously published MCF-7 spheroid, MDA-MB-231 spheroid also showed typical CSCs characteristics namely self-renewability, expression of putative CSCs-related surface markers and enhancement of drug resistance. From the miRNA profile, miR-15b, miR-34a, miR-148a, miR-628 and miR-196b were shown to be involved in CSCs-associated signalling pathways in both models of spheroids, which highlights the involvement of these miRNAs in maintaining the CSCs features. In addition, unique clusters of miRNAs namely miR-205, miR-181a and miR-204 were found in basal-like spheroid whereas miR-125, miR-760, miR-30c and miR-136 were identified in luminal-like spheroid. Our results highlight the roles of miRNAs as well as novel perspectives of the relevant pathways underlying spheroid-enriched CSCs in breast cancer.
    Matched MeSH terms: Neoplastic Stem Cells
  18. Zakaria N, Satar NA, Abu Halim NH, Ngalim SH, Yusoff NM, Lin J, et al.
    Front Oncol, 2017;7:80.
    PMID: 28529925 DOI: 10.3389/fonc.2017.00080
    Lung cancer is the most common cancer worldwide, accounting for 1.8 million new cases and 1.6 million deaths in 2012. Non-small cell lung cancer (NSCLC), which is one of two types of lung cancer, accounts for 85-90% of all lung cancers. Despite advances in therapy, lung cancer still remains a leading cause of death. Cancer relapse and dissemination after treatment indicates the existence of a niche of cancer cells that are not fully eradicated by current therapies. These chemoresistant populations of cancer cells are called cancer stem cells (CSCs) because they possess the self-renewal and differentiation capabilities similar to those of normal stem cells. Targeting the niche of CSCs in combination with chemotherapy might provide a promising strategy to eradicate these cells. Thus, understanding the characteristics of CSCs has become a focus of studies of NSCLC therapies.
    Matched MeSH terms: Neoplastic Stem Cells
  19. Das, P., Naing, N.N., Wan-Arfah, N., Noorjan, K., Kueh, Y.C., Rasalingam, K.
    JUMMEC, 2019;22(2):31-38.
    MyJurnal
    Background: Astrocytic gliomas are the most common primary brain tumors that developed from glial origin.
    The angiogenic cell population from brain tumor enhances the recruitment of circulating cancer stem cells
    homing towards tumor site.

    Objectives: This study aimed to investigate the tumor angiogenic cell population that stained with CD133+
    and VEGFA+ markers and its association with circulating cancer stem cell (CD133+/VEGFR2-) population in the
    peripheral blood mononuclear cells (PBMCs) of astrocytic glioma patients.

    Methods: A total of 22 astrocytic glioma patients from Hospital Universiti Sains Malaysia who consented to
    the study were included. Tumors (n=22) were sliced and stained with CD133+ and VEGFA+ angiogenic markers
    and counter stained with DAPI. The circulating cancer stem cells (CD133+/VEGFR2-) in PBMCs (n=22) were
    quantified using FACS based on the expression of CD133 and VEGFR2 markers. The paired t-test and Pearson
    correlation were used for the data analysis.

    Results: The percentage of angiogenic cell population was significantly higher in brain tumor compared to
    adjacent normal brain tissue (1.25 ± 0.96% vs. 0.74 ± 0.68%; paired t-test=2.855; df=21, p = 0.009). Positive
    correlation was found between the angiogenic cells of brain tumor tissue and adjacent normal brain tissue
    (Pearson correlation, r = 0.53, p = 0.011). Significant positive correlation was found between angiogenic cells
    in glioma tumor and cancer stem cells in peripheral circulating systems of astrocytic glioma patients (Pearson
    correlation, r = 0.42, p = 0.049).

    Conclusion: Angiogenic cells in the brain tumor resident promote the recruitment of circulating cancer stem cells
    homing to the tumor site and induce the proliferation and growth of the tumor in astrocytic glioma patients.
    Matched MeSH terms: Neoplastic Stem Cells
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links