METHODS: Diabetes was induced in rats by intraperitoneal injection of streptozotocin and was confirmed by a blood sugar level of at least 20 mmol/L, 48 h, post-injection. Diabetic rats were divided into a group treated with vehicle (DV) and the other treated with TRF (100 mg/kg; DT). A group of non-diabetic rats treated with vehicle (N) served as the control group. All treatments were administered orally for 12 weeks. Rats were then subjected to an assessment of general behaviour in an open field arena and a two-chamber mirror test to assess their visual behaviour. At the end of the experimental period, rats were sacrificed, and their retinas were isolated to measure the expression of pro- (Casp3, Bax) and anti-apoptotic (Bcl2) markers using RT-qPCR and ELISA. TUNEL staining was used to detect the apoptotic retinal cells.
RESULTS: Treatment with TRF lowered the retinal expression of Casp3 protein by 2.26-folds (p
AIM: To investigate the beneficial effects of fish oil consumption on the progression of insulin resistance and pancreatic islet dysfunction in a rat model of diabetes.
METHODS: Diabetic rats model (n = 30) were divided into five groups and received; 1) NS injection + NS oral (normal control); 2) NS injection + 3 g/kg fish oil (fish oil control); 3) streptozotocin (STZ) injection + NS oral [diabetes control (DC)]; 4) STZ injection + 1 g/kg fish oil (DFO1); and 5) STZ injection + 3 g/kg fish oil (DFO3). Fasting blood insulin was analyzed by commercial rat insulin enzyme-linked immunosorbent assay; meanwhile, the determination of insulin sensitivity was calculated by homeostatic model assessment of insulin resistance (HOMA-IR) and homeostatic model assessment of beta-cell function. A histological study was conducted on pancreas tissue using H and E staining.
RESULTS: Fish oil supplementation reduced hyperglycemia and ameliorated HOMA-IR in STZ-induced animal models indicating that fish oil supplementation improved insulin sensitivity. Furthermore, animals treated with fish oil at a dose of 3 g/kg (DFO3) showed an enhancement in pancreatic islets, which was displayed by less abnormal structures than DC animals. This could imply that the administration of fish oil, especially rich in bioactive omega-3 fatty acids effectively inhibits insulin resistance and restore islet of Langerhans alteration in rats injected with STZ.
CONCLUSION: Thus, the current study suggested that fish oil supplementation could support the treatment of diabetes but should not be considered as an alternative therapy.
AIM OF THE STUDY: To investigate the anti-hyperglycemic potential of AE through in-vitro enzymatic activities and streptozotocin-nicotinamide (STZ-NA) induced diabetic rat models using proton-nuclear magnetic resonance (1H-NMR)-based metabolomics approach.
MATERIALS AND METHODS: Anti-α-amylase and anti-α-glucosidase activities of the hydroethanolic extracts of AE were evaluated. The absolute quantification of bioactive constituents, using ultra-high performance liquid chromatography (UHPLC) was performed for the most active extract. Three different dosage levels of the AE extract were orally administered for 4 weeks consecutively in STZ-NA induced diabetic rats. Physical assessments, biochemical analysis, and an untargeted 1H-NMR-based metabolomics analysis of the urine and serum were carried out on the animal model.
RESULTS: Type 2 diabetes mellitus (T2DM) rat model was successfully developed based on the clear separation observed between the STZ-NA induced diabetic and normal non-diabetic groups. Discriminating biomarkers included glucose, citrate, succinate, allantoin, hippurate, 2-oxoglutarate, and 3-hydroxybutyrate, as determined through an orthogonal partial least squares-discriminant analysis (OPLS-DA) model. A treatment dosage of 250 mg/kg body weight (BW) of standardized 70% ethanolic AE extract mitigated increase in serum glucose, creatinine, and urea levels, providing treatment levels comparable to that obtained using metformin, with flavonoids primarily contribute to the anti-hyperglycemic activities. Urinary metabolomics disclosed that the following disturbed metabolism pathways: the citrate cycle (TCA cycle), butanoate metabolism, glycolysis and gluconeogenesis, pyruvate metabolism, and synthesis and degradation of ketone bodies, were ameliorated after treatment with the standardized AE extract.
CONCLUSIONS: This study demonstrated the first attempt at revealing the therapeutic effect of oral treatment with 250 mg/kg BW of standardized AE extract on chemically induced T2DM rats. The present study provides scientific evidence supporting the ethnomedicinal use of Ardisia elliptica and further advances the understanding of the fundamental molecular mechanisms affected by this herbal antidote.