METHODS: Observational study. Nonglaucomatous patients on NIPD underwent systemic and ocular assessment including mean arterial pressure (MAP), body weight, serum osmolarity, visual acuity, IOP measurement, and ASOCT within 2 hours both before and after NIPD. The Zhongshan Angle Assessment Program (ZAAP) was used to measure ASOCT parameters including anterior chamber depth, anterior chamber width, anterior chamber area, anterior chamber volume, lens vault, angle opening distance, trabecular-iris space area, and angle recess area. T tests and Pearson correlation tests were performed with P<0.05 considered statistically significant.
RESULTS: A total of 46 eyes from 46 patients were included in the analysis. There were statistically significant reductions in IOP (-1.8±0.6 mm Hg, P=0.003), MAP (-11.9±3.1 mm Hg, P<0.001), body weight (-0.7±2.8 kg, P<0.001), and serum osmolarity (-3.4±2.0 mOsm/L, P=0.002) after NIPD. All the ASOCT parameters did not have any statistically significant changes after NIPD. There were no statistically significant correlations between the changes in IOP, MAP, body weight, and serum osmolarity (all P>0.05).
CONCLUSIONS: NIPD results in reductions in IOP, MAP, body weight, and serum osmolarity in nonglaucomatous patients.
METHODS: The model exploits the principle of dynamic and geometric similarity, so while dimensions were up to 30× greater than actual, the flow had similar properties. Scleral flaps were represented by transparent 0.8- and 1.6-mm-thick silicone sheets on an acrylic plate. Dyed 98% glycerin, representing the aqueous humor was pumped between the sheet and plate, and the equilibrium pressure measured with a pressure transducer. Image analysis based on the principle of dye dilution was performed using MATLAB software.
RESULTS: The pressure drop across the flap was larger with thinner flaps, due to reduced rigidity and resistance. Doubling the surface area of flaps and reducing the number of sutures from 5 to 3 or 2 also resulted in larger pressure drops. Flow direction was affected mainly by suture number and position, it was less toward the sutures and more toward the nearest free edge of the flap. Posterior flow of aqueous humor was promoted by placing sutures along the sides while leaving the posterior edge free.
CONCLUSION: We demonstrate a new physical model which shows how changes in scleral flap thickness and shape, and suture number and position affect pressure and flow in a trabeculectomy.
METHODS: Diurnal variation of intraocular pressure was measured in 202 eyes of suspected open-angle glaucoma patients and 100 control eyes, at 4-hourly intervals for 24 hours (phasing). Based on the phasing results, optic disc changes and visual field defects, the patients were diagnosed as primary open angle glaucoma (POAG), normal tension glaucoma (NTG), ocular hypertension (OHT), or physiologic cup (PC), or still remained as glaucoma suspects due to inconclusive diagnosis. The last group (glaucoma suspects) was then followed up 6-monthly for their eventual outcome.
RESULTS: The highest percentage of suspected glaucoma patients had peak (maximum) readings in the mid-morning (10-11 A.M.) and trough (minimum) readings after midnight (2-3 A.M.); the highest percentage of control group had peak readings in the late evening (6-7 P.M.) and trough readings after midnight (2-3 A.M.). The mean amplitude of variance was 6 mm Hg in suspected glaucoma group and 4 mm Hg in the control group. After 'phasing', 18.8% of the suspected glaucoma patients were diagnosed as POAG, 16.8% as NTG, 5% as OHT, and 28.7% as physiologic cup; 30.9% remained as glaucoma suspects. After 4 years follow-up, 70% of the glaucoma suspects still remained as glaucoma suspects, 6.7% developed NTG and another 6.7% POAG; 16.6% were normal.
CONCLUSIONS: Serial measurement of IOP ( phasing) in a 24-hour period is still needed, in order not to miss the peak and the trough IOP readings in suspected open-angle glaucoma patients, which helps in better management of glaucoma. Among 30.9% of patients who remained as glaucoma suspects after the initial phasing, 13.4% developed NTG/POAG over a period of 4 years.
METHODS: We measured psychophysical contrast thresholds in one eye of 16 control subjects and 19 patients aged 67.8 ± 5.65 and 71.9 ± 7.15, respectively, (mean ± SD). Patients ranged in disease severity from suspects to severe glaucoma. We used the 17-region FDT-perimeter C20-threshold program and a custom 9-region test (R9) with similar visual field coverage. The R9 stimuli scaled their spatial frequencies with eccentricity and were modulated at lower temporal frequencies than C20 and thus did not display a clear spatial frequency-doubling (FD) appearance. Based on the overlapping areas of the stimuli, we transformed the C20 results to 9 measures for direct comparison with R9. We also compared mfVEP-based and psychophysical contrast thresholds in 26 younger (26.6 ± 7.3 y, mean ± SD) and 20 older normal control subjects (66.5 ± 7.3 y) control subjects using the R9 stimuli.
RESULTS: The best intraclass correlations between R9/C20 thresholds were for the central and outer regions: 0.82 ± 0.05 (mean ± SD, p ≤ 0.0001). The areas under receiver operator characteristic plots for C20 and R9 were as high as 0.99 ± 0.012 (mean ± SE). Canonical correlation analysis (CCA) showed significant correlation (r = 0.638, p = 0.029) with 1 dimension of the C20 and R9 data, suggesting that the lower and higher temporal frequency tests probed the same neural mechanism(s). Low signal quality made the contrast-threshold mfVEPs non-viable. The resulting mfVEP thresholds were limited by noise to artificially high contrasts, which unlike the psychophysical versions, were not correlated with age.
CONCLUSION: The lower temporal frequency R9 stimuli had similar diagnostic power to the FDT-C20 stimuli. CCA indicated the both stimuli drove similar neural mechanisms, possibly suggesting no advantage of FD stimuli for mfVEPs. Given that the contrast-threshold mfVEPs were non-viable, we used the present and published results to make recommendations for future mfVEP tests.
PURPOSE: The present study aims to look at the association between CH and severity of OSAS, and whether CH could be another link between OSAS and the development of glaucoma.
METHODS: This was a cross-sectional, observational study at the University Malaya Medical Centre, Kuala Lumpur. Patients undergoing polysomnography for assessment of OSAS were recruited. We measured central corneal thickness (CCT) using optical biometry, and CH using ocular response analysis. Intraocular pressure (IOP) and Humphrey visual field (HVF) indices were also measured. The Apnea Hypopnea Index (AHI) divided patients into normal, mild, moderate, and severe OSAS categories. The normal and mild categories (47.9%) were then collectively called group 1, and the moderate and severe categories (52.1%) were called group 2. T tests, Pearson correlation tests, and general linear model analysis were performed, with P .05). CH correlated negatively with AHI (r = -0.229, P = .013) and positively with lowest oxygen saturation (r = 0.213, P = .022).
CONCLUSIONS: CH is lower in moderate/severe OSAS than in normal/mild cases. This may be another link between OSAS and the development of glaucoma; further studies are indicated to determine the significance of this connection.
PURPOSE: The purpose of this study was to investigate the clinical characteristics, including 24-hour ocular perfusion pressure and risk of progression in patients with baseline central VF defect, as compared with those with peripheral VF defect in NTG.
DESIGN: This was a prospective, longitudinal study.
METHODS: A total of 65 NTG patients who completed 5 years of follow-up were included in this study. All the enrolled patients underwent baseline 24-hour intraocular pressure and blood pressure monitoring via 2-hourly measurements in their habitual position and had ≥5 reliable VF tests during the 5-year follow-up. Patients were assigned to two groups on the basis of VF defect locations at baseline, the central 10 degrees, and the peripheral 10- to 24-degree area. Modified Anderson criteria were used to assess global VF progression over 5 years. Kaplan-Meier analyses were used to compare the elapsed time of confirmed VF progression in the two groups. Hazard ratios for the association between clinical risk factors and VF progression were obtained by using Cox proportional hazards models.
RESULTS: There were no significant differences between the patients with baseline central and peripheral VF defects in terms of demography, clinical, ocular and systemic hemodynamic factors. Eyes with baseline defects involving the central fields progressed faster (difference: βcentral=-0.78 dB/y, 95% confidence interval=-0.22 to -1.33, P=0.007) and have 3.56 times higher hazard of progressing (95% confidence interval=1.17-10.82, P=0.025) than those with only peripheral defects.
CONCLUSION: NTG patients with baseline central VF involvement are at increased risk of progression compared with those with peripheral VF defect.
PATIENTS AND METHODS: In total, 100 eyes from 50 patients on long-term intranasal steroids (>2 y) for allergic rhinitis and 90 eyes from 45 controls were included in this study. Patients on other forms of steroids and risk factors for glaucoma were excluded. IOP was measured and nonmydriatic stereoscopic optic disc photos were taken for each eye. The vertical cup-to-disc ratio and the status of the optic disc were evaluated.
RESULTS: The mean IOP for intranasal steroids group was significantly higher (15.24±2.31 mm Hg) compared to the control group (13.91±1.86 mm Hg; P=0.000). However, there were no significant differences in the vertical cup-to-disc ratio and the status of glaucomatous optic disc changes between the groups.
CONCLUSIONS: Prolonged use of intranasal steroids cause statistical significant increase in IOP in patients with allergic rhinitis although no significant glaucomatous disc changes were seen. We suggest patients on long-term use of intranasal steroid have a yearly eye examination to be monitored for IOP elevation and those with additional risk factors for glaucoma is closely monitored for glaucoma.