Displaying publications 21 - 40 of 534 in total

Abstract:
Sort:
  1. Pramanik BK, Pramanik SK, Monira S
    Chemosphere, 2021 Nov;282:131053.
    PMID: 34098311 DOI: 10.1016/j.chemosphere.2021.131053
    Nano/microplastics (NPs/MPs), a tiny particle of plastic pollution, are known as one of the most important environmental threats to marine ecosystems. Wastewater treatment plants can act as entrance routes for NPs/MPs to the aquatic environment as they breakdown of larger fragments of the plastic component during the treatment process; therefore, it is necessary to remove NPs/MPs during the wastewater treatment process. In this study, understanding the effect of water shear force on the fragmentation of larger size MPs into smaller MPs and NPs and their removal by air flotation and nano-ferrofluid (i.e., magnetite and cobalt ferrite particle as a coagulant) and membrane processes were investigated as a proof-of-concept study. It is found that a two-blade mechanical impeller could fragment MPs from 75, 150 and 300 μm into mean size NPs/MPs of 0.74, 1.14 and 1.88 μm, respectively. Results showed that the maximum removal efficiency of polyethylene, polyvinyl chloride and polyester was 85, 82 and 69%, respectively, in the air flotation process. Increasing the dose of behentrimonium chloride surfactant from 2 to 10 mg/L improved the efficiency of the air flotation process for NPs/MPs removal. It is also found that the removal efficiency of NPs/MPs by the air flotation system depends on solution pH, size, and types of NPs/MPs. This study also found a less significant removal efficiency of NPs/MPs by both types of ferrofluid used in this study with an average removal of 43% for magnetite and 55% for cobalt ferrite. All three plastics tested had similar removal efficiency by the nano-ferrofluid particles, meaning that this removal technique does not rely on the plastic component type. Among all the process tested, both ultrafiltration and microfiltration membrane processes were highly effective, removing more than 90% of NPs/MPs fragment particles. Overall, this study has confirmed the effectiveness of using air flotation and the membrane process to remove NPs/MPs from wastewater.
    Matched MeSH terms: Waste Water
  2. Mohammed Modawe Alshik Edris N, Sulaiman Y
    Ecotoxicol Environ Saf, 2020 Oct 15;203:111026.
    PMID: 32888594 DOI: 10.1016/j.ecoenv.2020.111026
    The detection of phenolic compounds, i.e. resorcinol (RC) catechol (CC) and hydroquinone (HQ) are important due to their extremely hazardous impact and poor environmental degradation. In this work, a novel and sensitive composite of electrochemically reduced graphene oxide-poly(Procion Red MX-5B)/gold nanoparticles modified glassy carbon electrode (GCE/ERGO-poly(PR)/AuNPs) was assembled for voltammetric detection of benzenediol isomers (RC, CC, and HQ). The nanocomposite displayed high peak currents towards the oxidation of RC, HQ, and CC compared to non-modified GCE. The peak-to-peak separations were 0.44 and 0.10 V for RC-CC and CC-HQ, respectively. The limit of detections were 53, 53, and 79 nM for HQ, CC, and RC with sensitivities of 4.61, 4.38, and 0.56 μA/μM (S/N = 3), respectively. The nanocomposite displayed adequate reproducibility, besides good stability and acceptable recoveries for wastewater and cosmetic samples analyses.
    Matched MeSH terms: Waste Water/chemistry
  3. Rawindran H, Arif Bin Hut N, Vrasna DK, Goh PS, Lim JW, Liew CS, et al.
    Chemosphere, 2024 Jan;346:140591.
    PMID: 37918531 DOI: 10.1016/j.chemosphere.2023.140591
    Current study had made a significant progress in microalgal wastewater treatment through the implementation of an economically viable polyethylene terephthalate (PET) membrane derived from plastic bottle waste. The membrane exhibited an exceptional pure water flux of 156.5 ± 0.25 L/m2h and a wastewater flux of 15.37 ± 0.02 L/m2h. Moreover, the membrane demonstrated remarkable efficiency in selectively removing a wide range of residual parameters, achieving rejection rates up to 99%. The reutilization of treated wastewater to grow microalgae had resulted in a marginal decrease in microalgal density, from 10.01 ± 0.48 to 9.26 ± 0.66 g/g. However, this decline was overshadowed by a notable enhancement in lipid production with level rising from 181.35 ± 0.42 to 225.01 ± 0.11 mg/g. These findings signified the membrane's capacity to preserve nutrients availability within the wastewater; thus, positively influencing the lipid synthesis and accumulation within microalgal cells. Moreover, the membrane's comprehensive analysis of cross-sectional and surface topographies revealed the presence of macropores with a highly interconnected framework, significantly amplifying the available surface area for fluid flow. This exceptional structural attribute had substantially contributed to the membrane's efficacy by facilitating superior filtration and separation process. Additionally, the identified functional groups within the membrane aligned consistently with those commonly found in PET polymer, confirming the membrane's compatibility and efficacy in microalgal wastewater treatment.
    Matched MeSH terms: Waste Water*
  4. Shimizu A, Takada H, Koike T, Takeshita A, Saha M, Rinawati, et al.
    Sci Total Environ, 2013 May 1;452-453:108-15.
    PMID: 23500404 DOI: 10.1016/j.scitotenv.2013.02.027
    Seven sulfonamides, trimethoprim, five macrolides, lincomycin and three tetracyclines were measured in 150 water samples of sewage, livestock and aquaculture wastewater, and river and coastal waters, in five tropical Asian countries. The sum of the concentrations of the target antibiotics in sewage and heavily sewage-impacted waters were at sub- to low-ppb levels. The most abundant antibiotic was sulfamethoxazole (SMX), followed by lincomycin and sulfathiazole. The average concentration of SMX in sewage or heavily sewage-impacted waters was 1720 ng/L in Vietnam (Hanoi, Ho Chi Minh, Can Tho; n=15), 802ng/L in the Philippines (Manila; n=4), 538 ng/L in India (Kolkata; n=4), 282 ng/L in Indonesia (Jakarta; n=10), and 76 ng/L in Malaysia (Kuala Lumpur; n=6). These concentrations were higher than those in Japan, China, Europe, the US and Canada. A predominance of sulfonamides, especially SMX, is notable in these tropical countries. The higher average concentrations, and the predominance of SMX, can be ascribed to the lower cost of the antibiotics. Both the concentration and composition of antibiotics in livestock and aquaculture wastewater varied widely. In many cases, sulfamethazine (SMT), oxytetracycline (OTC), lincomycin, and SMX were predominant in livestock and aquaculture wastewater. Both human and animal antibiotics were widely distributed in the respective receiving waters (i.e., the Mekong River and Manila Bay). SMT/SMX ratios indicate a significant contribution from livestock wastewater to the Mekong River and nearby canals, with an estimated ~10% of river water SMX derived from such wastewater. Mass flow calculations estimate that 12 tons of SMX is discharged annually from the Mekong River into the South China Sea. Riverine inputs of antibiotics may significantly increase the concentration of such antibiotics in the coastal waters.
    Matched MeSH terms: Waste Water/analysis
  5. Li B, Amin AH, Ali AM, Isam M, Lagum AA, Sabugaa MM, et al.
    Chemosphere, 2023 Sep;336:139208.
    PMID: 37321458 DOI: 10.1016/j.chemosphere.2023.139208
    UV and solar-based photocatalytic degradation of 2,4-dichlorophenol (2,4-DCP) as an organic contaminant in ceramics industry wastewater by ZnS and Fe-doped ZnS NPs was the focus of this research. Nanoparticles were prepared using a chemical precipitation process. The cubic, closed-packed structure of undoped ZnS and Fe-doped ZnS NPs was formed in spherical clusters, according to XRD and SEM investigations. According to optical studies, the optical band gaps of pure ZnS and Fe-doped ZnS nanoparticles are 3.35 and 2.51 eV, respectively, and Fe doping increased the number of carriers with high mobility, improved carrier separation and injection efficiency, and increased photocatalytic activity under UV or visible light. Doping of Fe increased the separation of photogenerated electrons and holes and facilitated charge transfer, according to electrochemical impedance spectroscopy investigations. Photocatalytic degradation studies revealed that in the present pure ZnS and Fe-doped ZnS nanoparticles, 100% treatment of 120 mL of 15 mg/L phenolic compound was obtained after 55- and 45-min UV-irradiation, respectively, and complete treatment was attained after 45 and 35-min solar light irradiation, respectively. Because of the synergistic effects of effective surface area, more effective photo-generated electron and hole separation efficiency, and enhanced electron transfer, Fe-doped ZnS demonstrated high photocatalytic degradation performance. The study of Fe-doped ZnS's practical photocatalytic treatment capability for removing 120 mL of 10 mg/L 2,4-DCP solution made from genuine ceramic industrial wastewater revealed Fe-doped ZnS's excellent photocatalytic destruction of 2,4-DCP from real industrial wastewater.
    Matched MeSH terms: Waste Water*
  6. Tran TV, Nguyen DTC, Le HTN, Bach LG, Vo DN, Hong SS, et al.
    Nanomaterials (Basel), 2019 Feb 10;9(2).
    PMID: 30744163 DOI: 10.3390/nano9020237
    Chloramphenicol (CAP) is commonly employed in veterinary clinics, but illegal and uncontrollable consumption can result in its potential contamination in environmental soil, and aquatic matrix, and thereby, regenerating microbial resistance, and antibiotic-resistant genes. Adsorption by efficient, and recyclable adsorbents such as mesoporous carbons (MPCs) is commonly regarded as a "green and sustainable" approach. Herein, the MPCs were facilely synthesized via the pyrolysis of the metal⁻organic framework Fe₃O(BDC)₃ with calcination temperatures (x °C) between 600 and 900 °C under nitrogen atmosphere. The characterization results pointed out mesoporous carbon matrix (MPC700) coating zero-valent iron particles with high surface area (~225 m²/g). Also, significant investigations including fabrication condition, CAP concentration, effect of pH, dosage, and ionic strength on the absorptive removal of CAP were systematically studied. The optimal conditions consisted of pH = 6, concentration 10 mg/L and dose 0.5 g/L for the highest chloramphenicol removal efficiency at nearly 100% after 4 h. Furthermore, the nonlinear kinetic and isotherm adsorption studies revealed the monolayer adsorption behavior of CAP onto MPC700 and Fe₃O(BDC)₃ materials via chemisorption, while the thermodynamic studies implied that the adsorption of CAP was a spontaneous process. Finally, adsorption mechanism including H-bonding, electrostatic attraction, π⁻π interaction, and metal⁻bridging interaction was proposed to elucidate how chloramphenicol molecules were adsorbed on the surface of materials. With excellent maximum adsorption capacity (96.3 mg/g), high stability, and good recyclability (4 cycles), the MPC700 nanocomposite could be utilized as a promising alternative for decontamination of chloramphenicol antibiotic from wastewater.
    Matched MeSH terms: Waste Water
  7. Idros N, Chu D
    ACS Sens, 2018 09 28;3(9):1756-1764.
    PMID: 30193067 DOI: 10.1021/acssensors.8b00490
    Heavy metals are highly toxic at trace levels and their pollution has shown great threat to the environment and public health worldwide where current detection methods require expensive instrumentation and laborious operation, which can only be accomplished in centralized laboratories. Herein, we report a low-cost, paper-based microfluidic analytical device (μPAD) for facile, portable, and disposable monitoring of mercury, lead, chromium, nickel, copper, and iron ions. Triple indicators or ligands that contain ions or molecules are preloaded on the μPADs and upon addition of a metal ion, the colorimetric indicators will elicit color changes observed by the naked eyes. The color features were quantitatively analyzed in a three-dimensional space of red, green, and blue or the RGB-space using digital imaging and color calibration techniques. The sensing platform offers higher accuracy for cross references, and is capable of simultaneous detection and discrimination of different metal ions in even real water samples. It demonstrates great potential for semiquantitative and even qualitative analysis with a sensitivity below the safe limit concentrations, and a controlled error range.
    Matched MeSH terms: Waste Water/analysis
  8. Yavari S, Malakahmad A, Sapari NB, Yavari S
    Water Sci Technol, 2017 Apr;75(7-8):1684-1692.
    PMID: 28402310 DOI: 10.2166/wst.2017.043
    Phytoremediation is an environmentally friendly and sustainable alternative for treatment of nitrogen-enriched wastewaters. In this study, Ta-khian (Hopea odorata) and Lagos mahogany (Khaya ivorensis), two tropical timber plants, were investigated for their performances in treatment of urea manufacturing factory effluent with high nitrogen (N) content. Plant seedlings received four concentrations of N (190, 240, 290 and 340 mg/L N) in laboratory-scale constructed wetlands every 4 days for a duration of 8 weeks. The solution volumes supplied to each container, amount of N recovered by plants and plant growth characteristics were measured throughout the experiment. Results showed that Ta-khian plants were highly effective at reducing N concentration and volume of water. A maximum of 63.05% N recovery was obtained by Ta-khian plants grown in 290 mg/L N, which was assimilated in the chlorophyll molecule structure and shoot biomass. Significant positive correlations have been shown between N recovery percentages and plant growth parameters. Ta-Khian plants can be applied as suitable phytoremediators for mitigating N pollution in water sources.
    Matched MeSH terms: Waste Water/chemistry
  9. Alkarkhi AFM, Amr SSA, Alqaraghuli WAA, Özdemir Y, Zulkifli M, Mahmud MN
    Data Brief, 2021 Feb;34:106685.
    PMID: 33409347 DOI: 10.1016/j.dib.2020.106685
    This article provides data regarding the performance of zinc sulphate as a coagulant for treating rubber industry wastewater. The effect of four factors on removal efficiency of nine parameters is investigated, namely: pH, mixing speed, dosage of coagulant (zinc sulphate) and retention time. Response surface methodology was used to investigate the effect of selected variables. The data obtained from face centered composite design (FCCD) were analyzed by using analysis of variance (ANOVA) and regression model to find the optimum operating conditions for the selected factors.
    Matched MeSH terms: Waste Water
  10. Nik Nur Syafika Pahri, Nur Huda Syazwani Jafri, Husna Ahmad Tajuddin, Yusilawati Ahmad Nor
    MyJurnal
    Effective treatment of wastewater is crucial in order to achieve a sustainable development. For instance, highly efficient treatment processes with low capital requirements are the major prerequisite for implementation of the advanced wastewater treatment operations. Among various available treatment methods, the application of coagulation-flocculation process by using natural coagulant; chitosan has vast advantages such as low operating cost, environmental friendly and highly effective in the wastewater treatment operations. The application of nanotechnology in numerous treatment techniques are considered as the most significant advances in water and wastewater treatment practices. The utilization of magnesium oxide (MgO) as nano-adsorbent has recently gained attention as a potential treatment method in water remediation particularly for treating effluents with high amount of organic dyes and heavy metals due to its high treatment efficiency, low cost, versatility and environment compatibility. The purpose of this study was to determine the effectiveness of coagulation-flocculation process when using novel coagulant in which MgO coated with chitosan by investigating the percentage removal of several significant parameters which were turbidity, chemical oxygen demand (COD) and suspended solid. The removal efficiencies were determined throughout a series of experiments carried out using a standard jar test procedure in which three different coagulants; chitosan, MgO coated with chitosan and MgO were tested on water samples taken from Sg. Pusu. In addition, a set of experiments was designed using response surface methodology (RSM) in order to optimize adsorption of chitosan into MgO. The experiments were conducted at various concentrations of chitosan (10-30 mg/ml) and selected MgO dosage ranges (10-30 mg). From the obtained results, it was found that chitosan-MgO coagulant has good removal efficiencies of turbidity, chemical oxygen demand (COD) and suspended solids at 92%, 91%, and 98% respectively from the optimization of adsorption of chitosan-MgO. The MgO coated with chitosan is the best coagulant in this study compared to chitosan and MgO alone because of the ability of treating the river water with up to 90 % removal for all the main parameters. The results showed that coagulation-flocculation is effective as a treatment for treating river water.
    Matched MeSH terms: Waste Water
  11. Sumisha A, Arthanareeswaran G, Lukka Thuyavan Y, Ismail AF, Chakraborty S
    Ecotoxicol Environ Saf, 2015 Nov;121:174-9.
    PMID: 25890841 DOI: 10.1016/j.ecoenv.2015.04.004
    In this study, laundry wastewater filtration was studied using hydrophilic polyvinylpyrollidone (PVP) modified polyethersulfone (PES) ultrafiltration membranes. The performances of PES/PVP membranes were assessed using commercial PES membrane with 10kDa in ultrafiltration. Operating parameters The influence of transmembrane pressure (TMP) and stirring speed on laundry wastewater flux was investigated. A higher permeate flux of 55.2L/m(2)h was obtained for modified PES membrane with high concentration of PVP at TMP of 500kPa and 750rpm of stirring speed. The separation efficiencies of membranes were also studied with respect to chemical oxygen demand (COD), total dissolved solids (TDS), turbidity and conductivity. Results showed that PES membrane with 10% of PVP had higher permeate flux, flux recovery and less fouling when compared with other membranes. Higher COD and TDS rejection of 88% and 82% were also observed for modified membranes due to the improved surface property of membranes. This indicated that modified PES membranes are suitable for the treatment of surfactant, detergent and oil from laundry wastewater.
    Matched MeSH terms: Waste Water/chemistry*
  12. Lim JX, Vadivelu VM
    J Environ Manage, 2014 Dec 15;146:217-225.
    PMID: 25173730 DOI: 10.1016/j.jenvman.2014.07.023
    A sequencing batch reactor (SBR) with a working volume of 8 L and an exchange ratio of 25% was used to enrich biomass for the treatment of the anaerobically treated low pH palm oil mill effluent (POME). The influent concentration was stepwise increased from 5000 ± 500 mg COD/L to 11,500 ± 500 mg COD/L. The performance of the reactor was monitored at different organic loading rates (OLRs). It was found that approximately 90% of the COD content of the POME wastewater was successfully removed regardless of the OLR applied to the SBR. Cycle studies of the SBR show that the oxygen uptake by the biomass while there is no COD reduction may be due to the oxidation of the storage product by the biomass. Further, the growth kinetic parameters of the biomass were determined in batch experiments using respirometer. The maximum specific growth rate (μmax) was estimated to be 1.143 day(-1) while the half saturation constant (Ks) with respect to COD was determined to be 0.429 g COD/L. The decay coefficient (bD) and biomass yield (Y) were found to be 0.131 day(-1) and 0.272 mg biomass/mg COD consumed, respectively.
    Matched MeSH terms: Waste Water*
  13. Khan NA, Bokhari A, Mubashir M, Klemeš JJ, El Morabet R, Khan RA, et al.
    Chemosphere, 2022 Jan;286(Pt 3):131838.
    PMID: 34399260 DOI: 10.1016/j.chemosphere.2021.131838
    In this study, Hospital wastewater was treated using a submerged aerobic fixed film (SAFF) reactor coupled with tubesettler in series. SAFF consisted of a column with an up-flow biofilter. The biological oxygen demand (BOD)5, chemical oxygen demand (COD), nitrate and phosphate were the chosen pollutants for evaluation. The pollutants removal efficiency was determined at varying organic loading rates and hydraulic retention time. The organic loading rate was varied between 0.25 and 1.25 kg COD m-3 d-1. The removal efficiency of SAFF and tubesettler combined was 75 % COD, 67 % BOD and 67 % phosphate, respectively. However, nitrate saw an increase in concentration by 25 %. SAFF contribution in the removal of COD, BOD5 and Phosphate was 48 %, 46 % and 29 %, respectively. While for accumulation of nitrate, it was responsible for 56%, respectively. Tubesettler performed better than SAFF with 52 %, 54 % and 69 % reduction of COD, BOD5 and phosphate, respectively. But in terms of nitrate, tubesettler was responsible for 44 % accumulation. The nutrient reduction decreased with an increase in the organic loading rate. Nitrification was observed in the SAFF and tubesettler, which indicated a well-aerated system. An anaerobic unit is required for completing the denitrification process and removing nitrogen from the effluent. The better performance of tubesettler over SAFF calls for necessitates extended retention time over design criteria. Further studies are beneficial to investigate the impact of pharmaceutical compounds on the efficiency of SAFF.
    Matched MeSH terms: Waste Water*
  14. Nasir NM, Bakar NS, Lananan F, Abdul Hamid SH, Lam SS, Jusoh A
    Bioresour Technol, 2015 Aug;190:492-8.
    PMID: 25791330 DOI: 10.1016/j.biortech.2015.03.023
    This study focuses on the evaluation of the performance of Chlorella sp. in removing nutrient in aquaculture wastewater and its correlation with the kinetic growth of Chlorella sp. The treatment was applied with various Chlorella sp. inoculation dosage ranging from 0% to 60% (v/v) of wastewater. The optimum inoculation dosage was recorded at 30% (v/v) with effluent concentration of ammonia and orthophosphate recording at 0.012mgL(-1) and 0.647mgL(-1), respectively on Day 11. The optimum dosage for bio-flocculation process was obtained at 30mgL(-1) of Aspergillus niger with a harvesting efficiency of 97%. This type of development of phytoremediation with continuous bio-harvesting could promote the use of sustainable green technology for effective wastewater treatment.
    Matched MeSH terms: Waste Water/microbiology*
  15. Lim SL, Wu TY, Clarke C
    J Agric Food Chem, 2014 Jan 22;62(3):691-8.
    PMID: 24372356 DOI: 10.1021/jf404265f
    In this laboratory-scale study, earthworms were introduced as biodegraders of palm oil mill effluent (POME), which is a wastewater produced from the wet process of palm oil milling. POME was absorbed into amendments (soil or rice straw) in different ratios as feedstocks for the earthworm, Eudrilus eugeniae. The presence of earthworms led to significant increases in pH, electrical conductivity, and nutrient content but decreases in the C/N ratio (0.687-75.8%), soluble chemical oxygen demand (19.7-87.9%), and volatile solids (0.687-52.7%). However, earthworm growth was reduced in all treatments by the end of the treatment process. Rice straw was a better amendment/absorbent relative to soil, with a higher nutrient content and greater reduction in soluble chemical oxygen demand with a lower C/N ratio in the vermicompost. Among all treatments investigated, the treatment with 1 part rice straw and 3 parts POME (w/v) (RS1:3) produced the best quality vermicompost with high nutritional status.
    Matched MeSH terms: Waste Water/analysis*
  16. Brindha K, Paul R, Walter J, Tan ML, Singh MK
    Environ Geochem Health, 2020 Nov;42(11):3819-3839.
    PMID: 32601907 DOI: 10.1007/s10653-020-00637-9
    Monitoring the groundwater chemical composition and identifying the presence of pollutants is an integral part of any comprehensive groundwater management strategy. The present study was conducted in a part of West Tripura, northeast India, to investigate the presence and sources of trace metals in groundwater and the risk to human health due to direct ingestion of groundwater. Samples were collected from 68 locations twice a year from 2016 to 2018. Mixed Ca-Mg-HCO3, Ca-Cl and Ca-Mg-Cl were the main groundwater types. Hydrogeochemical methods showed groundwater mineralization due to (1) carbonate dissolution, (2) silicate weathering, (3) cation exchange processes and (4) anthropogenic sources. Occurrence of faecal coliforms increased in groundwater after monsoons. Nitrate and microbial contamination from wastewater infiltration were apparent. Iron, manganese, lead, cadmium and arsenic were above the drinking water limits prescribed by the Bureau of Indian Standards. Water quality index indicated 1.5% had poor, 8.7% had marginal, 16.2% had fair, 66.2% had good and 7.4% had excellent water quality. Correlation and principal component analysis reiterated the sources of major ions and trace metals identified from hydrogeochemical methods. Human exposure assessment suggests health risk due to high iron in groundwater. The presence of unsafe levels of trace metals in groundwater requires proper treatment measures before domestic use.
    Matched MeSH terms: Waste Water/analysis; Waste Water/microbiology
  17. Hena S, Fatihah N, Tabassum S, Ismail N
    Water Res, 2015 Sep 1;80:346-56.
    PMID: 26043271 DOI: 10.1016/j.watres.2015.05.001
    Reserve lipids of microalgae are promising for biodiesel production. However, economically feasible and sustainable energy production from microalgae requires optimization of cultivation conditions for both biomass yield and lipid production of microalgae. Biomass yield and lipid production in microalgae are a contradictory problem because required conditions for both targets are different. Simultaneously, the mass cultivation of microalgae for biofuel production also depends extremely on the performance of the microalgae strains used. In this study a green unicellular microalgae Chlorella sorokiniana (DS6) isolated from the holding tanks of farm wastewater treatment plant using multi-step screening and acclimation procedures was found high-lipid producing facultative heterotrophic microalgae strain capable of growing on dairy farm effluent (DFE) for biodiesel feedstock and wastewater treatment. Morphological features and the phylogenetic analysis for the 18S rRNA identified the isolated strains. A novel three stage cultivation process of facultative strain of C. sorokiniana was examined for lipid production.
    Matched MeSH terms: Waste Water/microbiology*
  18. Priya AK, Pachaiappan R, Kumar PS, Jalil AA, Vo DN, Rajendran S
    Environ Pollut, 2021 Apr 15;275:116598.
    PMID: 33581625 DOI: 10.1016/j.envpol.2021.116598
    Anthropogenic activities and population growth have resulted in a reduced availability of drinking water. To ensure consistency in the existence of drinking water, it is inevitable to establish wastewater treatment plants (WWTPs). 70% of India's rural population was found to be without WWTP, waste disposal, and good sanitation. Wastewater has emerged from kitchens, washrooms, etc., with industry activities. This scenario caused severe damage to water resources, leading to degradation of water quality and pathogenic insects. Thus, it is a need of an hour to prompt for better WWTPs for both rural and urban areas. Many parts of the world have started to face severe water shortages in recent years, and wastewater reuse methods need to be updated. Clean water supply is not enough to satisfy the needs of the planet as a whole, and the majority of freshwater in the polar regions takes the form of ice and snow. The increasing population requires clean water for drinks, hygiene, irrigation, and various other applications. Lack of water and contamination of water result from human activities. 90% of wastewater is released to water systems without treatment in developing countries. Studies show that about 730 megatons of waste are annually discharged into water from sewages and other effluents. The sustenance of water resources, applying wastewater treatment technologies, and calling down the percentage of potable water has to be strictly guided by mankind. This review compares the treatment of domestic sewage to its working conditions, energy efficiency, etc. In this review, several treatment methods with different mechanisms involved in waste treatment, industrial effluents, recovery/recycling were discussed. The feasibility of bioaugmentation should eventually be tested through data from field implementation as an important technological challenge, and this analysis identifies many promising areas to be explored in the future.
    Matched MeSH terms: Waste Water*
  19. Mak CY, Lin JG, Chen WH, Ng CA, Bashir MJK
    Water Sci Technol, 2019 May;79(10):1860-1867.
    PMID: 31294702 DOI: 10.2166/wst.2019.188
    The application of the anammox process has great potential in treating nitrogen-rich wastewater. The presence of Fe (II) is expected to affect the growth and activity of anammox bacteria. Short-term (acute) and long-term effects (chronic) of Fe (II) on anammox activity were investigated. In the short-term study, results demonstrated that the optimum concentration of Fe (II) that could be added to anammox is 0.08 mM, at which specific anammox activity (SAA) improved by 60% compared to the control assay, 0.00 mM. The inhibition concentration, IC50, of Fe (II) was found to be 0.192 mM. Kinetics of anammox specific growth rate were estimated based on results of the batch test and evaluated with Han-Levenspiel's substrate inhibition kinetics model. The optimum concentration and IC50 of Fe (II) predicted by the Han-Levenspiel model was similar to the batch test, with values of 0.07 mM and 0.20 mM, respectively. The long-term effect of Fe (II) on the performance of a sequencing batch reactor (SBR) was evaluated. Results showed that an appropriate Fe (II) addition enhanced anammox activity, achieving 85% NH4+-N and 96% NO2--N removal efficiency when 0.08 mM of Fe (II) was added. Quantitative polymerase chain reaction (qPCR) was adopted to detect and identify the anammox bacteria.
    Matched MeSH terms: Waste Water
  20. Zulfadli Ahmad, Saifuddin Normanbhay
    MyJurnal
    This paper reviews the literature on uranium contamination and the removal of uranium from wastewater stemming from mining activities and nuclear power generation. After reviewing the applications of uranium in power generation, military, industry and scientific, this review discusses uranium and rare earth elements in wastewaters and the toxicity of uranium on aquatic life and humans. Further, various methods of removal of heavy metal contaminants including uranium are reviewed with special focus on the adsorption process and carbon nanotubes as a superior adsorbent.
    Matched MeSH terms: Waste Water
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links