Displaying publications 21 - 40 of 196 in total

Abstract:
Sort:
  1. Shuhada SN, Salim S, Nobilly F, Zubaid A, Azhar B
    Ecol Evol, 2017 09;7(18):7187-7200.
    PMID: 28944010 DOI: 10.1002/ece3.3273
    Intensive land expansion of commercial oil palm agricultural lands results in reducing the size of peat swamp forests, particularly in Southeast Asia. The effect of this land conversion on macrofungal biodiversity is, however, understudied. We quantified macrofungal biodiversity by identifying mushroom sporocarps throughout four different habitats; logged peat swamp forest, large-scale oil palm plantation, monoculture, and polyculture smallholdings. We recorded a total of 757 clusters of macrofungi belonging to 127 morphospecies and found that substrates for growing macrofungi were abundant in peat swamp forest; hence, morphospecies richness and macrofungal clusters were significantly greater in logged peat swamp forest than converted oil palm agriculture lands. Environmental factors that influence macrofungi in logged peat swamp forests such as air temperature, humidity, wind speed, soil pH, and soil moisture were different from those in oil palm plantations and smallholdings. We conclude that peat swamp forests are irreplaceable with respect to macrofungal biodiversity. They host much greater macrofungal biodiversity than any of the oil palm agricultural lands. It is imperative that further expansion of oil palm plantation into remaining peat swamp forests should be prohibited in palm oil producing countries. These results imply that macrofungal distribution reflects changes in microclimate between habitats and reduced macrofungal biodiversity may adversely affect decomposition in human-modified landscapes.
    Matched MeSH terms: Wetlands
  2. Anamulai S, Sanusi R, Zubaid A, Lechner AM, Ashton-Butt A, Azhar B
    PeerJ, 2019;7:e7656.
    PMID: 31632845 DOI: 10.7717/peerj.7656
    Oil palm (Elaeis guineensis) agriculture is rapidly expanding and requires large areas of land in the tropics to meet the global demand for palm oil products. Land cover conversion of peat swamp forest to oil palm (large- and small-scale oil palm production) is likely to have negative impacts on microhabitat conditions. This study assessed the impact of peat swamp forest conversion to oil palm plantation on microclimate conditions and soil characteristics. The measurement of microclimate (air temperature, wind speed, light intensity and relative humidity) and soil characteristics (soil surface temperature, soil pH, soil moisture, and ground cover vegetation temperature) were compared at a peat swamp forest, smallholdings and a large-scale plantation. Results showed that the peat swamp forest was 1.5-2.3 °C cooler with significantly greater relative humidity, lower light intensities and wind speed compared to the smallholdings and large-scale plantations. Soil characteristics were also significantly different between the peat swamp forest and both types of oil palm plantations with lower soil pH, soil and ground cover vegetation surface temperatures and greater soil moisture in the peat swamp forest. These results suggest that peat swamp forests have greater ecosystem benefits compared to oil palm plantations with smallholdings agricultural approach as a promising management practice to improve microhabitat conditions. Our findings also justify the conservation of remaining peat swamp forest as it provides a refuge from harsh microclimatic conditions that characterize large plantations and smallholdings.
    Matched MeSH terms: Wetlands
  3. Ikhwanuddin M, Amin-Safwan A, Hasyima-Ismail N, Azra MN
    Data Brief, 2019 Oct;26:104477.
    PMID: 31667242 DOI: 10.1016/j.dib.2019.104477
    The present paper contains two datasets; i) the growth band count (GBC) of mud crab, Scylla olivacea collected from Setiu Wetlands, Terengganu coastal water, East coast of Peninsular Malaysia and ii) the increment sizes of body weight (BW) and carapace width (CW) of immature S. olivace after molting. The datasets presented here were associated with the research articles entitled i) "Study on carapace width growth band counts relationship of orange mud crab, S. olivacea (Herbst, 1796) from Terengganu Coastal Waters, Malaysia" (Hasyima-Ismail et al. 2017) [1] and ii) "Relationship between the carapace width and body weight increments and the confirmation of Stage 1 ovary after the molting of immature orange mud crabs, S. olivacea (Herbst, 1796), in captivity" (Amin-Safwan et al. 2019-2020) [2], and provided here as raw data of Supplementary materials. Raw datasets for GBC in the wild were generated by examination of the thin cross sectioning process of the gastric mill of S. olivacea. The GBC were measured for each individual crab wherein band counts ranged from 1 to 3. The analysis provides evidence that the GBC of the crabs can be determined through both mesocardiac and zygocardiac ossicles. This data is of importance to researchers for estimation of stock assessment and improvement of fisheries management to further improve policy. For the BW-CW increment data, a total of 135 immature crabs were sampled from Setiu Wetlands, Terengganu, Malaysia, and were introduced to limb autotomy technique in order to induced molt. Crabs were reared until successful molting and immediately prior to hardened shell, before final measurement of body weight and carapace width determination. Recorded data was analyzed by calculating the increment sizes, along with correlation and regression analysis between body weight and carapace width of mud crabs.
    Matched MeSH terms: Wetlands
  4. Latiffah Z, Mah Kok F, Heng Mei H, Maziah Z, Baharuddin S
    Trop Life Sci Res, 2010 Aug;21(1):21-9.
    PMID: 24575187 MyJurnal
    A total of 33 isolates of Fusarium sp. were isolated from soil samples collected from a mangrove forest in an area in Kampung Pantai Acheh, Balik Pulau, Pulau Pinang, Malaysia. The isolates were isolated using soil dilution, direct isolation and debris isolation techniques. The debris isolation technique yielded the most isolates, with a total of 22 Fusarium isolates. Based on identification using morphological characteristics, three Fusarium species were identified: F. solani, F. oxysporum and F. verticillioides. F. solani (91%) was the most common species recovered from the mangrove soil samples, followed by F. oxysporum (6%) and F. verticillioides (3%).
    Matched MeSH terms: Wetlands
  5. Nasruddin Hassan, Bushra Abdul Halim
    Sains Malaysiana, 2012;41:1155-1161.
    Satu model matematik dibina bagi menilai pengurusan aktiviti pelancongan rekreasi di Wetland Putrajaya. Kajian ini menggunakan kaedah pengaturcaraan gol (PaG) dan perisian LINDO 6.1.untuk menyelesaikan masalah pelbagai objektif bagi memaksimumkan anggaran keuntungan aktiviti dan bilangan peserta yang terlibat. Tujuh aktiviti di Wetland Putrajaya yang terletak di bawah pengurusan Perbadanan Putrajaya telah dipilih sebagai kes kajian. Data dan maklumat rekod tahun 2008 dijadikan sebagai anggaran untuk kos dan bilangan peserta. Hasil kajian mendapati pihak Wetland Putrajaya boleh mencapai keuntungan lebih 40% daripada jumlah kos dan matlamat untuk memaksimumkan bilangan peserta bagi aktiviti yang terlibat juga tercapai.
    Matched MeSH terms: Wetlands
  6. Ghaderpour A, Mohd Nasori KN, Chew LL, Chong VC, Thong KL, Chai LC
    Mar Pollut Bull, 2014 Jun 15;83(1):324-30.
    PMID: 24820641 DOI: 10.1016/j.marpolbul.2014.04.029
    The deltaic estuarine system of the Matang Mangrove Forest Reserve of Malaysia is a site where several human settlements and brackish water aquaculture have been established. Here, we evaluated the level of fecal indicator bacteria (FIB) and the presence of potentially pathogenic bacteria in the surface water and sediments. Higher levels of FIB were detected at downstream sampling sites from the fishing village, indicating it as a possible source of anthropogenic pollution to the estuary. Enterococci levels in the estuarine sediments were higher than in the surface water, while total coliforms and E. coli in the estuarine sediments were not detected in all samples. Also, various types of potentially pathogenic bacteria, including Klebsiella pneumoniae, Serratia marcescens and Enterobacter cloacae were isolated. The results indicate that the Matang estuarine system is contaminated with various types of potential human bacterial pathogens which might pose a health risk to the public.
    Matched MeSH terms: Wetlands*
  7. Lee LH, Zainal N, Azman AS, Eng SK, Goh BH, Yin WF, et al.
    ScientificWorldJournal, 2014;2014:698178.
    PMID: 25162061 DOI: 10.1155/2014/698178
    The aim of this study was to isolate and identify Actinobacteria from Malaysia mangrove forest and screen them for production of antimicrobial secondary metabolites. Eighty-seven isolates were isolated from soil samples collected at 4 different sites. This is the first report to describe the isolation of Streptomyces, Mycobacterium, Leifsonia, Microbacterium, Sinomonas, Nocardia, Terrabacter, Streptacidiphilus, Micromonospora, Gordonia, and Nocardioides from mangrove in east coast of Malaysia. Of 87 isolates, at least 5 isolates are considered as putative novel taxa. Nine Streptomyces sp. isolates were producing potent antimicrobial secondary metabolites, indicating that Streptomyces isolates are providing high quality metabolites for drug discovery purposes. The discovery of a novel species, Streptomyces pluripotens sp. nov. MUSC 135(T) that produced potent secondary metabolites inhibiting the growth of MRSA, had provided promising metabolites for drug discovery research. The biosynthetic potential of 87 isolates was investigated by the detection of polyketide synthetase (PKS) and nonribosomal polyketide synthetase (NRPS) genes, the hallmarks of secondary metabolites production. Results showed that many isolates were positive for PKS-I (19.5%), PKS-II (42.5%), and NRPS (5.7%) genes, indicating that mangrove Actinobacteria have significant biosynthetic potential. Our results highlighted that mangrove environment represented a rich reservoir for isolation of Actinobacteria, which are potential sources for discovery of antimicrobial secondary metabolites.
    Matched MeSH terms: Wetlands*
  8. Wong CS, Koh CL, Sam CK, Chen JW, Chong YM, Yin WF, et al.
    Sensors (Basel), 2013;13(10):12943-57.
    PMID: 24072030 DOI: 10.3390/s131012943
    Proteobacteria produce N-acylhomoserine lactones as signaling molecules, which will bind to their cognate receptor and activate quorum sensing-mediated phenotypes in a population-dependent manner. Although quorum sensing signaling molecules can be degraded by bacteria or fungi, there is no reported work on the degradation of such molecules by basidiomycetous yeast. By using a minimal growth medium containing N-3-oxohexanoylhomoserine lactone as the sole source of carbon, a wetland water sample from Malaysia was enriched for microbial strains that can degrade N-acylhomoserine lactones, and consequently, a basidiomycetous yeast strain WW1C was isolated. Morphological phenotype and molecular analyses confirmed that WW1C was a strain of Trichosporon loubieri. We showed that WW1C degraded AHLs with N-acyl side chains ranging from 4 to 10 carbons in length, with or without oxo group substitutions at the C3 position. Re-lactonisation bioassays revealed that WW1C degraded AHLs via a lactonase activity. To the best of our knowledge, this is the first report of degradation of N-acyl-homoserine lactones and utilization of N-3-oxohexanoylhomoserine as carbon and nitrogen source for growth by basidiomycetous yeast from tropical wetland water; and the degradation of bacterial quorum sensing molecules by an eukaryotic yeast.
    Matched MeSH terms: Wetlands*
  9. Wong CS, Yin WF, Sam CK, Koh CL, Chan KG
    New Microbiol., 2012 Jan;35(1):43-51.
    PMID: 22378552
    Most Proteobacteria produce N-acylhomoserine lactones for bacterial cell-to-cell communication, a process called quorum sensing. Interference of quorum sensing, commonly known as quorum quenching, represents an important way to control quorum sensing. This work reports the isolation of quorum quenching bacterium strain 2WS8 from Malaysia tropical wetland water (2°11'8"N, 102°15'2"E, in 2007) by using a modified version of a previously reported KG medium. Strain 2WS8 was isolated based on its ability to utilize N-(3-oxohexanoyl)-L-homoserine lactone (3-oxo-C6-HSL) as the sole source of energy. This bacterium clustered closely to Pseudomonas aeruginosa PAO1. Strain 2SW8 possesses both quiP and pvdQ homologue acylase genes. Rapid Resolution Liquid Chromatography analysis confirmed that strain 2SW8 preferentially degraded N-acylhomoserine lactones with 3-oxo group substitution but not those with unsubstituted groups at C3 position in the acyl side chain. Strain 2SW8 also showed 2-heptyl-3-hydroxy-4-quinolone production.
    Matched MeSH terms: Wetlands*
  10. Mohammadpour R, Shaharuddin S, Chang CK, Zakaria NA, Ab Ghani A, Chan NW
    Environ Sci Pollut Res Int, 2015 Apr;22(8):6208-19.
    PMID: 25408070 DOI: 10.1007/s11356-014-3806-7
    Poor water quality is a serious problem in the world which threatens human health, ecosystems, and plant/animal life. Prediction of surface water quality is a main concern in water resource and environmental systems. In this research, the support vector machine and two methods of artificial neural networks (ANNs), namely feed forward back propagation (FFBP) and radial basis function (RBF), were used to predict the water quality index (WQI) in a free constructed wetland. Seventeen points of the wetland were monitored twice a month over a period of 14 months, and an extensive dataset was collected for 11 water quality variables. A detailed comparison of the overall performance showed that prediction of the support vector machine (SVM) model with coefficient of correlation (R(2)) = 0.9984 and mean absolute error (MAE) = 0.0052 was either better or comparable with neural networks. This research highlights that the SVM and FFBP can be successfully employed for the prediction of water quality in a free surface constructed wetland environment. These methods simplify the calculation of the WQI and reduce substantial efforts and time by optimizing the computations.
    Matched MeSH terms: Wetlands*
  11. Jamizan A, Chong V
    Sains Malaysiana, 2017;46:9-19.
    Previous studies have found positive correlations between mangrove forest extent and fisheries yield but none of these univariate relationships provide a reliable estimate of yield from mangrove area. This study tests the hypothesis that the nursery ground value or natural production of fish and shrimps is related to the hydrogeomorphology settings of mangrove forests by using multivariate redundancy analysis (RDA). The hydrogeomorphological metrics of five mangrove forests imaged by satellite were measured using Geographical Information System (GIS). The RDA indicated that the metrics, including mangrove area, multiple waterways and creeks, mangrove-river interface, waterway surface area and sediment organic matter, influenced the diversity and abundance of fish and shrimps. Larger values of these metrics increase the abundance of economically important fish species of the families Lutjanidae, Haemulidae, Serranidae and economically-important penaeid shrimps. Sediment organic matter also significantly correlates with the distribution and abundance of fish that feed off the bottom such as the Leiognathidae, Clupeidae and Mullidae. Mangrove forests with combinations of large mangrove area, river surface area, high stream ordering and longest mangrove-river interface will provide greater role as nursery grounds for fish and shrimps.
    Matched MeSH terms: Wetlands
  12. Mokhtari M, Ghaffar MA, Usup G, Cob ZC
    PLoS One, 2015;10(1):e0117467.
    PMID: 25629519 DOI: 10.1371/journal.pone.0117467
    In tropical regions, different species of fiddler crabs coexist on the mangrove floor, which sometimes makes it difficult to define species-specific habitat by visual inspection. The aim of this study is to find key environmental parameters which affect the distribution of fiddler crabs and to determine the habitats in which each species was most abundant. Crabs were collected from 19 sites within the mudflats of Sepang-Lukut mangrove forest. Temperature, porewater salinity, organic matter, water content, carbon and nitrogen content, porosity, chlorophyll content, pH, redox potential, sediment texture and heavy metals were determined in each 1 m2 quadrate. Pearson correlation indicated that all sediment properties except pH and redox potential were correlated with sediment grain size. Canonical correspondence analysis (CCA) indicated that Uca paradussumieri was negatively correlated with salinity and redox potential. Sand dwelling species, Uca perplexa and Uca annulipes, were highly dependent on the abundance of 250 μm and 150 μm grain size particles in the sediment. Canonical Discriminative Analysis (CDA) indicated that variation in sediment grain size best explained where each crab species was most abundant. Moreover, U. paradussumieri commonly occupies muddy substrates of low shore, while U. forcipata lives under the shade of mangrove trees. U. annulipes and U. perplexa with the high number of spoon tipped setae on their second maxiliped are specialized to feed on the sandy sediments. U. rosea and U. triangularis are more common on muddy sediment with high sediment density. In conclusion, sediment grain size that influences most sediment properties acts as a main factor responsible for sediment heterogeneity. In this paper, the correlation between fiddler crab species and environmental parameters, as well as the interaction between sediment characteristics, was explained in order to define the important environmental factors in fiddler crab distributions.
    Matched MeSH terms: Wetlands*
  13. Mansor A, Crawley MJ
    Trop Life Sci Res, 2011 May;22(1):37-49.
    PMID: 24575208 MyJurnal
    The status and distribution of Mimosa pigra L., a semi-aquatic invasive species in Peninsular Malaysia, were continuously assessed between 2004 and 2007. This assessment investigated its population stand density and related weed management activities. In total, 106 sites of 6 main habitat types i.e., construction site (CS), dam/ reservoir (DM), forest reserve (FR), plantation (PL), river bank/waterway (RB) and roadside (RD) were assessed, and 55 sites were recorded with M. pigra populations. A CS is the most likely habitat to be infested with M. pigra (16 out of 18 assessed sites have this weed), whereas none of the FR visited were found to harbour M. pigra. In terms of population stand density, 41 populations were in the low range of stand density (individual plant of ≤5 m(-2)), compared to only 9 populations in the high range of stand density (individual plant of >10 m(-2)). In general, the current impact of M. pigra infestation on natural habitats is relatively low, as its distribution is only confined to disturbed areas. However, continuous monitoring of this weed species is highly recommended, especially in the riparian zone and wetland habitats.
    Matched MeSH terms: Wetlands
  14. Wolswijk G, Satyanarayana B, Dung LQ, Siau YF, Ali ANB, Saliu IS, et al.
    J Hazard Mater, 2020 04 05;387:121665.
    PMID: 31784131 DOI: 10.1016/j.jhazmat.2019.121665
    Charcoal production activities at the Matang Mangrove Forest Reserve (MMFR) in Peninsular Malaysia have a potential to emit volatile compounds such as Hg back into the ambient environment, raising concerns on the public health and safety. The present study was aimed at analyzing Hg concentration from different plant/animal tissues and sediment samples (in total 786 samples) to understand clearly the Hg distribution at the MMFR. Leaves of Rhizophora spp. showed higher Hg concentration with an increasing trend from young, to mature, to senescent and decomposing stages, which was possibly due to accumulation of Hg over time. The low Hg concentration in Rhizophora roots and bark suggests a limited absorption from the sediments and a meagre accumulation/partitioning by the plant tissue, respectively. In the case of mangrove cockles the concentration of Hg was lower than the permissible limits for seafood consumption. Although the mangrove gastropod - Cassidula aurisfelis Bruguière had rather elevated Hg in the muscle tissue, it is still less than the environmental safely limit. Beside the chances of atmospheric deposition for Hg, the sediment samples were found to be unpolluted in nature, indicating that in general the MMFR is still safe in terms of Hg pollution.
    Matched MeSH terms: Wetlands*
  15. Hugé J, Vande Velde K, Benitez-Capistros F, Japay JH, Satyanarayana B, Nazrin Ishak M, et al.
    J Environ Manage, 2016 Dec 01;183(Pt 3):988-997.
    PMID: 27692515 DOI: 10.1016/j.jenvman.2016.09.046
    The sustainable management of natural resources requires the consideration of multiple stakeholders' perspectives and knowledge claims, in order to inform complex and possibly contentious decision-making dilemmas. Hence, a better understanding of why people in particular contexts do manage natural resources in a particular way is needed. Focusing on mangroves, highly productive tropical intertidal forests, this study's first aim is to map the diversity of subjective viewpoints among a range of stakeholders on the management of Matang Mangrove Forest in peninsular Malaysia. Secondly, this study aims to feed the reflection on the possible consequences of the diversity of perspectives for the future management of mangroves in Malaysia and beyond. The use of the semi-quantitative Q methodology allowed us to identify three main discourses on mangrove management: i. the optimization discourse, stressing the need to improve the current overall satisfactory management regime; ii. the 'change for the better' discourse, which focuses on increasingly participatory management and on ecotourism; and iii. the conservative 'business as usual' discourse. The existence of common points of connection between the discourses and their respective supporters provides opportunities for modifications of mangrove management regimes. Acknowledging this diversity of viewpoints, reflecting how different stakeholders see and talk about mangrove management, highlights the need to develop pro-active and resilient natural resource management approaches.
    Matched MeSH terms: Wetlands
  16. Wolswijk G, Satyanarayana B, Le QD, Siau YF, Ali ANB, Saliu IS, et al.
    Data Brief, 2020 Apr;29:105134.
    PMID: 32016142 DOI: 10.1016/j.dib.2020.105134
    This paper presents the results of mercury analysis on 786 abiotic (surface sediments) and biotic (plant and animal tissues) samples collected from 10 sites at Matang Mangrove Forest Reserve in Peninsular Malaysia. Sediment samples were collected at the surface level from both river bank and forest understory. Whereas plant tissues obtained from Rhizophora apiculata Blume and Rhizophora mucronata L. consisted of leaves (in four stages namely young, mature, senescent and decomposing), bark and roots (divided into xylem, cortex and epidermis), the animal samples were represented by muscle tissue of the gastropod Cassidula aurisfelis Bruguière and the cockle Tegillarca granosa L. The mercury concentration measurements were obtained through a cold vapor atomic absorption spectrometer. The core data have been analysed and interpreted in the paper "Distribution of mercury in sediments, plant and animal tissues in Matang Mangrove Forest Reserve, Malaysia" [1].
    Matched MeSH terms: Wetlands
  17. Satyanarayana B, M Muslim A, Izzaty Horsali NA, Mat Zauki NA, Otero V, Nadzri MI, et al.
    PeerJ, 2018;6:e4397.
    PMID: 29479500 DOI: 10.7717/peerj.4397
    Brunei Bay, which receives freshwater discharge from four major rivers, namely Limbang, Sundar, Weston and Menumbok, hosts a luxuriant mangrove cover in East Malaysia. However, this relatively undisturbed mangrove forest has been less scientifically explored, especially in terms of vegetation structure, ecosystem services and functioning, and land-use/cover changes. In the present study, mangrove areal extent together with species composition and distribution at the four notified estuaries was evaluated through remote sensing (Advanced Land Observation Satellite-ALOS) and ground-truth (Point-Centred Quarter Method-PCQM) observations. As of 2010, the total mangrove cover was found to be ca. 35,183.74 ha, of which Weston and Menumbok occupied more than two-folds (58%), followed by Sundar (27%) and Limbang (15%). The medium resolution ALOS data were efficient for mapping dominant mangrove species such asNypa fruticans,Rhizophora apiculata,Sonneratia caseolaris,S. albaandXylocarpus granatumin the vicinity (accuracy: 80%). The PCQM estimates found a higher basal area at Limbang and Menumbok-suggestive of more mature vegetation, compared to Sundar and Weston. Mangrove stand structural complexity (derived from the complexity index) was also high in the order of Limbang > Menumbok > Sundar > Weston and supporting the perspective of less/undisturbed vegetation at two former locations. Both remote sensing and ground-truth observations have complementarily represented the distribution ofSonneratiaspp. as pioneer vegetation at shallow river mouths,N. fruticansin the areas of strong freshwater discharge,R. apiculatain the areas of strong neritic incursion andX. granatumat interior/elevated grounds. The results from this study would be able to serve as strong baseline data for future mangrove investigations at Brunei Bay, including for monitoring and management purposes locally at present.
    Matched MeSH terms: Wetlands
  18. Ruwaimana M, Satyanarayana B, Otero V, M Muslim A, Syafiq A M, Ibrahim S, et al.
    PLoS One, 2018;13(7):e0200288.
    PMID: 30020959 DOI: 10.1371/journal.pone.0200288
    Satellite data and aerial photos have proved to be useful in efficient conservation and management of mangrove ecosystems. However, there have been only very few attempts to demonstrate the ability of drone images, and none so far to observe vegetation (species-level) mapping. The present study compares the utility of drone images (DJI-Phantom-2 with SJ4000 RGB and IR cameras, spatial resolution: 5cm) and satellite images (Pleiades-1B, spatial resolution: 50cm) for mangrove mapping-specifically in terms of image quality, efficiency and classification accuracy, at the Setiu Wetland in Malaysia. Both object- and pixel-based classification approaches were tested (QGIS v.2.12.3 with Orfeo Toolbox). The object-based classification (using a manual rule-set algorithm) of drone imagery with dominant land-cover features (i.e. water, land, Avicennia alba, Nypa fruticans, Rhizophora apiculata and Casuarina equisetifolia) provided the highest accuracy (overall accuracy (OA): 94.0±0.5% and specific producer accuracy (SPA): 97.0±9.3%) as compared to the Pleiades imagery (OA: 72.2±2.7% and SPA: 51.9±22.7%). In addition, the pixel-based classification (using a maximum likelihood algorithm) of drone imagery provided better accuracy (OA: 90.0±1.9% and SPA: 87.2±5.1%) compared to the Pleiades (OA: 82.8±3.5% and SPA: 80.4±14.3%). Nevertheless, the drone provided higher temporal resolution images, even on cloudy days, an exceptional benefit when working in a humid tropical climate. In terms of the user-costs, drone costs are much higher, but this becomes advantageous over satellite data for long-term monitoring of a small area. Due to the large data size of the drone imagery, its processing time was about ten times greater than that of the satellite image, and varied according to the various image processing techniques employed (in pixel-based classification, drone >50 hours, Pleiades <5 hours), constituting the main disadvantage of UAV remote sensing. However, the mangrove mapping based on the drone aerial photos provided unprecedented results for Setiu, and was proven to be a viable alternative to satellite-based monitoring/management of these ecosystems. The improvements of drone technology will help to make drone use even more competitive in the future.
    Matched MeSH terms: Wetlands*
  19. Grismer LL, Davis HR
    Zootaxa, 2018 Sep 10;4472(2):365-374.
    PMID: 30313374 DOI: 10.11646/zootaxa.4472.2.9
    The Sundaic swamp clade of the genus Cyrtodactylus contains nine species that collectively range through Peninsular Malaysia and its associated land bridge islands, Singapore, Sumatra, Java, and Pulau Natuna Besar. Ancestral range reconstruction analyses using BioGeoBEARS based on an updated molecular phylogeny of the nine Sundaic swamp clade species of Cyrtodactylus demonstrated that this lineage evolved in Peninsular Malaysia, dispersed independently to Sumatra and Pulau Natuna Besar, Indonesia and most likely back into Peninsular Malaysia from Sumatra. This scenario is consistent with climate-driven, cyclical, ephemeral, geographic reconfigurations of Sundaic landmasses from at least the mid-Miocene to present.
    Matched MeSH terms: Wetlands
  20. Dow RA
    Zootaxa, 2016 Nov 02;4184(1):79-103.
    PMID: 27811655 DOI: 10.11646/zootaxa.4184.1.5
    Coeliccia matok sp. nov. (holotype male from Borneo, Sarawak, Samarahan Division, peat swamp forest at old UNIMAS campus, 25 ii 2008, to be deposited in BMNH) and Coeliccia paludensis sp. nov. (holotype male from Borneo, Kalimantan Tengah, peat swamp forest in ex Mega Rice Project Block E, 18 vi 2012, in RMNH) are described from Borneo. The two new species are apparently confined to peat swamp forest (C. paludensis) or largely confined to peat swamp forest and related forest formations (C. matok). Coeliccia macrostigma Laidlaw is redescribed and all available information on it is summarised. Additional terminology for characters of the prothorax in Coeliccia species is introduced. Distribution maps are given for all three species considered.
    Matched MeSH terms: Wetlands
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links