METHODS: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tertazolium-bromide assay was performed to determine the antiproliferative effect of p-Coumaric acid against colon cancer cells. Colony forming assay was conducted to quantify the colony inhibition in HCT 15 and HT 29 colon cancer cells after p-Coumaric acid treatment. Propidium Iodide staining of the HCT 15 cells using flow cytometry was done to study the changes in the cell cycle of treated cells. Identification of apoptosis was done using scanning electron microscope and photomicrograph evaluation of HCT 15 cells after exposing to p-Coumaric acid. Levels of reactive oxygen species (ROS) of HCT 15 cells exposed to p-Coumaric acid was evaluated using 2', 7'-dichlorfluorescein-diacetate. Mitochondrial membrane potential of HCT-15 was assessed using rhodamine-123 with the help of flow cytometry. Lipid layer breaks associated with p-Coumaric acid treatment was quantified using the dye merocyanine 540. Apoptosis was confirmed and quantified using flow cytometric analysis of HCT 15 cells subjected to p-Coumaric acid treatment after staining with YO-PRO-1.
RESULTS: Antiproliferative test showed p-Coumaric acid has an inhibitory effect on HCT 15 and HT 29 cells with an IC₅₀ (concentration for 50% inhibition) value of 1400 and 1600 μmol/L respectively. Colony forming assay revealed the time-dependent inhibition of HCT 15 and HT 29 cells subjected to p-Coumaric acid treatment. Propidium iodide staining of treated HCT 15 cells showed increasing accumulation of apoptotic cells (37.45 ± 1.98 vs 1.07 ± 1.01) at sub-G1 phase of the cell cycle after p-Coumaric acid treatment. HCT-15 cells observed with photomicrograph and scanning electron microscope showed the signs of apoptosis like blebbing and shrinkage after p-Coumaric acid exposure. Evaluation of the lipid layer showed increasing lipid layer breaks was associated with the growth inhibition of p-Coumaric acid. A fall in mitochondrial membrane potential and increasing ROS generation was observed in the p-Coumaric acid treated cells. Further apoptosis evaluated by YO-PRO-1 staining also showed the time-dependent increase of apoptotic cells after treatment.
CONCLUSION: These results depicted that p-Coumaric acid inhibited the growth of colon cancer cells by inducing apoptosis through ROS-mitochondrial pathway.
AIM OF THE STUDY: To determine the antidiabetic activities of chloroform fraction (CF) of Anthocleista vogelii Planch root bark in rats with diet- and alloxan-induced obesity-diabetes.
MATERIALS AND METHODS: Inhibitory activities of CF against α-amylase and α-glucosidase activities were determined in vitro. Three weeks old rats were fed with high-fat diet for 9 weeks to induce obesity prior to further induction of diabetes using alloxan (150mg/kg body weight, i.p.). Blood glucose levels and body weight were measured every 7 days throughout the experiment. Glucose tolerance was assessed in normal and CF-treated rats on day 21. Terminal blood samples were collected from sacrificed animals for the measurement of serum insulin levels. Pancreases were excised from treated and untreated animals for histopathological examination.
RESULTS: LCMS/MS chromatographic profile of CF via positive and negative modes revealed 13 and 23 compounds respectively. Further analysis revealed quebrachitol (QCT), loganin, sweroside, oleoside 11-methyl ester and ferulic acid, which have been previously reported for their antidiabetic activities, as constituents of CF. CF inhibited activities of α-amylase (IC50 = 51.60 ± 0.92µg/ml) and α-glucosidase (IC50 = 5.86 ± 0.97µg/ml) in a dose-dependent manner. Treatment of animals with obesity-diabetes with 100 and 200mg/kg CF significantly improved glucose tolerance (P<0.001) and enhanced serum insulin levels (P<0.05) compared to diabetic control rats.
CONCLUSIONS: Antidiabetic activities of CF might be mediated via inhibition of α-amylase and α-glucosidase activities, elevation of serum insulin concentration, and enhancement of insulin and leptin sensitivity in obesity-diabetes rats. This study further substantiates the traditional use of A. vogelii in the management and treatment of diabetes in Africa and encourages further studies to investigate its mechanism of action.