Displaying publications 21 - 36 of 36 in total

Abstract:
Sort:
  1. Azman EM, Charalampopoulos D, Chatzifragkou A
    J Food Sci, 2020 Nov;85(11):3745-3755.
    PMID: 32990367 DOI: 10.1111/1750-3841.15466
    The aim of this study was to investigate the effects of different solvent and extraction temperatures on the free and bound phenolic compounds and antioxidant activity of dried blackcurrant skins (DBS). Apart from acetic acid buffer solution, different solvent systems, including water, methanol, and mixtures of methanol/water, were also employed and the effects of solvent and temperature (30 and 50 °C) on the free and bound forms of anthocyanins, hydroxycinnamic acids, and flavonols yield were assessed. The results showed that among all solvents, acetic acid buffer resulted in the highest free anthocyanin content (1,712.3 ± 56.1 mg/100 g) (P
    Matched MeSH terms: Coumaric Acids
  2. Rosini M, Simoni E, Caporaso R, Basagni F, Catanzaro M, Abu IF, et al.
    Eur J Med Chem, 2019 Oct 15;180:111-120.
    PMID: 31301562 DOI: 10.1016/j.ejmech.2019.07.011
    N-methyl-d-aspartate receptors (NMDAR) are critically involved in the pathogenesis of Alzheimer's disease (AD). Acting as an open-channel blocker, the anti-AD drug memantine preferentially targets NMDAR overactivation, which has been proposed to trigger neurotoxic events mediated by amyloid β peptide (Aβ) and oxidative stress. In this study, we applied a multifunctional approach by conjugating memantine to ferulic acid, which is known to protect the brain from Aβ neurotoxicity and neuronal death caused by ROS. The most interesting compound (7) behaved, like memantine, as a voltage-dependent antagonist of NMDAR (IC50 = 6.9 μM). In addition, at 10 μM concentration, 7 exerted antioxidant properties both directly and indirectly through the activation of the Nrf-2 pathway in SH-SY5Y cells. At the same concentration, differently from the parent compounds memantine and ferulic acid alone, it was able to modulate Aβ production, as revealed by the observed increase of the non-amyloidogenic sAPPα in H4-SW cells. These findings suggest that compound 7 may represent a promising tool for investigating NMDAR-mediated neurotoxic events involving Aβ burden and oxidative damage.
    Matched MeSH terms: Coumaric Acids/chemical synthesis; Coumaric Acids/pharmacology*; Coumaric Acids/chemistry
  3. Saleem H, Zengin G, Locatelli M, Abidin SAZ, Ahemad N
    Nat Prod Res, 2021 Feb 08.
    PMID: 33550873 DOI: 10.1080/14786419.2021.1880404
    Anagallis arvensis L. commonly known as 'Scarlet Pimpernel' has been used in folklore as natural remedy for treating common ailments. The present research is aimed to explore the phytochemical composition and enzyme inhibition potential of methanol and dichloromethane (DCM) extracts of A. arvensis aerial and root parts. The phytochemical composition was established via HPLC-PDA polyphenolic quantification and UHPLC-MS analysis, while the inhibition potential against amylase and tyrosinase enzymes were assessed using standard in vitro protocols. The HPLC-PDA polyphenolic quantification revealed the presence of important compounds including catechin, gallic acid, chlorogenic acid, and ferulic acid, whereas 34 different secondary metabolites were tentatively identified by UHPLC-MS of both the DCM extracts. All the extracts showed moderate tyrosinase and a weak amylase inhibition activity. The aerial-DCM extract showed comparatively higher tyrosinase and amylase enzyme inhibition potential, which may be due to the presence of secondary metabolites as tentatively identified by its UHPLC-MS profiling.
    Matched MeSH terms: Coumaric Acids
  4. Hariono M, Abdullah N, Damodaran KV, Kamarulzaman EE, Mohamed N, Hassan SS, et al.
    Sci Rep, 2016 12 20;6:38692.
    PMID: 27995961 DOI: 10.1038/srep38692
    We report the computational and experimental efforts in the design and synthesis of novel neuraminidase (NA) inhibitors from ferulic acid and vanillin. Two proposed ferulic acid analogues, MY7 and MY8 were predicted to inhibit H1N1 NA using molecular docking. From these two analogues, we designed, synthesised and evaluated the biological activities of a series of ferulic acid and vanillin derivatives. The enzymatic H1N1 NA inhibition assay showed MY21 (a vanillin derivative) has the lowest IC50 of 50 μM. In contrast, the virus inhibition assay showed MY15, a ferulic acid derivative has the best activity with the EC50 of ~0.95 μM. Modelling studies further suggest that these predicted activities might be due to the interactions with conserved and essential residues of NA with ΔGbind values comparable to those of oseltamivir and zanamivir, the two commercial NA inhibitors.
    Matched MeSH terms: Coumaric Acids/chemical synthesis*; Coumaric Acids/pharmacology*; Coumaric Acids/chemistry
  5. Chandradevan M, Simoh S, Mediani A, Ismail NH, Ismail IS, Abas F
    PMID: 32047522 DOI: 10.1155/2020/3238561
    This study aimed to determine the total phenolic content, DPPH scavenging, α-glucosidase, and nitric oxide (NO) inhibition of Gynura procumbens and Cleome gynandra extracts obtained with five different ethanolic concentrations. The findings showed that the 100% ethanolic extract of G. procumbens had the highest phenolic content and the lowest IC50 values for DPPH scavenging and NO inhibition activity compared to the properties of the other extracts. For C. gynandra, the 20% and 100% ethanolic extracts had comparably high total phenolic contents, and the latter possessed the lowest IC50 value in the NO inhibition assay. In addition, the 20% ethanolic extract of C. gynandra had the lowest IC50 value in the DPPH scavenging assay. However, none of the extracts from either herb had the ability to inhibit α-glucosidase enzyme. Pearson correlation analysis indicated a strong relationship between the phenolic content and DPPH scavenging activity in both herb extracts. A moderately strong relationship was also observed between the phenolic content and NO inhibition in G. procumbens extracts and not in C. gynandra extracts. The UHPLC-ESI-Orbitrap-MS revealed major phenolics from the groups of hydroxycinnamic acids, hydroxybenzoic acids, and flavonoid derivatives from both herbs, which could be the key contributors to their bioactivities. Among the identified metabolites, 24 metabolites were tentatively assigned for the first time from both species of studied herbs. These two herbs could be recommended as prospective natural products with valuable medicinal properties.
    Matched MeSH terms: Coumaric Acids
  6. Poonkuzhali K, Rajeswari V, Saravanakumar T, Viswanathamurthi P, Park SM, Govarthanan M, et al.
    J Hazard Mater, 2014 May 15;272:89-95.
    PMID: 24681590 DOI: 10.1016/j.jhazmat.2014.03.001
    The effluent discharge treatment for controlling the environment from non biodegradable metal contaminants using plant extract is an efficient technique. The reduction of hexavalent chromium by abundantly available weed, Aerva lanata L. was investigated using batch equilibrium technique. The variables studied were Cr(VI) concentration, Aerva lanata L. dose, contact time, pH, temperature and agitation speed. Cyclic voltammetry and ICP-MS analysis confirmed the reduction of Cr(VI) to Cr(III). Electrochemical analysis proved that, the chromium has not been degraded and the valency of the chromium has only been changed. ICP-MS analysis shows that 100ng/L of hexavalent chromium was reduced to 97.01ng/L trivalent chromium. These results suggest that components present in the Aerva lanata L. are responsible for the reduction of Cr(VI) to Cr(III). The prime components ferulic acid, kaempherol and β-carboline present in the Aerva lanata L. may be responsible for the reduction of Cr(VI) as evident from LC-MS analysis.
    Matched MeSH terms: Coumaric Acids/chemistry
  7. Marina AM, Man YB, Nazimah SA, Amin I
    Int J Food Sci Nutr, 2009;60 Suppl 2:114-23.
    PMID: 19115123 DOI: 10.1080/09637480802549127
    The antioxidant properties of virgin coconut oil produced through chilling and fermentation were investigated and compared with refined, bleached and deodorized coconut oil. Virgin coconut oil showed better antioxidant capacity than refined, bleached and deodorized coconut oil. The virgin coconut oil produced through the fermentation method had the strongest scavenging effect on 1,1-diphenyl-2-picrylhydrazyl and the highest antioxidant activity based on the beta-carotene-linoleate bleaching method. However, virgin coconut oil obtained through the chilling method had the highest reducing power. The major phenolic acids detected were ferulic acid and p-coumaric acid. Very high correlations were found between the total phenolic content and scavenging activity (r=0.91), and between the total phenolic content and reducing power (r=0.96). There was also a high correlation between total phenolic acids and beta-carotene bleaching activity. The study indicated that the contribution of antioxidant capacity in virgin coconut oil could be due to phenolic compounds.
    Matched MeSH terms: Coumaric Acids/pharmacology*
  8. Chai TT, Kwek MT, Ong HC, Wong FC
    Food Chem, 2015 Nov 1;186:26-31.
    PMID: 25976787 DOI: 10.1016/j.foodchem.2014.12.099
    This study aimed to isolate a potent antiglucosidase and antioxidant fraction from Stenochlaena palustris. Extraction was performed with hexane, chloroform, ethyl acetate, methanol, and water. Antiglucosidase, 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging and ferric reducing antioxidant power (FRAP) assays found methanol extract (ME) to be the most active. Water fraction (WF) of ME was a stronger α-glucosidase inhibitor (EC50 2.9 μg/mL) than quercetin, with weak antiamylase activity. WF was a competitive α-glucosidase inhibitor. DPPH scavenging activity of WF (EC50 7.7 μg/mL) was weaker than quercetin. WF (EC50 364 μg/mL) was a stronger hydrogen peroxide scavenger than gallic acid (EC50 838 μg/mL) and was equally strong as quercetin in scavenging superoxide. WF possessed moderate copper chelating activity. WF was enriched in total phenolics (TP) and hydroxycinnamic acids (THC). TP correlated with antioxidant activity (R(2) > 0.76). Only THC correlated with antiglucosidase activity (R(2) = 0.86). Overall, WF demonstrated concurrent, potent antiglucosidase and antioxidant activities.
    Matched MeSH terms: Coumaric Acids/chemistry
  9. Ghasemzadeh A, Jaafar HZE, Baghdadi A, Tayebi-Meigooni A
    Molecules, 2018 Jul 25;23(8).
    PMID: 30044450 DOI: 10.3390/molecules23081852
    Since α-mangostin in mangosteen fruits was reported to be the main compound able to provide natural antioxidants, the microwave-assisted extraction process to obtain high-quality α-mangostin from mangosteen pericarp (Garcinia mangostana L.) was optimized using a central composite design and response surface methodology. The parameters examined included extraction time, microwave power, and solvent percentage. The antioxidant and antimicrobial activity of optimized and non-optimized extracts was evaluated. Ethyl acetate as a green solvent exhibited the highest concentration of α-mangostin, followed by dichloromethane, ethanol, and water. The highest α-mangostin concentration in mangosteen pericarp of 121.01 mg/g dry matter (DM) was predicted at 3.16 min, 189.20 W, and 72.40% (v/v). The verification of experimental results under these optimized conditions showed that the α-mangostin value for the mangosteen pericarp was 120.68 mg/g DM. The predicted models were successfully developed to extract α-mangostin from the mangosteen pericarp. No significant differences were observed between the predicted and the experimental α-mangostin values, indicating that the developed models are accurate. The analysis of the extracts for secondary metabolites showed that the total phenolic content (TPC) and total flavonoid content (TFC) increased significantly in the optimized extracts (OE) compared to the non-optimized extracts (NOE). Additionally, trans-ferulic acid and catechin were abundant among the compounds identified. In addition, the optimized extract of mangosteen pericarp with its higher α-mangostin and secondary metabolite concentrations exhibited higher antioxidant activities with half maximal inhibitory concentration (IC50) values of 20.64 µg/mL compared to those of the NOE (28.50 µg/mL). The OE exhibited the highest antibacterial activity, particularly against Gram-positive bacteria. In this study, the microwave-assisted extraction process of α-mangostin from mangosteen pericarp was successfully optimized, indicating the accuracy of the models developed, which will be usable in a larger-scale extraction process.
    Matched MeSH terms: Coumaric Acids/chemistry
  10. Salem MA, Michel HE, Ezzat MI, Okba MM, El-Desoky AM, Mohamed SO, et al.
    Molecules, 2020 May 14;25(10).
    PMID: 32422967 DOI: 10.3390/molecules25102307
    Hibiscus species (Malvaceae) have been long used as an antihypertensive folk remedy. The aim of our study was to specify the optimum solvent for extraction of the angiotensin-converting enzyme inhibiting (ACEI) constituents from Hibiscus sabdariffa L. The 80% methanol extract (H2) showed the highest ACEI activity, which exceeds that of the standard captopril (IC50 0.01255 ± 0.00343 and 0.210 ± 0.005 µg/mL, respectively). Additionally, in a comprehensive metabolomics approach, an ultra-performance liquid chromatography (UPLC) coupled to the high resolution tandem mass spectrometry (HRMS) method was used to trace the metabolites from each extraction method. Interestingly, our comprehensive analysis showed that the 80% methanol extract was predominated with secondary metabolites from all classes including flavonoids, anthocyanins, phenolic and organic acids. Among the detected metabolites, phenolic acids such as ferulic and chlorogenic acids, organic acids such as citrate derivatives and flavonoids such as kaempferol have been positively correlated to the antihypertensive potential. These results indicates that these compounds may significantly contribute synergistically to the ACE inhibitory activity of the 80% methanol extract.
    Matched MeSH terms: Coumaric Acids/isolation & purification; Coumaric Acids/chemistry
  11. Mohd Hazli UHA, Abdul-Aziz A, Mat-Junit S, Chee CF, Kong KW
    Food Res Int, 2019 01;115:241-250.
    PMID: 30599938 DOI: 10.1016/j.foodres.2018.08.094
    Alternanthera sessilis (red) (ASR) is an edible herbal plant with many beneficial health effects. This study aimed to investigate the antioxidant components and antioxidant activities of the edible leaves and stems of ASR extracted using solvent of varying polarities namely water, ethanol, ethyl acetate and hexane. ASR leaf extracts showed higher in both antioxidant components and activities than the stem extracts. Among the antioxidant components, the ethanol leaf extract showed higher phenolic (77.29 ± 1.02 mg GAE/g extract) content while the ethyl acetate leaf extract was rich in flavonoids (157.44 ± 10.19 mg RE/g extract), carotenoids (782.97 ± 10.78 mg BE/g extract) and betalains (betanin: 67.08 ± 0.49 mg/g extract; amaranthin: 93.94 ± 0.68 mg/g extract and betaxanthin: 53.92 ± 0.88 mg/g extract). Nevertheless, the ethanol leaf extract showed the highest DPPH radical scavenging activity and ABTS radical cation scavenging activity. It also exhibited highest ferric reducing activity among all the extracts. Four polyphenolic compounds from ASR leaf, namely ferulic acid, rutin, quercetin and apigenin, were identified and quantified using ultra high performance liquid chromatography. The existence of these compounds was further verified using tandem mass spectrometry. These current results indicate that ASR leaf particularly the ethanol extract has the potential to be exploited as a source of natural antioxidants.
    Matched MeSH terms: Coumaric Acids/analysis
  12. Jaganathan SK, Supriyanto E, Mandal M
    World J Gastroenterol, 2013 Nov 21;19(43):7726-34.
    PMID: 24282361 DOI: 10.3748/wjg.v19.i43.7726
    AIM: To investigate the events associated with the apoptotic effect of p-Coumaric acid, one of the phenolic components of honey, in human colorectal carcinoma (HCT-15) cells.

    METHODS: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tertazolium-bromide assay was performed to determine the antiproliferative effect of p-Coumaric acid against colon cancer cells. Colony forming assay was conducted to quantify the colony inhibition in HCT 15 and HT 29 colon cancer cells after p-Coumaric acid treatment. Propidium Iodide staining of the HCT 15 cells using flow cytometry was done to study the changes in the cell cycle of treated cells. Identification of apoptosis was done using scanning electron microscope and photomicrograph evaluation of HCT 15 cells after exposing to p-Coumaric acid. Levels of reactive oxygen species (ROS) of HCT 15 cells exposed to p-Coumaric acid was evaluated using 2', 7'-dichlorfluorescein-diacetate. Mitochondrial membrane potential of HCT-15 was assessed using rhodamine-123 with the help of flow cytometry. Lipid layer breaks associated with p-Coumaric acid treatment was quantified using the dye merocyanine 540. Apoptosis was confirmed and quantified using flow cytometric analysis of HCT 15 cells subjected to p-Coumaric acid treatment after staining with YO-PRO-1.

    RESULTS: Antiproliferative test showed p-Coumaric acid has an inhibitory effect on HCT 15 and HT 29 cells with an IC₅₀ (concentration for 50% inhibition) value of 1400 and 1600 μmol/L respectively. Colony forming assay revealed the time-dependent inhibition of HCT 15 and HT 29 cells subjected to p-Coumaric acid treatment. Propidium iodide staining of treated HCT 15 cells showed increasing accumulation of apoptotic cells (37.45 ± 1.98 vs 1.07 ± 1.01) at sub-G1 phase of the cell cycle after p-Coumaric acid treatment. HCT-15 cells observed with photomicrograph and scanning electron microscope showed the signs of apoptosis like blebbing and shrinkage after p-Coumaric acid exposure. Evaluation of the lipid layer showed increasing lipid layer breaks was associated with the growth inhibition of p-Coumaric acid. A fall in mitochondrial membrane potential and increasing ROS generation was observed in the p-Coumaric acid treated cells. Further apoptosis evaluated by YO-PRO-1 staining also showed the time-dependent increase of apoptotic cells after treatment.

    CONCLUSION: These results depicted that p-Coumaric acid inhibited the growth of colon cancer cells by inducing apoptosis through ROS-mitochondrial pathway.

    Matched MeSH terms: Coumaric Acids/pharmacology*
  13. Ghasemzadeh A, Jaafar HZ, Rahmat A
    Molecules, 2010 Nov 03;15(11):7907-22.
    PMID: 21060298 DOI: 10.3390/molecules15117907
    Zingiber officinale Roscoe. (Family Zingiberaceae) is well known in Asia. The plant is widely cultivated in village gardens in the tropics for its medicinal properties and as a marketable spice in Malaysia. Ginger varieties are rich in physiologically active phenolics and flavonoids with a range of pharmacological activities. Experiments were conducted to determine the feasibility of increasing levels of flavonoids (quercetin, rutin, catechin, epicatechin, kaempferol, naringenin, fisetin and morin) and phenolic acid (gallic acid, vanillic acid, ferulic acid, tannic acid, cinnamic acid and salicylic acid), and antioxidant activities in different parts of Malaysian young ginger varieties (Halia Bentong and Halia Bara) with CO(2) enrichment in a controlled environment system. Both varieties showed an increase in phenolic compounds and flavonoids in response to CO(2) enrichment from 400 to 800 µmol mol-1 CO(2). These increases were greater in rhizomes compared to leaves. High performance liquid chromatography (HPLC) results showed that quercetin and gallic acid were the most abundant flavonoid and phenolic acid in Malaysian young ginger varieties. Under elevated CO(2) conditions, kaempferol and fisetin were among the flavonoid compounds, and gallic acid and vanillic acid were among the phenolic compounds whose levels increased in both varieties. As CO(2) concentration was increased from 400 to 800 µmol mol-1, free radical scavenging power (DPPH) increased about 30% in Halia Bentong and 21.4% in Halia Bara; and the rhizomes exhibited more enhanced free radical scavenging power, with 44.9% in Halia Bentong and 46.2% in Halia Bara. Leaves of both varieties also displayed good levels of flavonoid compounds and antioxidant activities. These results indicate that the yield and pharmaceutical quality of Malaysian young ginger varieties can be enhanced by controlled environment production and CO(2) enrichment.
    Matched MeSH terms: Coumaric Acids/metabolism
  14. Anyanwu GO, Iqbal J, Khan SU, Zaib S, Rauf K, Onyeneke CE, et al.
    J Ethnopharmacol, 2018 Oct 18.
    PMID: 30342966 DOI: 10.1016/j.jep.2018.10.021
    ETHNOPHARMACOLOGICAL RELEVANCE: Anthocleista vogelii Planch is a medicinal plant traditionally used in West Africa for the management and treatment of diabetes mellitus.

    AIM OF THE STUDY: To determine the antidiabetic activities of chloroform fraction (CF) of Anthocleista vogelii Planch root bark in rats with diet- and alloxan-induced obesity-diabetes.

    MATERIALS AND METHODS: Inhibitory activities of CF against α-amylase and α-glucosidase activities were determined in vitro. Three weeks old rats were fed with high-fat diet for 9 weeks to induce obesity prior to further induction of diabetes using alloxan (150mg/kg body weight, i.p.). Blood glucose levels and body weight were measured every 7 days throughout the experiment. Glucose tolerance was assessed in normal and CF-treated rats on day 21. Terminal blood samples were collected from sacrificed animals for the measurement of serum insulin levels. Pancreases were excised from treated and untreated animals for histopathological examination.

    RESULTS: LCMS/MS chromatographic profile of CF via positive and negative modes revealed 13 and 23 compounds respectively. Further analysis revealed quebrachitol (QCT), loganin, sweroside, oleoside 11-methyl ester and ferulic acid, which have been previously reported for their antidiabetic activities, as constituents of CF. CF inhibited activities of α-amylase (IC50 = 51.60 ± 0.92µg/ml) and α-glucosidase (IC50 = 5.86 ± 0.97µg/ml) in a dose-dependent manner. Treatment of animals with obesity-diabetes with 100 and 200mg/kg CF significantly improved glucose tolerance (P<0.001) and enhanced serum insulin levels (P<0.05) compared to diabetic control rats.

    CONCLUSIONS: Antidiabetic activities of CF might be mediated via inhibition of α-amylase and α-glucosidase activities, elevation of serum insulin concentration, and enhancement of insulin and leptin sensitivity in obesity-diabetes rats. This study further substantiates the traditional use of A. vogelii in the management and treatment of diabetes in Africa and encourages further studies to investigate its mechanism of action.

    Matched MeSH terms: Coumaric Acids
  15. Phan CW, David P, Wong KH, Naidu M, Sabaratnam V
    PLoS One, 2015;10(11):e0143004.
    PMID: 26565787 DOI: 10.1371/journal.pone.0143004
    Neurodegenerative diseases are linked to neuronal cell death and impairment of neurite outgrowth. An edible mushroom, Pleurotus giganteus was found to stimulate neurite outgrowth in vitro but the chemical constituents and the underlying mechanism is yet to be elucidated. The chemical constituents of P. giganteus (linoleic acid, oleic acid, cinnamic acid, caffeic acid, p-coumaric acid, succinic acid, benzoic acid, and uridine) were tested for neurite outgrowth activity. Uridine (100 μM) was found to increase the percentage of neurite-bearing cells of differentiating neuroblastoma (N2a) cells by 43.1 ± 0.5%, which was 1.8-fold higher than NGF (50 ng/mL)-treated cells. Uridine which was present in P. giganteus (1.80 ± 0.03 g/100g mushroom extract) increased the phosphorylation of extracellular-signal regulated kinases (ERKs) and protein kinase B (Akt). Further, phosphorylation of the mammalian target of rapamycin (mTOR) was also increased. MEK/ERK and PI3K-Akt-mTOR further induced phosphorylation of cAMP-response element binding protein (CREB) and expression of growth associated protein 43 (GAP43); all of which promoted neurite outgrowth of N2a cells. This study demonstrated that P. giganteus may enhance neurite outgrowth and one of the key bioactive molecules responsible for neurite outgrowth is uridine.
    Matched MeSH terms: Coumaric Acids/chemistry
  16. Hussein SZ, Yusoff KM, Makpol S, Yusof YA
    Molecules, 2011 Jul 27;16(8):6378-95.
    PMID: 21796076 DOI: 10.3390/molecules16066378
    Two types of monofloral Malaysian honey (Gelam and Nenas) were analyzed to determine their antioxidant activities and total phenolic and flavonoid contents, with and without gamma irradiation. Our results showed that both types of honey can scavenge free radicals and exhibit high antioxidant-reducing power; however, Gelam honey exhibited higher antioxidant activity (p < 0.05) than Nenas honey, which is in good correlation (r = 0.9899) with its phenolic contents. Interestingly, we also noted that both irradiated honeys have higher antioxidant activities and total phenolic and flavonoid contents compared to nonirradiated honeys by Folin-Ciocalteu and UV-spectrophotometry methods, respectively. However, HPLC analysis for phenolic compounds showed insignificant increase between irradiated and nonirradiated honeys. The phenolic compounds such as: caffeic acid, chlorogenic acid, ellagic acid, p- coumaric acid, quercetin and hesperetin as indicated by HPLC method were found to be higher in Gelam honey versus Nenas honey. In conclusion, irradiation of honey causes enhanced antioxidant activities and flavonoid compounds.
    Matched MeSH terms: Coumaric Acids/pharmacology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links