Displaying publications 21 - 40 of 72 in total

Abstract:
Sort:
  1. Aidah Jumahat, Napisah Sapiai, Eliya Farah Hana Mohd Kamal
    MyJurnal
    This paper investigates the effect of acid and silane treatment of Carbon Nanotubes (CNT) on wear properties of epoxy polymer composite. The wear test done was based on ASTM D3389 standard using the Abrasive Wear Tester (TR 600). Characterisation analysis was also done using Transmission Electron Microscopy (TEM) in order to study the dispersion of the CNT inside the epoxy matrix. When untreated CNT was added to the epoxy with amounts of 0.5, 0.75 and 1.0 wt%, the wear rates did not improve except for 0.5 wt% CNT filled epoxy. This was due to the lack of dispersion which causes larger chunks of material being dug out, thus contributing to a higher mass loss and wear rate. When treated with acid and silane, 0.75 wt% and 1.0 wt% CNT filled epoxy composites showed improvement. The TEM images of 0.5 wt%, 0.75 wt% and 1.0 wt% PCNT filled epoxy supported the claim of the lack of dispersion of PCNT inside the epoxy.
    Matched MeSH terms: Epoxy Resins
  2. Al-Maqtari AA, Lui JL
    J Prosthodont, 2010 Jul;19(5):347-56.
    PMID: 20456026 DOI: 10.1111/j.1532-849X.2010.00593.x
    The purpose of this in vitro study was to determine if packable resin composite with/without flowable resin composite has the ability to prevent coronal leakage in restored endodontic access openings following aging.
    Matched MeSH terms: Epoxy Resins/chemistry
  3. Noor Erna Fatini Mohd, Mariatti Jaafar, Tuti Katrina Abdullah
    MyJurnal
    Carbon fiber reinforced epoxy (CFRE) is commonly been used in automotive and aviation industries. However, CFRE composite exhibits the problem of adherence between fiber and matrix. The interface between carbon fiber (CF) and epoxy becomes a weak zone and leads to the debonding defect of fiber and low mechanical properties of composites. The main focus of this study is to fabricate CFRE using carbon nanotubes (CNTs), as the hybrid reinforcement with CF. Ultrasonic method is used to disperse CNTs in distilled water for 20 minutes, followed by deposition of CNTs on CF using electrophoretic deposition (EPD) technique. Hand lay-up assisted vacuum bagging is employed to fabricate CNTs/CF/Epoxy composite. From morphologies, surface topography and peel off testing, it can be confirmed that 30 minutes deposition allowed more CNTs to deposit on CF. The flexural properties shows that 30 minutes deposition inherited high flexural strength, 67.4 MPa and modulus, 8490 MPa.
    Matched MeSH terms: Epoxy Resins
  4. Abu Bakar, M.A., Ahmad, S., Kuntjoro, W.
    MyJurnal
    Kenaf fibre that is known as Hibiscus cannabinus, L. family Malvaceae is an herbaceous plant that can be grown under a wide range of weather conditions. The uses of kenaf fibres as a reinforcement material in the polymeric matrix have been widely investigated. It is known that epoxy has a disadvantage of brittleness and exhibits low toughness. In this research, liquid epoxidized natural rubber (LENR) was introduced to the epoxy to increase its toughness. Kenaf fibres, with five different fibre loadings of 5%, 10%, 15%, 20% and 25% by weight, were used to reinforce the epoxy resins (with and without addition of epoxidized natural rubber) as the matrices. The flexural strength, flexural modulus and fracture toughness of the rubber toughened epoxy reinforced kenaf fibre composites were investigated. The results showed that the addition of liquid epoxidized natural rubber (LENR) had improved the flexural modulus, flexural strength and fracture toughness by 48%, 30%, and 1.15% respectively at 20% fibre loading. The fractured surfaces of these composites were investigated by using scanning electron microscopic (SEM) technique to determine the interfacial bonding between the matrix and the fibre reinforcement.
    Matched MeSH terms: Epoxy Resins
  5. Mohd. Sapuan Salit, Mohamed Abd. Rahman, Khalina Abdan
    MyJurnal
    Vinyl esters combine the best of polyesters and epoxies in terms of properties and processing. Without
    complicating presence of reinforcing fibres, this study investigated the effects of catalyst amount, preheating time, molding temperature, and pressure on flexural and water absorption properties of cast vinyl ester (VE) using a factorial experiment. Longer preheating time enhanced the stiffness of VE, while higher molding pressure reduced the flexural modulus. All the four factors did not affect the flexural strength and elongation at the break of molded VE significantly. Using a high molding pressure also caused molded VE to have higher water absorption for a long water exposure period. Meanwhile, greater water absorption at bigger amount of catalyst and higher preheating temperature indicate possible interactions between these factors. The results suggest possible negative effects of high molding pressure through the increase in the network of micro-cracks, and thus lowering the integrity of cast VE sheets. Judicious selection of the process parameters was required in order to obtain good quality molded VE sheets and by extension fibre-reinforced VE composites. Molded VE-unsaturated polyester (UP) blend is a significantly different material which is 1.49 times stronger, 2.38 times more flexible, but it is 0.69 less stiff than neat VE and with significantly higher water absorption. The results obtained warrant for a further investigation in process optimization of VE molding and the use of VE-UP blend as a matrix for natural fibre-reinforced composites.
    Matched MeSH terms: Epoxy Resins
  6. Abdulkader YC, Kamaruddin AF, Mydin RBSMN
    Saudi Dent J, 2020 Sep;32(6):306-313.
    PMID: 32874071 DOI: 10.1016/j.sdentj.2019.09.010
    Objectives: This study compared the effects of normal salivary pH, and acidic pH found in patients with poor oral hygiene, on the durability of aesthetic archwire coated with epoxy resin and polytetrafluoroethylene (PTFE).

    Methods: The posterior parts of the archwires were sectioned into 20 mm segments (N = 102) and divided among six groups. Four groups were treated with different pH levels and two served as controls. The specimens were immersed in individual test tubes containing 10 ml of artificial saliva adjusted to a pH of 6.75 or 3.5. The tubes were sealed and stored in a 37 °C water bath for 28 days. After 28 days, the specimens were ligated to brackets embedded in an acrylic block and subjected to mechanical stress using an electronic toothbrush for 210 s. The specimens were photographed, and images were measured for coating loss using AutoCAD® software. Surface morphology was observed using a scanning electron microscope (SEM).

    Results: Significant coating loss (p 

    Matched MeSH terms: Epoxy Resins
  7. Hia IL, Pasbakhsh P, Chan ES, Chai SP
    Sci Rep, 2016 10 03;6:34674.
    PMID: 27694922 DOI: 10.1038/srep34674
    Alginate microcapsules containing epoxy resin were developed through electrospraying method and embedded into epoxy matrix to produce a capsule-based self-healing composite system. These formaldehyde free alginate/epoxy microcapsules were characterized via light microscope, field emission scanning electron microscope, fourier transform infrared spectroscopy and thermogravimetric analysis. Results showed that epoxy resin was successfully encapsulated within alginate matrix to form porous (multi-core) microcapsules with pore size ranged from 5-100 μm. The microcapsules had an average size of 320 ± 20 μm with decomposition temperature at 220 °C. The loading capacity of these capsules was estimated to be 79%. Under in situ healing test, impact specimens showed healing efficiency as high as 86% and the ability to heal up to 3 times due to the multi-core capsule structure and the high impact energy test that triggered the released of epoxy especially in the second and third healings. TDCB specimens showed one-time healing only with the highest healing efficiency of 76%. The single healing event was attributed by the constant crack propagation rate of TDCB fracture test. For the first time, a cost effective, environmentally benign and sustainable capsule-based self-healing system with multiple healing capabilities and high healing performance was developed.
    Matched MeSH terms: Epoxy Resins
  8. Jesuarockiam N, Jawaid M, Zainudin ES, Thariq Hameed Sultan M, Yahaya R
    Polymers (Basel), 2019 Jun 26;11(7).
    PMID: 31247898 DOI: 10.3390/polym11071085
    The aim of the present research work is to enhance the thermal and dynamic mechanical properties of Kevlar/Cocos nucifera sheath (CS)/epoxy composites with graphene nano platelets (GNP). Laminates were fabricated through the hand lay-up method followed by hot pressing. GNP at different wt.% (0.25, 0.5, and 0.75) were incorporated with epoxy resin through ultra-sonication. Kevlar/CS composites with different weight ratios (100/0, 75/25, 50/50, 25/75, 0/100) were fabricated while maintaining a fiber/matrix weight ratio at 45/55. Thermal degradation and viscoelastic properties were evaluated using thermogravimetric analysys (TGA), differential scanning calorimetric (DSC) analysis, and a dynamic mechanical analyser (DMA). The obtained results revealed that Kevlar/CS (25/75) hybrid composites at 0.75 wt.% of GNP exhibited similar thermal stability compared to Kevlar/epoxy (100/0) composites at 0 wt.% of GNP. It has been corroborated with DSC observation that GNP act as a thermal barrier. However, DMA results showed that the Kevlar/CS (50/50) hybrid composites at 0.75 wt.% of GNP exhibited almost equal viscoelastic properties compared to Kevlar/epoxy (100/0) composites at 0 wt.% GNP due to effective crosslinking, which improves the stress transfer rate. Hence, this research proved that Kevlar can be efficiently (50%) replaced with CS at an optimal GNP loading for structural applications.
    Matched MeSH terms: Epoxy Resins
  9. Nur Hanis Adila Azhar, Nur Hanis Adila Azhar Hamizah Md Rasid, Siti Fairus M. Yusoff
    Sains Malaysiana, 2017;46:485-491.
    Liquid natural rubber (LNR) was functionalized into liquid epoxidized natural rubber (LENR) and hydroxylated LNR (LNROH)
    via oxidation using a Na2
    WO4
    /CH3
    COOH/H2
    O2
    catalytic system. Microstructures of LNR and functionalized LNRs
    were characterized using Fourier Transform Infrared (FTIR) and Nuclear Magnetic Resonance (NMR) spectroscopies. The
    effect of CH3
    COOH, H2
    O2
    , Na2
    WO4
    , reaction time and temperature. reaction time and temperature on epoxy content were
    investigated. LNR-OH was obtained when oxidation reaction was conducted at a longer reaction time, higher temperature
    or excess amount of catalyst. Thermogravimetric analysis (TGA) reported the thermal behavior of functionalized LNRs.
    Molecular weight and polydispersity index (PDI) were determined using gel permeation chromatography (GPC).
    Matched MeSH terms: Epoxy Resins
  10. Ikramullah, Rizal S, Nakai Y, Shiozawa D, Khalil HPSA, Huzni S, et al.
    Materials (Basel), 2019 Jul 10;12(14).
    PMID: 31295885 DOI: 10.3390/ma12142225
    The aim of this paper is to evaluate the Mode II interfacial fracture toughness and interfacial shear strength of Typha spp. fiber/PLLA and Typha spp. fiber/epoxy composite by using a double shear stress method with 3 fibers model composite. The surface condition of the fiber and crack propagation at the interface between the fiber and the matrix are observed by scanning electron microscope (SEM). Alkali treatment on Typha spp. fiber can make the fiber surface coarser, thus increasing the value of interfacial fracture toughness and interfacial shear strength. Typha spp. fiber/epoxy has a higher interfacial fracture value than that of Typha spp. fiber/PLLA. Interfacial fracture toughness on Typha spp. fiber/PLLA and Typha spp. fiber/epoxy composite model specimens were influenced by the matrix length, fiber spacing, fiber diameter and bonding area. Furthermore, the interfacial fracture toughness and the interfacial fracture shear stress of the composite model increased with the increasing duration of the surface treatment.
    Matched MeSH terms: Epoxy Resins
  11. Chew ST, Eshak Z, Al-Haddad A
    Microsc Res Tech, 2023 Jul;86(7):754-761.
    PMID: 37078493 DOI: 10.1002/jemt.24323
    To assess the interfacial adaptation and penetration depth of three different bioceramic-based sealers (CeraSeal, EndoSeal MTA, Nishika Canal Sealer BG) compared to an epoxy resin-based sealer (AH Plus) in oval root canals. Fourty extracted single-rooted mandibular premolar with oval canal were prepared and randomly allocated according to the obturation into; CeraSeal, EndoSeal MTA, Nishika Canal Sealer BG and AH Plus. The roots were sectioned at 3, 6 and 9 mm from the apex. The sealer adaptation and the penetration depth were evaluated under confocal laser scanning microscope. One-way ANOVA and Repeated measure ANOVA were used to statistically analyze the data. Nishika Canal Sealer BG showed significantly higher sealer adaptation than EndoSeal MTA (P 
    Matched MeSH terms: Epoxy Resins
  12. Karobari MI, Batul R, Snigdha NTS, Al-Rawas M, Noorani TY
    PLoS One, 2023;18(11):e0294076.
    PMID: 37956149 DOI: 10.1371/journal.pone.0294076
    INTRODUCTION: Root canal sealing materials play a crucial role in an endodontic procedure by forming a bond between the dentinal walls and the gutta-percha. The current study aims to analyse the dentinal tubule penetration and adhesive pattern, including the push-out bond strength of six commercially available root canal sealers.

    METHODOLOGY: Eighty-four mandibular first premolars were split into seven groups (and n = 12), Group 1: Dia-Root, Group 2: One-Fil, Group 3: BioRoot RCS, Group 4: AH Plus, Group 5: CeraSeal, Group 6: iRoot SP, Group 7: GP without sealer (control). Two groups were made, one for dentinal tubule penetration and the other for push-out bond strength; the total sample size was one hundred sixty-eight. Root canal treatment was performed using a method called the crown down technique, and for obturation, the single cone technique was used. A confocal laser scanning microscope (Leica, Microsystem Heidel GmbH, Version 2.00 build 0585, Germany) was used to evaluate dentinal tubule penetration, and Universal Testing Machine was utilised to measure the push-out bond strength (Shimadzu, Japan) using a plunger size of 0.4 mm and speed of 1mm/min. Finally, the adhesive pattern of the sealers was analysed by HIROX digital microscope (KH-7700). Statistical analysis was carried out by a one-way Anova test, Dunnet's T3 test, and Chi-square test.

    RESULTS: Highest dentinal tubule penetration was noticed with One-Fil (p<0.05), followed by iRoot SP, CeraSeal, AH Plus, Dia-Root also, the most negligible value was recorded for BioRoot RCS. Meanwhile, BioRoot RCS (p<0.05) demonstrated the greater value of mean push-out bond strength, followed by One-fil, iRoot SP, CeraSeal, AH Plus and Dia-Root. Regarding adhesive pattern, most of the samples were classified as type 3 and type 4 which implies greater sealing ability and better adherence to the dentinal wall. However, BioRoot RCS revealed the most type 4 (p<0.05), followed by AH Plus, One-Fil, CeraSeal and Dia-Root.

    CONCLUSION: The highest dentinal tubule penetration was shown by One-Fil compared to other groups. Meanwhile, BioRoot RCS had greater push-out bond strength and more adhesive pattern than other tested materials.

    Matched MeSH terms: Epoxy Resins
  13. Smran A, Abdullah M, Ahmad NA, Ben Yahia F, Fouda AM, Alturaiki SA, et al.
    PLoS One, 2024;19(3):e0299552.
    PMID: 38483853 DOI: 10.1371/journal.pone.0299552
    This research aimed to assess the stress distribution in lower premolars that were obturated with BioRoot RCS or AH Plus, with or without gutta percha (GP), and subjected to vertical and oblique forces. One 3D geometric model of a mandibular second premolar was created using SolidWorks software. Eight different scenarios representing different root canal filling techniques, single cone technique with GP and bulk technique with sealer only with occlusal load directions were simulated as follows: Model 1 (BioRoot RCS sealer and GP under vertical load [VL]), Model 2 (BioRoot RCS sealer and GP under oblique load [OL]), Model 3 (AH Plus sealer with GP under VL), Model 4 (AH Plus sealer with GP under OL), Model 5 (BioRoot RCS sealer in bulk under VL), Model 6 (BioRoot RCS in bulk under OL), Model 7 (AH Plus sealer in bulk under VL), and Model 8 (AH Plus sealer in bulk under OL). A static load of 200 N was applied at three occlusal contact points, with a 45° angle from lingual to buccal. The von Mises stresses in root dentin were higher in cases where AH Plus was used compared to BioRoot RCS. Furthermore, shifting the load to an oblique direction resulted in increased stress levels. Replacing GP with sealer material had no effect on the dentin maximum von Mises stress in BioRoot RCS cases. Presence of a core material resulted in lower stress in dentin for AH Plus cases, however, it did not affect the stress levels in dentin for cases filled with BioRoot RCS. Stress distribution in the dentin under oblique direction was higher regardless of sealer or technique used.
    Matched MeSH terms: Epoxy Resins
  14. Md Shah AU, Hameed Sultan MT, Safri SNA
    Polymers (Basel), 2020 Jun 04;12(6).
    PMID: 32512848 DOI: 10.3390/polym12061288
    Six impact energy values, ranging from 2.5 J to 10 J, were applied to study the impact properties of neat epoxy and bamboo composites, while six impact energy values, ranging from 10 J to 35 J, were applied on bamboo/glass hybrid composites. Woven glass fibre was embedded at the outermost top and bottom layer of bamboo powder-filled epoxy composites, producing sandwich structured hybrid composites through lay-up and molding techniques. A drop weight impact test was performed to study the impact properties. A peak force analysis showed that neat epoxy has the stiffest projectile for targeting interaction, while inconsistent peak force data was collected for the non-hybrid composites. The non-hybrid composites could withstand up to 10 J, while the hybrid composites showed a total failure at 35 J. It can be concluded that increasing the filler loading lessened the severity of damages in non-hybrid composites, while introducing the woven glass fibre could slow down the penetration of the impactor, thus lowering the chances of a total failure of the composites.
    Matched MeSH terms: Epoxy Resins
  15. Ali A, Andriyana A, Hassan SBA, Ang BC
    Polymers (Basel), 2021 Apr 29;13(9).
    PMID: 33947012 DOI: 10.3390/polym13091437
    The development of advanced composite materials has taken center stage because of its advantages over traditional materials. Recently, carbon-based advanced additives have shown promising results in the development of advanced polymer composites. The inter- and intra-laminar fracture toughness in modes I and II, along with the thermal and electrical conductivities, were investigated. The HMWCNTs/epoxy composite was prepared using a multi-dispersion method, followed by uniform coating at the mid-layers of the CF/E prepregs interface using the spray coating technique. Analysis methods, such as double cantilever beam (DCB) and end notched flexure (ENF) tests, were carried out to study the mode I and II fracture toughness. The surface morphology of the composite was analyzed using field emission scanning electron microscopy (FESEM). The DCB test showed that the fracture toughness of the 0.2 wt.% and 0.4 wt.% HMWCNT composite laminates was improved by 39.15% and 115.05%, respectively, compared with the control sample. Furthermore, the ENF test showed that the mode II interlaminar fracture toughness for the composite laminate increased by 50.88% and 190%, respectively. The FESEM morphology results confirmed the HMWCNTs bridging at the fracture zones of the CF/E composite and the improved interlaminar fracture toughness. The thermogravimetric analysis (TGA) results demonstrated a strong intermolecular bonding between the epoxy and HMWCNTs, resulting in an improved thermal stability. Moreover, the differential scanning calorimetry (DSC) results confirmed that the addition of HMWCNT shifted the Tg to a higher temperature. An electrical conductivity study demonstrated that a higher CNT concentration in the composite laminate resulted in a higher conductivity improvement. This study confirmed that the demonstrated dispersion technique could create composite laminates with a strong interfacial bond interaction between the epoxy and HMWCNT, and thus improve their properties.
    Matched MeSH terms: Epoxy Resins
  16. Jamaluddin Mahmud, Ahmad Kamil Hussain, Norzihan Rahimi, Mastura Abdul Rahim
    MyJurnal
    The finite element method is gaining acceptance in predicting mechanical response of various loading configurations and material orientations for failure analysis of composite laminates. Both fabrication of laminate samples and experimental procedures are often expensive and time consuming, and hence impractical, especially during the initial design stage. Finite element analyses require minimal amounts of input data, and the resulting stress and strain distributions can be determined throughout each individual ply. Using ANSYSTM, a commercially available finite element package, failure loads were predicted by simulating a uniaxial tensile loading on HTS40/977-2 Carbon/Epoxy composite with [+/-4512s lamination scheme. Two built-in failure theories in ANSYSTM features, viz., Maximum Stress and Tsai-Wu were applied in the simulation. The stress-strain and load-extension curves for both actual testing and FEA were then compared and the results are in good agreement. This paper is intended for researchers who have used or are considering using ANSYSTM for the prediction of failure in composite materials.
    Matched MeSH terms: Epoxy Resins
  17. Low L, Abu Bakar A
    Sains Malaysiana, 2013;42:443-448.
    Hollow epoxy particles (HEP) serving as reinforcing fillers were prepared using the water-based emulsion method in this study. HEP was incorporated into the polyester matrix at various loading, ranging from 0 wt% to 9 wt%, to toughen the brittle polyester thermoset. The polyester composites were prepared using the casting technique. The fracture toughness and impact strength of the polyester composites increased with increasing the HEP loading up to 5 wt%, after which
    there was a drop. The improvement in fracture toughness and impact strength is attributed to the good polymer-filler interaction. This finding was further supported by the scanning electron micrograph, in which it was shown that the polyester resin was interlocked into the pore regions of the HEP filler. The reduction in fracture toughness and impact strength of the polyester composite were believed to be attributed to the filler agglomeration. This filler-filler interaction would create stress concentration areas and eventually weakened the interfacial adhesion between the polymer matrix and the filler particles. Hence, lower fracture toughness and impact strength of the highly HEP-filled polyester composites (above 5 wt%) were detected.
    Matched MeSH terms: Epoxy Resins
  18. Norazean Shaari, Aidah Jumahat
    MyJurnal
    The effects of hole size on open hole tensile properties of Kevlar-glass fibre hybrid composite laminates were thoroughly investigated in this work. Woven Kevlar/glass fibre epoxy composite laminates were fabricated using hand lay-up and vacuum bagging technique. Specimens of five different hole size (1 mm, 4 mm, 6 mm, 8 mm and 12 mm) were carefully prepared before the tensile test was performed according to ASTM D5766. Results indicated that hybridizing Kevlar to glass fibres improved tensile strength and failure strain of hybrid composite specimen. In addition, increasing the hole size reduced strength retention of the hybrid specimen from 96% for 1 mm hole size to 62% and 44% for 6 mm and 12 mm, respectively. Fractography analysis showed that several types of failure mechanisms were observed such as brittle failure, ductile failure, fibre breakage, delamination and fibre-matrix splitting. It is concluded that as hole size increased, failure behaviour changed from a matrix dominated failure mode to a fibre-dominated failure mode.
    Matched MeSH terms: Epoxy Resins
  19. Hussin R, Sharif S, Nabiałek M, Zamree Abd Rahim S, Khushairi MTM, Suhaimi MA, et al.
    Materials (Basel), 2021 Feb 01;14(3).
    PMID: 33535504 DOI: 10.3390/ma14030665
    The mold-making industry is currently facing several challenges, including new competitors in the market as well as the increasing demand for a low volume of precision moldings. The purpose of this research is to appraise a new formulation of Metal Epoxy Composite (MEC) materials as a mold insert. The fabrication of mold inserts using MEC provided commercial opportunities and an alternative rapid tooling method for injection molding application. It is hypothesized that the addition of filler particles such as brass and copper powders would be able to further increase mold performance such as compression strength and thermal properties, which are essential in the production of plastic parts for the new product development. This study involved four phases, which are epoxy matrix design, material properties characterization, mold design, and finally the fabrication of the mold insert. Epoxy resins filled with brass (EB) and copper (EC) powders were mixed separately into 10 wt% until 30 wt% of the mass composition ratio. Control factors such as degassing time, curing temperature, and mixing time to increase physical and mechanical properties were optimized using the Response Surface Method (RSM). The study provided optimum parameters for mixing epoxy resin with fillers, where the degassing time was found to be the critical factor with 35.91%, followed by curing temperature with 3.53% and mixing time with 2.08%. The mold inserts were fabricated for EB and EC at 30 wt% based on the optimization outcome from RSM and statistical ANOVA results. It was also revealed that the EC mold insert offers better cycle time compared to EB mold insert material.
    Matched MeSH terms: Epoxy Resins
  20. Ng KH, Tan KL, Gan SK, Looi LM
    Malays J Pathol, 1992 Jun;14(1):29-33.
    PMID: 1469915
    The use of the colloidal-gold technique in electron microscopy immunocytochemistry has provided important information on the in situ localisation of intracellular antigens. We have developed a post-embedding technique for prolactin localisation on resin-embedded human pituitary tissue sections by the use of the protein-A gold conjugate. Human pituitary tissue obtained at autopsy was processed for electron microscopical study without post-osmication and then embedded in Epon. The indirect immunoperoxidase method was used for light microscopical targetting of lactotroph cells for subsequent electron microscopical antigen localisation. Ultra-thin sections were labelled with human anti-human prolactin followed by protein-A gold conjugate. Specific labelling was observed over secretory granules with a density of 15-30 particles per granule, as determined by the Quantimet 570 image analysis system. This technique provides a means of studying the pathophysiology of hormonal secretion at ultrastructural level and can be a useful tool in diagnostic and research investigations.
    Matched MeSH terms: Epoxy Resins
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links