Displaying publications 21 - 40 of 77 in total

Abstract:
Sort:
  1. Abdullah NH, Salim F, Ahmad R
    Molecules, 2016 Apr 27;21(5).
    PMID: 27128898 DOI: 10.3390/molecules21050525
    Continuing our interest in the Uncaria genus, the phytochemistry and the in-vitro α-glucosidase inhibitory activities of Malaysian Uncaria cordata var. ferruginea were investigated. The phytochemical study of this plant, which employed various chromatographic techniques including recycling preparative HPLC, led to the isolation of ten compounds with diverse structures comprising three phenolic acids, two coumarins, three flavonoids, a terpene and an iridoid glycoside. These constituents were identified as 2-hydroxybenzoic acid or salicylic acid (1), 2,4-dihydroxybenzoic acid (2), 3,4-dihydroxybenzoic acid (3), scopoletin or 7-hydroxy-6-methoxy-coumarin (4), 3,4-dihydroxy-7-methoxycoumarin (5), quercetin (6), kaempferol (7), taxifolin (8), loganin (9) and β-sitosterol (10). Structure elucidation of the compounds was accomplished with the aid of 1D and 2D Nuclear Magnetic Resonance (NMR) spectral data and Ultraviolet-Visible (UV-Vis), Fourier Transform Infrared (FTIR) spectroscopy and mass spectrometry (MS). In the α-glucosidase inhibitory assay, the crude methanolic extract of the stems of the plant and its acetone fraction exhibited strong α-glucosidase inhibition activity of 87.7% and 89.2%, respectively, while its DCM fraction exhibited only moderate inhibition (75.3%) at a concentration of 1 mg/mL. The IC50 values of both fractions were found to be significantly lower than the standard acarbose suggesting the presence of potential α-glucosidase inhibitors. Selected compounds isolated from the active fractions were then subjected to α-glucosidase assay in which 2,4-dihydroxybenzoic acid and quercetin showed strong inhibitory effects against the enzyme with IC50 values of 549 and 556 μg/mL compared to acarbose (IC50 580 μg/mL) while loganin and scopoletin only showed weak α-glucosidase inhibition of 44.9% and 34.5%, respectively. This is the first report of the isolation of 2-hydroxybenzoic acid, 2,4-dihydroxybenzoic acid and loganin from the genus and the first report of the α-glucosidase inhibitory potential of 2,4-dihydroxybenzoic acid.
    Matched MeSH terms: Iridoid Glycosides/pharmacology; Iridoid Glycosides/chemistry
  2. Ling SK, Tanaka T, Kouno I
    J Nat Prod, 2002 Feb;65(2):131-5.
    PMID: 11858743
    Methanolic extracts of the leaves, stems, and roots of Phyllagathis rotundifolia collected in Malaysia yielded seven galloylated cyanogenic glucosides based on prunasin, with six of these being new compounds, prunasin 2',6'-di-O-gallate (3), prunasin 3',6'-di-O-gallate (4), prunasin 4',6'-di-O-gallate (5), prunasin 2',3',6'-tri-O-gallate (6), prunasin 3',4',6'-tri-O-gallate (7), and prunasin 2',3',4',6'-tetra-O-gallate (8). Also obtained was a new alkyl glycoside, oct-1-en-3-yl alpha-arabinofuranosyl-(1-->6)-beta-glucopyranoside (9). For compounds 3-8, the galloyl groups were individually linked to the sugar moieties via ester bonds. All new structures were established on the basis of NMR and MS spectroscopic studies. In addition, prunasin (1), gallic acid and its methyl ester, beta-glucogallin, 3,6-di-O-galloyl-D-glucose, 1,2,3,6-tetra-O-galloyl-beta-D-glucose, strictinin, 6-O-galloyl-2,3-O-(S)-hexahydroxydiphenoyl-D-glucose, praecoxin B, and pterocarinin C were isolated and identified. The isolation of 1 and its galloyl derivatives (3-8) from a Melastomataceous plant are described for the first time.
    Matched MeSH terms: Glycosides/isolation & purification*; Glycosides/chemistry
  3. Chang SW, Lee JS, Lee JH, Kim JY, Hong J, Kim SK, et al.
    J Nat Prod, 2021 Mar 26;84(3):553-561.
    PMID: 33684292 DOI: 10.1021/acs.jnatprod.0c01062
    Cinnamomum cassia Presl (Cinnamon) has been widely cultivated in the tropical or subtropical areas, such as Yunnan, Fujian, Guandong, and Hainan in China, as well as India, Vietnam, Thailand, and Malaysia. Four new glycosides bearing apiuronic acid (1, 4, 6, and 7) and their sodium or potassium salts (2, 3, and 5), together with 31 known compounds, were isolated from a hot water extract of the bark of C. cassia via repeated chromatography. The structures of the new compounds (1-7) were determined by NMR, IR, MS, and ICP-AES data and by acid hydrolysis and sugar analysis. This is the first report of the presence of apiuronic acid glycosides. Some of the isolates were evaluated for their analgesic effects on a neuropathic pain animal model induced by paclitaxel. Cinnzeylanol (8), cinnacaside (9), kelampayoside A (10), and syringaresinol (11) showed analgesic effects against paclitaxel-induced cold allodynia.
    Matched MeSH terms: Glycosides/isolation & purification; Glycosides/pharmacology*
  4. Chan EW, Gray AI, Igoli JO, Lee SM, Goh JK
    Phytochemistry, 2014 Nov;107:148-54.
    PMID: 25174555 DOI: 10.1016/j.phytochem.2014.07.028
    Galloylated flavonol rhamnosides identified as kaempferol-3-O-(2″,3″,4″-tri-O-galloyl)-α-l-rhamnopyranoside, quercetin-3-O-(3″,4″-di-O-galloyl)-α-l-rhamnopyranoside, and quercetin-3-O-(2″,3″,4″-tri-O-galloyl)-α-l-rhamnopyranoside, together with five known galloylated and non-galloylated flavonol rhamnosides, were isolated from leaves of Calliandra tergemina (L.) Benth. Their structures were established using spectroscopic methods and their antibacterial activities against methicillin-resistant Staphylococcus aureus (MRSA) were evaluated by a microdilution method.
    Matched MeSH terms: Glycosides/isolation & purification*; Glycosides/pharmacology*; Glycosides/chemistry
  5. Aminimoghadamfarouj N, Nematollahi A, Wiart C
    J Asian Nat Prod Res, 2011 May;13(5):465-76.
    PMID: 21534046 DOI: 10.1080/10286020.2011.570265
    One of the rich sources of lead compounds is the Angiosperms. Many of these lead compounds are useful medicines naturally, whereas others have been used as the basis for synthetic agents. These are potent and effective compounds, which have been obtained from plants, including anti-cancer (cytotoxic) agents, anti-malaria (anti-protozoal) agents, and anti-bacterial agents. Today, the number of plant families that have been extensively studied is relatively very few and the vast majorities have not been studied at all. The Annonaceae is the largest family in the order Magnoliales. It includes tropical trees, bushes, and climbers, which are often used as traditional remedies in Southeast Asia. Members of the Annonaceae have the particularity to elaborate a broad spectrum of natural products that have displayed anti-bacterial, anti-fungal, and anti-protozoal effects and have been used for the treatment of medical conditions, such as skin diseases, intestinal worms, inflammation of the eyes, HIV, and cancer. These special effects and the vast range of variation in potent compounds make the Annonaceae unique from other similar families in the Magnoliales and the Angiosperms in general. This paper attempts to summarize some important information and discusses a series of hypotheses about the effects of Annonaceae compounds.
    Matched MeSH terms: Glycosides
  6. Alara OR, Abdurahman NH, Ukaegbu CI, Hassan Z, Kabbashi NA
    Data Brief, 2018 Dec;21:1686-1689.
    PMID: 30505901 DOI: 10.1016/j.dib.2018.10.159
    The tentative identification of bioactive compounds in the extract of Vernonia amygdalina leaf was carried out using positive ionization of Liquid chromatography-mass spectrometry quadrupole time of flight (LC-Q-TOF/MS). The positive ionization is associated with the presence of saponins, flavonoids, alkaloids, terpenoids, and glycosides. Tentative assignments of the secondary metabolites were performed by comparing the MS fragmentation patterns with Waters® UNIFY library which allows positive identification of the compounds based on the spectral match. All the metabolites compounds were estimated and presented in a BPI (Base peak intensity) plot. These data are the unpublished supplementary materials related to "Ethanolic extraction of bioactive compounds from V. amygdalina leaf using response surface methodology as an optimization tool" (Alara et al., 2018).
    Matched MeSH terms: Glycosides
  7. Goh EW, Heidelberg T, Duali Hussen RS, Salman AA
    ACS Omega, 2019 Oct 15;4(16):17039-17047.
    PMID: 31646251 DOI: 10.1021/acsomega.9b02809
    Aiming for glycolipid-based vesicles for targeted drug delivery, cationic Guerbet glycosides with spacered click functionality were designed and synthesized. The cationic charge promoted the distribution of the glycolipids during the formulation, thereby leading to homogeneously small vesicles. The positive surface charge of the vesicles stabilizes them against unwanted fusion and promotes interactions of the drug carriers with typical negative charge-dominated target cells. High bioconjugation potential of the functionalized glycolipids based on the copper-catalyzed azide alkyne cycloaddition makes them highly valuable components for targeted drug delivery systems.
    Matched MeSH terms: Glycosides
  8. Choo YM
    Sains Malaysiana, 2017;46:1581-1586.
    Crotalaria pallida Aiton is an herbaceous legume from the family Fabaceae. In the present study, one new cyclopentyliene, crotolidene (1) and seven known compounds, i.e. hydroxydihydrobovolide (2), octacosane (3), trans-phytyl palmitate (4), linoleic acid (5), methyl oleate (6), ethyl palmitate (7), and palmitic acid (8) were isolated from the C. pallida collected from Perak, Malaysia. These compounds were isolated and characterized using extensive chromatographic and spectroscopic methods.
    Matched MeSH terms: Cardiac Glycosides
  9. Firdoos S, Khan AU, Ali F
    Sains Malaysiana, 2017;46:1859-1863.
    The purpose of the present research was to evaluate the phytochemical content and analgesic effect of Caralluma edulis
    (Ce.Cr). Established methods were used for phytochemical analysis of plant. The anti-nociceptic activity of Ce.Cr was
    scrutinized using acetic acid-induced writhings, tail immersion and hot plate methods. Ce.Cr was tested positive for the
    presence of therapeutically active metabolites such as alkaloids, flavonoids, glycosides, phenol, tannins, terpenoids and
    saponins. Ce.Cr at the dose of 10, 30 and 100 mg/kg inhibited acetic acid-induced abdominal writhes and increase the
    latency time to thermal stimuli in both tail immersion and hot plate tests, similar to standard drug. These results showed
    that the ethanolic extract of Caralluma edulis possesses anti-nociceptive property.
    Matched MeSH terms: Glycosides
  10. Chear NJ, Khaw KY, Murugaiyah V, Lai CS
    J Food Drug Anal, 2016 04;24(2):358-366.
    PMID: 28911590 DOI: 10.1016/j.jfda.2015.12.005
    Stenochlaena palustris fronds are popular as a vegetable in Southeast Asia. The objectives of this study were to evaluate the anticholinesterase properties and phytochemical profiles of the young and mature fronds of this plant. Both types of fronds were found to have selective inhibitory effect against butyrylcholinesterase compared with acetylcholinesterase. However, different sets of compounds were responsible for their activity. In young fronds, an antibutyrylcholinesterase effect was observed in the hexane extract, which was comprised of a variety of aliphatic hydrocarbons, fatty acids, and phytosterols. In the mature fronds, inhibitory activity was observed in the methanol extract, which contained a series of kaempferol glycosides. Our results provided novel information concerning the ability of S. palustris to inhibit cholinesterase and its phytochemical profile. Further research to investigate the potential use of this plant against Alzheimer's disease is warranted, however, young and mature fronds should be distinguished due to their phytochemical differences.
    Matched MeSH terms: Glycosides
  11. Hashim NS, Tan ML, Ooi KL, Sulaiman SF
    Nat Prod Res, 2023 Jun;37(12):2009-2012.
    PMID: 35997235 DOI: 10.1080/14786419.2022.2112038
    Cashew (Anacardium occidentale L.) leaf is traditionally used to treat skin infections. Although many flavonols have been identified from its leaf extract, their inhibitory effects on skin pathogens are not yet determined. The aims of this study were to determine the antimicrobial (against skin pathogenic microbes) and antioxidant activities of four flavonol glycosides from the crude extract and three flavonol aglycones from the hydrolyzed extract. The hydrolyzed extract was found to show higher activities than the crude extract. Myricetin showed the highest activity against all the tested bacteria and yeast with the lowest Minimum Inhibition Concentration (MIC) of 7.81 μg/mL on Corynebacterium minutissimum ATCC23348. Myricetin also exhibited good primary antioxidant activities with the effective concentration with 50% of activity (EC50) values ranged between 2.23 μg/mL and 6.40 μg/mL. The highest secondary antioxidant activity was indicated by myricetin-3-O-rhamnoside. Thus, myricetin can be considered as a bioactive compound of the hydrolyzed extract.
    Matched MeSH terms: Glycosides
  12. ManickamAchari V, Bryce RA, Hashim R
    PLoS One, 2014;9(6):e101110.
    PMID: 24978205 DOI: 10.1371/journal.pone.0101110
    The rational design of a glycolipid application (e.g. drug delivery) with a tailored property depends on the detailed understanding of its structure and dynamics. Because of the complexity of sugar stereochemistry, we have undertaken a simulation study on the conformational dynamics of a set of synthetic glycosides with different sugar groups and chain design, namely dodecyl β-maltoside, dodecyl β-cellobioside, dodecyl β-isomaltoside and a C12C10 branched β-maltoside under anhydrous conditions. We examined the chain structure in detail, including the chain packing, gauche/trans conformations and chain tilting. In addition, we also investigated the rotational dynamics of the headgroup and alkyl chains. Monoalkylated glycosides possess a small amount of gauche conformers (∼20%) in the hydrophobic region of the lamellar crystal (LC) phase. In contrast, the branched chain glycolipid in the fluid Lα phase has a high gauche population of up to ∼40%. Rotational diffusion analysis reveals that the carbons closest to the headgroup have the highest correlation times. Furthermore, its value depends on sugar type, where the rotational dynamics of an isomaltose was found to be 11-15% and more restrained near the sugar, possibly due to the chain disorder and partial inter-digitation compared to the other monoalkylated lipids. Intriguingly, the present simulation demonstrates the chain from the branched glycolipid bilayer has the ability to enter into the hydrophilic region. This interesting feature of the anhydrous glycolipid bilayer simulation appears to arise from a combination of lipid crowding and the amphoteric nature of the sugar headgroups.
    Matched MeSH terms: Glycosides/chemistry
  13. Ahmad N, Ramsch R, Llinàs M, Solans C, Hashim R, Tajuddin HA
    Colloids Surf B Biointerfaces, 2014 Mar 1;115:267-74.
    PMID: 24384142 DOI: 10.1016/j.colsurfb.2013.12.013
    The effect of incorporating new nonionic glycolipid surfactants on the properties of a model water/nonionic surfactant/oil nano-emulsion system was investigated using branched-chain alkyl glycosides: 2-hexyldecyl-β(/α)-D-glucoside (2-HDG) and 2-hexyldecyl-β(/α)-D-maltoside (2-HDM), whose structures are closely related to glycero-glycolipids. Both 2-HDG and 2-HDM have an identical hydrophobic chain (C16), but the former consists a monosaccharide glucose head group, in contrast to the latter which has a disaccharide maltose unit. Consequently, their hydrophilic-lipophilic balance (HLB) is different. The results obtained have shown that these branched-chain alkyl glycosides affect differently the stability of the nano-emulsions. Compared to the model nano-emulsion, the presence of 2-HDG reduces the oil droplet size, whereas 2-HDM modify the properties of the model nano-emulsion system in terms of its droplet size and storage time stability at high temperature. These nano-emulsions have been proven capable of encapsulating ketoprofen, showing a fast release of almost 100% in 24h. Thus, both synthetically prepared branched-chain alkyl glycosides with mono- and disaccharide sugar head groups are suitable as nano-emulsion stabilizing agents and as drug delivery systems in the future.
    Matched MeSH terms: Glycosides/chemistry*
  14. Omar MH, Mullen W, Crozier A
    J Agric Food Chem, 2011 Feb 23;59(4):1363-9.
    PMID: 21261251 DOI: 10.1021/jf1032729
    Phenolic compounds in an aqueous infusion of leaves of Ficus deltoidea (Moraceae), a well-known herbal tea in Malaysia, were analyzed by HPLC coupled to photodiode array and fluorescence detectors and an electrospray ionization tandem mass spectrometer. Following chromatography of extracts on a reversed phase C(12) column, 25 flavonoids were characterized and/or tentatively identified with the main constituents being flavan-3-ol monomers, proanthocyanidins, and C-linked flavone glycosides. The proanthocyanidins were dimers and trimers comprising (epi)catechin and (epi)afzelechin units. No higher molecular weight proanthocyanidin polymers were detected. The antioxidant activity of F. deltoidea extract was analyzed using HPLC with online antioxidant detection. This revealed that 85% of the total antioxidant activity of the aqueous F. deltoidea infusion was attributable to the flavan-3-ol monomers and the proanthocyanidins.
    Matched MeSH terms: Glycosides/analysis*
  15. Chong TT, Hashim R, Bryce RA
    J Phys Chem B, 2006 Mar 16;110(10):4978-84.
    PMID: 16526739
    Comparative molecular dynamics simulations of n-octyl-beta-D-galactopyranoside (beta-C8Gal) and n-octyl-beta-D-glucopyranoside (beta-C8Glc) micelles in aqueous solution have been performed to explore the influence of carbohydrate stereochemistry on glycolipid properties at the atomic level. In particular, we explore the hypothesis that differences in T(m) and T(c) for beta-C8Gal and beta-C8Glc in lyotropic systems arise from a more extensive hydrogen bonding network between beta-C8Gal headgroups relative to beta-C8Glc, due to the axial 4-OH group in beta-C8Gal. Good agreement of the 13 ns micelle-water simulations with available experimental information is found. The micelles exhibit a similar shape, size, and degree of exposed alkyl chain surface area. We find net inter- and intra-headgroup hydrogen bonding is also similar for beta-C8Gal and beta-C8Glc, although n-octyl-beta-D-galactopyranoside micelles do exhibit a slightly greater degree of inter- and intra-headgroup hydrogen bonding. However, the main distinction in the calculated microscopic behavior of beta-C8Glc and beta-C8Gal micelles lies in solvent interactions, where beta-d-glucosyl headgroups are considerably more solvated (mainly at the equatorial O4 oxygen). These results agree with preceding theoretical and experimental studies of monosaccharides in aqueous solution. A number of long water residence times are found for solvent surrounding both micelle types, the largest of which are associated with surface protrusions involving headgroup clusters. Our simulations, therefore, predict differences in hydrogen bonding for the two headgroup stereochemistries, including a small difference in inter-headgroup interactions, which may contribute to the higher T(m) and T(c) values of beta-C8Gal surfactants relative to beta-C8Glc in lyotropic systems.
    Matched MeSH terms: Glycosides/chemistry*
  16. Abdullah NR, Sharif F, Azizan NH, Hafidz IFM, Supramani S, Usuldin SRA, et al.
    AIMS Microbiol, 2020;6(4):379-400.
    PMID: 33364534 DOI: 10.3934/microbiol.2020023
    The pellet morphology and diameter range (DR) of Ganoderma lucidum were observed in a repeated-batch fermentation (RBF) for the trio total production of biomass, exopolysaccharide (EPS) and endopolysaccharide (ENS). Two factors were involved in RBF; broth replacement ratio (BRR: 60%, 75% and 90%) and broth replacement time point (BRTP: log, transition and stationary phase) in days. In RBF, 34.31 g/L of biomass favoured small-compact pellets with DR of 20.67 µm< d < 24.00 µm (75% BRR, day 11 of BRTP). EPS production of 4.34 g/L was prone to ovoid-starburst pellets with DR of 34.33 µm< d <35.67 µm (75% BRR, day 13 of BRTP). Meanwhile, the highest 2.43 g/L of ENS production favoured large-hollow pellets with DR of 34.00 µm< d < 38.67 µm (90% BRR, day 13 of BRTP). In addition, RBF successfully shortened the biomass-EPS-ENS fermentation period (31, 33 and 35 days) from batch to 5 days, in seven consecutive cycles of RBF. In a FTIR detection, β-glucan (BG) from EPS and ENS extracts were associated with β-glycosidic linkages (2925 cm-1, 1635 cm-1, 1077 cm-1, 920 cm-1 and 800 cm-1 wavelengths) with similar 1H NMR spectral behaviour (4.58, 3.87 and 3.81 ppm). Meanwhile, 4 mg/L of BG gave negative cytotoxic effects on normal gingival cell line (hGF) but induced antiproliferation (IC50 = 0.23 mg/mL) against cancerous oral Asian cellosaurus cell line (ORL-48). Together, this study proved that G. lucidum mycelial pellets could withstand seven cycles of long fermentation condition and possessed anti-oral cancer beta-glucan, which suits large-scale natural drug fermentation.
    Matched MeSH terms: Cardiac Glycosides; Glycosides
  17. Mustafa MR, Hadi AH
    Toxicon, 1990;28(10):1237-9.
    PMID: 2264070
    Crude glycoside extracts from the plant, Sarcolobus globosus, were tested on the rat phrenic nerve-diaphragm, chick biventer cervicis and frog rectus abdominis preparations. Nerve-stimulated twitches were inhibited by the extract. The muscle paralysis was not similar to that by curare-like blockers as it was not reversed by neostigmine or by a tetanus. Although contractures to acetylcholine or carbachol were not affected by 0.6 mg/ml of the extract, higher concentration of the extracts (3 mg/ml) depressed the log dose-response curve of acetylcholine and carbachol. The results suggest that the neuromuscular blocking effect of the extracts is either dose-dependent or due to a mixture of toxins with presynaptic or postsynaptic actions.
    Matched MeSH terms: Glycosides/pharmacology*
  18. Loo YC, Hu HC, Yu SY, Tsai YH, Korinek M, Wu YC, et al.
    Phytomedicine, 2023 Feb;110:154643.
    PMID: 36623444 DOI: 10.1016/j.phymed.2023.154643
    BACKGROUND: Skin aging is associated with degradation of collagen by matrix metalloproteinases (MMPs), which leads to loss of skin elasticity and formation of wrinkles. Cosmos caudatus Kunth (CC) has been traditionally claimed as an anti-aging agent in Malaysia. Despite its well-known antioxidant activity, the anti-aging properties of CC was not validated.

    PURPOSE: This study aimed to investigate the anti-aging potential of CC extracts and fractions, particularly their inhibition of collagenase, MMP-1 and MMP-3 activities in human dermal fibroblasts CCD-966SK, followed by isolation, identification and analysis of their bioactive constituents.

    STUDY DESIGN AND METHODS: DPPH assay was firstly used to evaluate the antioxidant activity throughout the bioactivity-guided fractionation. Cell viability was determined using MTS assay. Collagenase activity was examined, while MMP-1 and MMP-3 expression were measured using qRT-PCR and western blotting. Then, chemical identification of pure compounds isolated from CC fractions was done by using ESIMS, 1H and 13C NMR spectroscopies. HPLC analyses were carried out for bioactive fractions to quantify the major components.

    RESULTS: Throughout the antioxidant activity-guided fractionation, fractions CC-E2 and CC-E3 with antioxidant activity and no toxicity towards CCD-966SK cells were obtained from CC 75% ethanol partitioned layer (CC-E). Both fractions inhibited collagenase activity, MMP-1 and MMP-3 mRNA and protein expression, as well as NF-κB activation induced by TNF-α in CCD-966SK cells. 14 compounds, which mainly consists of flavonoids and their glycosides, were isolated. Quercitrin (14.79% w/w) and quercetin (11.20% w/w) were major compounds in CC-E2 and CC-E3, respectively, as quantified by HPLC. Interestingly, both fractions also inhibited the MMP-3 protein expression synergistically, compared with treatment alone.

    CONCLUSION: The quantified CC fractions rich in flavonoid glycosides exhibited skin anti-aging effects via the inhibition of collagenase, MMP-1 and MMP-3 activities, probably through NF-κB pathway. This is the first study reported on MMP-1 and MMP-3 inhibitory activity of CC with its chemical profile, which revealed its potential to be developed as anti-aging products in the future.

    Matched MeSH terms: Glycosides/pharmacology
  19. Wu XY, Zhao ZY, Osman EEA, Wang XJ, Choo YM, Benjamin MM, et al.
    Bioorg Chem, 2024 Feb;143:107103.
    PMID: 38211549 DOI: 10.1016/j.bioorg.2024.107103
    Three undescribed (1-3) and nine known (4-12) platanosides were isolated and characterized from a bioactive extract of the May leaves of Platanus × acerifolia that initially showed inhibition against Staphylococcus aureus. Targeted compound mining was guided by an LC-MS/MS-based molecular ion networking (MoIN) strategy combined with conventional isolation procedures from a unique geographic location. The novel structures were mainly determined by 2D NMR and computational (NMR/ECD calculations) methods. Compound 1 is a rare acylated kaempferol rhamnoside possessing a truxinate unit. 6 (Z,E-platanoside) and 7 (E,E-platanoside) were confirmed to have remarkable inhibitory effects against both methicillin-resistant S. aureus (MIC: ≤ 16 μg/mL) and glycopeptide-resistant Enterococcus faecium (MIC: ≤ 1 μg/mL). These platanosides were subjected to docking analyses against FabI (enoyl-ACP reductase) and PBP1/2 (penicillin binding protein), both of which are pivotal enzymes governing bacterial growth but not found in the human host. The results showed that 6 and 7 displayed superior binding affinities towards FabI and PBP2. Moreover, surface plasmon resonance studies on the interaction of 1/7 and FabI revealed that 7 has a higher affinity (KD = 1.72 μM), which further supports the above in vitro data and is thus expected to be a novel anti-antibacterial drug lead.
    Matched MeSH terms: Glycosides*
  20. Cheng LC, Murugaiyah V, Chan KL
    J Ethnopharmacol, 2015 Dec 24;176:485-93.
    PMID: 26593216 DOI: 10.1016/j.jep.2015.11.025
    ETHNOPHARMACOLOGICAL RELEVANCE: Lippia nodiflora has been traditionally used in the Ayurvedic, Unani, and Sidha systems, as well as Traditional Chinese Medicine (TCM) for the treatment of knee joint pain, lithiasis, diuresis, urinary disorder and swelling.
    AIM OF THE STUDY: The present study aims to investigate the antihyperuricemic effect of the L. nodiflora methanol extract, fractions, and chemical constituents and their mechanism of action in the rat model.
    MATERIALS AND METHODS: The mechanisms were investigated by performing xanthine oxidase inhibitory, uricosuric, and liver xanthine oxidase/xanthine dehydrogenase (XOD/XDH) inhibitory studies in potassium oxonate- and hypoxanthine-induced hyperuricemic rats. The plant safety profile was determined using acute toxicity study. The molecular docking of the active compound to the xanthine oxidase was simulated using computer aided molecular modeling analysis.
    RESULTS: Oral administration of methanol extract showed a dose-dependent reduction effect on the serum uric acid level of hyperuricemic rats. F3 was the most potent fraction in lowering the serum uric acid level of hyperuricemic rats. Bioactivity-guided purification of F3 afforded two phenylethanoid glycosides, arenarioside (1) and verbascoside (2) and three flavonoids, 6-hydroxyluteolin (3), 6-hydroxyluteolin-7-O-glycoside (4), and nodifloretin (5). The highest serum uric acid reduction effect was exhibited by 3 (66.94%) in hyperuricemic rats, followed by 5 (55.97%), 4 (49.16%), 2 (29.03%), and 1 (22.08%) at 0.2 mmol/kg. Dose-response investigation on 3 at doses of 0.05, 0.1, and 0.3 mmol/kg produced a significant dose-dependent reduction on the serum uric acid level of hyperuricemic rats. Repeated administration of F3 or 3 to the hyperuricemic rats for 10 continuous days resulted in a significant and progressive serum uric acid lowering effect in hyperuricemic rats. In contrast, methanol extract and F3 did not reduce serum uric acid level of normoruricemic rats. In addition, F4 significantly increased the uric acid excretion of hyperuricemic rats at 200mg/kg. No toxic effect was observed in rats administered with 5000 mg/kg of methanol extract or F3.
    CONCLUSION: The potential application of L. nodiflora against hyperuricemia in the animal in accordance with its traditional uses has been demonstrated in the present study for the first time. The antihyperuricemic effect possessed by L. nodiflora was contributed mainly by liver XOD/XDH inhibitory activities and partially by uricosuric effect. Flavonoids mainly accountable for the uric acid lowering effect of L. nodiflora through the inhibition of XOD/XDH activities.
    KEYWORDS: Antihyperuricemic; Hypoxanthine-induced hyperuricemic rat; Lippia nodiflora; Liver xanthine oxidase and xanthine dehydrogenase; Serum uric acid; Uric acid excretion
    Matched MeSH terms: Glycosides/pharmacology; Glycosides/therapeutic use*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links