Displaying publications 21 - 40 of 219 in total

Abstract:
Sort:
  1. Hussain, H., Ngaini, Z., Chong, N.F-M.
    MyJurnal
    The accurate determination of reducing ends of malto-oligosaccharides is essential for calculating the enzyme activities of starch debranching enzymes. The suitability of the 3,5-Dinitrosalicylic acid (DNS) method, the Dygert method, and the Bicinchoninic acid (BCA) method for accurate determination of reducing ends from malto-oligosaccharides of different chain lengths is compared. The results showed that BCA assay was much more accurate than the other assays. The results for the BCA assay showed that different malto-oligosaccharides gave observed (measured) values that were significantly similar to the expected (predetermined) values. In contrast, the DNS and Dygert assays underestimated the amount of reducing sugar present for glucose. Furthermore, both DNS and Dygert methods showed increasing degree of overestimation of the amount of reducing sugar present with the increasing length of the malto-oligosaccharide sugar chains. The BCA assay can suitably quantify reducing sugars even in mixtures of oligosaccharides with different chain lengths. Thus, enzyme activities can be measured without bias towards higher values for enzymes that preferentially cleave the longer chain lengths.
    Matched MeSH terms: Glycoside Hydrolases
  2. Daud NH, Leow TC, Oslan SN, Salleh AB
    Mol Biotechnol, 2019 Mar 27.
    PMID: 30919327 DOI: 10.1007/s12033-019-00169-3
    The application of native enzymes may not be economical owing to the stability factor. A smaller protein molecule may be less susceptible to external stresses. Haloalkane dehalogenases (HLDs) that act on toxic haloalkanes may be incorporated as bioreceptors to detect haloalkane contaminants. Therefore, this study aims to develop mini proteins of HLD as an alternative bioreceptor which was able to withstand extreme conditions. Initially, the mini proteins were designed through computer modeling. Based on the results, five designed mini proteins were deemed to be viable stable mini proteins. They were then validated through experimental study. The smallest mini protein (model 5) was chosen for subsequent analysis as it was expressed in soluble form. No dehalogenase activity was detected, thus the specific binding interaction of between 1,3-dibromopropane with mini protein was investigated using isothermal titration calorimetry. Higher binding affinity between 1,3-dibromopropane and mini protein was obtained than the native. Thermal stability study with circular dichroism had proven that the mini protein possessed two times higher Tm value at 83.73 °C than the native at 43.97 °C. In conclusion, a stable mini protein was successfully designed and may be used as bioreceptors in the haloalkane sensor that is suitable for industrial application.
    Matched MeSH terms: Hydrolases
  3. Lee MF, Poh CL
    Pharm Res, 2023 Mar;40(3):617-632.
    PMID: 36869247 DOI: 10.1007/s11095-023-03486-0
    Peptides are a rapid-growing class of therapeutics with unique and desirable physicochemical properties. Due to disadvantages such as low membrane permeability and susceptibility to proteolytic degradation, peptide-based drugs have limited bioavailability, a short half-life, and rapid in vivo elimination. Various strategies can be applied to improve the physicochemical properties of peptide-based drugs to overcome limitations such as limited tissue residence time, metabolic instability, and low permeability. Applied strategies including backbone modifications, side chain modifications, conjugation with polymers, modification of peptide termini, fusion to albumin, conjugation with the Fc portion of antibodies, cyclization, stapled peptides, pseudopeptides, cell-penetrating peptide conjugates, conjugation with lipids, and encapsulation in nanocarriers are discussed.
    Matched MeSH terms: Peptide Hydrolases
  4. Abdul Manan SF, Li J, Hsieh CF, Faubion J, Shi YC
    J Sci Food Agric, 2022 Mar 30;102(5):2172-2178.
    PMID: 34498279 DOI: 10.1002/jsfa.11523
    BACKGROUND: Lipids account for 2.0-2.5% of wheat flour by dry weight and affect properties and quality of cereal foods. A new method was developed to extract non-starch lipids from wheat flour. Wheat flour was first hydrolyzed with a protease and followed by extraction of non-starch lipids by water-saturated butanol (WSB).

    RESULT: Protein hydrolysis by protease followed by extraction of non-starch lipids with WSB increased yield to 1.9 ± 0.3% from 1.0 ± 0.1% with no protease treatment. The lipid profile showed a significant increase in phospholipid compounds extracted with protease hydrolysis (5.9 ± 0.8 nmol·g-1 ) versus without enzymatic treatment (2.4 ± 1.3 nmol g-1 ).

    CONCLUSION: Improved lipid extraction yield and phospholipid compounds following protease-assisted extraction method provided additional insight towards the understanding of protein-lipid interaction in wheat flour. The new protease-assisted extraction method may be applied to analyzing non-starch lipids in other types of wheat flours and other cereal flours. © 2021 Society of Chemical Industry.

    Matched MeSH terms: Peptide Hydrolases
  5. Jani NA, Maarof NI, Zahari MMFM, Jamil M, Zakaria II, Mohamad Zobir SZ, et al.
    Nat Prod Res, 2024 Mar;38(6):926-932.
    PMID: 37144399 DOI: 10.1080/14786419.2023.2208256
    The chemical compositions, in vitro and in silico anti-dengue activity of the essential oils of the rhizomes of Curcuma longa Linn., C. aeruginosa Roxb., and C. xanthorrhiza Roxb. had been investigated. The C. longa oil was mainly composed of ar-turmerone (54.0%) and curlone (17.7%), while the C. aeruginosa oil was rich in curzerenone (23.4%), 1,8-cineole (21.2%), and camphor (7.1%). Xanthorrhizol (21.6%), β-curcumene (19.5%), ar-curcumene (14.2%), and camphor (9.2%) were the major compounds in the C. xanthorrhiza oil. Among the oils, the C. longa oil was found to be the most active NSB-NS3 protease inhibitor (IC50 1.98 μg/mL). PLS biplot disclosed that the essential oils were classified into three separated clusters based on their characteristic chemical compositions, with C. longa positioned closest to the in vitro anti-dengue activity. Four compounds from the C. longa oil have both hydrogen and hydrophobic bonds that could be responsible for the DENV-2 NS2B-NS3 inhibitory effect.
    Matched MeSH terms: Peptide Hydrolases
  6. Arulananth TS, Kuppusamy PG, Ayyasamy RK, Alhashmi SM, Mahalakshmi M, Vasanth K, et al.
    PLoS One, 2024;19(4):e0300767.
    PMID: 38578733 DOI: 10.1371/journal.pone.0300767
    Semantic segmentation of cityscapes via deep learning is an essential and game-changing research topic that offers a more nuanced comprehension of urban landscapes. Deep learning techniques tackle urban complexity and diversity, which unlocks a broad range of applications. These include urban planning, transportation management, autonomous driving, and smart city efforts. Through rich context and insights, semantic segmentation helps decision-makers and stakeholders make educated decisions for sustainable and effective urban development. This study investigates an in-depth exploration of cityscape image segmentation using the U-Net deep learning model. The proposed U-Net architecture comprises an encoder and decoder structure. The encoder uses convolutional layers and down sampling to extract hierarchical information from input images. Each down sample step reduces spatial dimensions, and increases feature depth, aiding context acquisition. Batch normalization and dropout layers stabilize models and prevent overfitting during encoding. The decoder reconstructs higher-resolution feature maps using "UpSampling2D" layers. Through extensive experimentation and evaluation of the Cityscapes dataset, this study demonstrates the effectiveness of the U-Net model in achieving state-of-the-art results in image segmentation. The results clearly shown that, the proposed model has high accuracy, mean IOU and mean DICE compared to existing models.
    Matched MeSH terms: Hydrolases
  7. Tan NH, Ponnudurai G
    PMID: 1971550
    1. The intravenous median lethal doses (LD50), protease, phosphodiesterase, alkaline phosphomonoesterase, L-amino acid oxidase, acetylcholinesterase, phospholipase A, 5'-nucleotidase, hyauronidase and anticoagulant activities of fourteen samples of venoms from the four common species of krait (Bungarus caeruleus, Bungarus candidus, Bungarus multicinctus and Bungarus fasciatus) were examined. 2. The results indicate that even though there are individual variations in the biological properties of the krait venoms, interspecific differences in the properties can be used for differentiation of the venoms from the four species of Bungarus. Particularly useful for this purpose are the LD50's and the contents of 5'-nucleotidase and hyaluronidase of the venoms.
    Matched MeSH terms: Carboxylic Ester Hydrolases/metabolism; Peptide Hydrolases/metabolism; Phosphoric Diester Hydrolases/metabolism
  8. Daltry JC, Ponnudurai G, Shin CK, Tan NH, Thorpe RS, Wüster W
    Toxicon, 1996 Jan;34(1):67-79.
    PMID: 8835335
    The Malayan pit viper (Calloselasma rhodostoma) is of major clinical significance both as a leading cause of snakebite and as the source of ancrod (Arvin). Although its venom has been extensively studied, the degree to which venom composition varies between individuals is poorly known. We individually analysed the venoms of over 100 C. rhodostoma using isoelectric focusing. In all populations, females produced an intense band that was absent from all males, and significant ontogenetic variation was detected. Principal components analysis of the banding profiles also revealed strong geographic variation, which was significantly congruent with variation in the biological activities of the venom (phosphodiesterase, alkalinephosphoesterase, L-amino acid oxidase, arginine ester hydrolase, 5'-nucleotidase, thrombin-like enzyme, haemorrhagic activity). Studies of captive-bred snakes indicate that the intraspecific variation in venom is genetically inherited rather than environmentally induced. The intraspecific variation in venom composition and biological activity could be of applied importance to snakebite therapy, both in correct diagnosis of the source of envenomation and in the development of a more effective antivenom. Greater attention should be given to the source of C. rhodostoma venom used in research to ensure reproducibility of results.
    Matched MeSH terms: Carboxylic Ester Hydrolases/metabolism; Phosphoric Diester Hydrolases/metabolism; Phosphoric Monoester Hydrolases/metabolism
  9. Sudi IY, Wong EL, Joyce-Tan KH, Shamsir MS, Jamaluddin H, Huyop F
    Int J Mol Sci, 2012;13(12):15724-54.
    PMID: 23443090 DOI: 10.3390/ijms131215724
    Currently, there is no three-dimensional structure of D-specific dehalogenase (DehD) in the protein database. We modeled DehD using ab initio technique, performed molecular dynamics (MD) simulation and docking of D-2-chloropropionate (D-2CP), D-2-bromopropionate (D-2BP), monochloroacetate (MCA), monobromoacetate (MBA), 2,2-dichloropropionate (2,2-DCP), d,l-2,3-dichloropropionate (d,l-2,3-DCP), and 3-chloropropionate (3-CP) into the DehD active site. The sequences of DehD and D-2-haloacid dehalogenase (HadD) from Pseudomonas putida AJ1 have 15% sequence similarity. The model had 80% of the amino acid residues in the most favored region when compared to the crystal structure of DehI from Pseudomonas putida PP3. Docking analysis revealed that Arg107, Arg134 and Tyr135 interacted with D-2CP, and Glu20 activated the water molecule for hydrolytic dehalogenation. Single residue substitutions at 25-30 °C showed that polar residues of DehD were stable when substituted with nonpolar residues and showed a decrease in activity within the same temperature range. The molecular dynamics simulation of DehD and its variants showed that in R134A variant, Arg107 interacted with D-2CP, while in Y135A, Gln221 and Arg231 interacted with D-2CP. It is our emphatic belief that the new model will be useful for the rational design of DehDs with enhanced potentials.
    Matched MeSH terms: Hydrolases/chemistry*
  10. Lim KJ
    Malays J Pathol, 2003 Jun;25(1):1-13.
    PMID: 16196373
    Successful human reproduction remains an enigma, but this is slowly changing in the current era of expanding scientific knowledge. The discovery of various molecular factors such as adhesion molecules, proteases and cytokines have in recent years been at the forefront of medical research. The growing importance of immunology in particular has led to novel new immuno-modulatory therapies and increasing research into this new aspect of reproductive immunology may well prove to be the most important breakthrough in understanding the fundamentals of human reproduction. Implantation represents the first step in the complex interactions and processes involved in foetal-maternal interaction, which continues throughout pregnancy gestation and culminates in the birth of an infant. It is therefore vital that we understand the myriad processes controlling implantation in order to build a firm foundation for exploring reproductive immunology research in the new millennium. This review brings together and presents an overview of the potential roles of currently known molecular factors such as adhesion molecules, proteases, cytokines and its interaction with the maternal immune response, incorporating the findings of previous published research performed by the author on cytokines and reproductive immunology.
    Matched MeSH terms: Peptide Hydrolases/metabolism*
  11. Ismail BS, Ampong N, Omar O
    Microbios, 2000;103(405):73-83.
    PMID: 11092189
    Effects of metsulphuron-methyl on the activities of amylase, invertase and xylanase in loamy sand and clay were evaluated for up to 28 days under laboratory conditions. Metsulphuron-methyl at 1.0 microg/g caused a significant reduction in amylase, invertase and xylanase activities for the entire period of study, especially at 28 days incubation in both soils. The lowest activities of the three enzymes were observed in the presence of 5.0 microg/g at 28 days incubation.
    Matched MeSH terms: Glycoside Hydrolases/metabolism*
  12. Taha M, Rahim F, Zaman K, Selvaraj M, Uddin N, Farooq RK, et al.
    Bioorg Chem, 2020 01;95:103555.
    PMID: 31911306 DOI: 10.1016/j.bioorg.2019.103555
    A series of twenty-six analogs of benzimidazole based oxadiazole have been synthesized and evaluated against alpha-glycosidase enzyme. Most the analogs showed excellent to good inhibitory potential. Among the screened analogs, analog 1, 2, 3 and 14 with IC50 values 4.6 ± 0.1, 9.50 ± 0.3, 2.6 ± 0.1 and 9.30 ± 0.4 µM respectively showedexcellent inhibitory potential than reference drug acarbose (IC50 = 38.45 ± 0.80 µM). Some of the analogs like 19, 21, 22 and 23 with methyl and methoxy substituent on phenyl ring show hydrophobic interaction and were found with no inhibitory potential. The binding interactions between synthesized analogs and ligands protein were confirmed through molecular docking study. Various spectroscopic techniques like 1H NMR, 13C NMR, and EI-MS were used for characterization of all synthesized analogs. These derivatives were synthesized by simple mode of synthesis like heterocyclic ring formation.
    Matched MeSH terms: Glycoside Hydrolases/antagonists & inhibitors*
  13. Lazan H, Ng SY, Goh LY, Ali ZM
    Plant Physiol Biochem, 2004 Dec;42(11):847-53.
    PMID: 15694277
    The potential significance of the previously reported papaya (Carica papaya L.) beta-galactosidase/galactanase (beta-d-galactoside galactohydrolase; EC 3.2.1.23) isoforms, beta-gal I, II and III, as softening enzymes during ripening was evaluated for hydrolysis of pectins while still structurally attached to unripe fruit cell wall, and hemicelluloses that were already solubilized in 4 M alkali. The enzymes were capable of differentially hydrolyzing the cell wall as evidenced by increased pectin solubility, pectin depolymerization, and degradation of the alkali-soluble hemicelluloses (ASH). This enzyme catalyzed in vitro changes to the cell walls reflecting in part the changes that occur in situ during ripening. beta-Galactosidase II was most effective in hydrolyzing pectin, followed by beta-gal III and I. The reverse appeared to be true with respect to the hemicelluloses. Hemicellulose, which was already released from any architectural constraints, seemed to be hydrolyzed more extensively than the pectins. The ability of the beta-galactanases to markedly hydrolyze pectin and hemicellulose suggests that galactans provide a structural cross-linkage between the cell wall components. Collectively, the results support the case for a functional relevance of the papaya enzymes in softening related changes during ripening.
    Matched MeSH terms: Glycoside Hydrolases/metabolism*
  14. Pui LP, Mohammed AS, Ghazali HM
    Acta Sci Pol Technol Aliment, 2020 9 27;19(3):319-331.
    PMID: 32978914 DOI: 10.17306/J.AFS.0804
    BACKGROUND: 5'-Phosphodiesterase (5'-PDE) is an enzyme that hydrolyzes RNA to form 5'-inosine monophosphate (5'-IMP) and 5'-guanosine monophosphate (5'-GMP). These 5'-nucleotides can function as flavor enhancers. Adzuki beans (Vigna angularis L.) are found to be high in 5'-PDE.

    METHODS: 5'-phosphodiesterase (5'-PDE) enzyme was characterized from adzuki beans, in which the optimum pH and temperature were determined. In addition, the stability of 5'-PDE was assessed at different pH and temperature. The effects of cations and EDTA were evaluated to characterize the 5'-PDE enzymes further.

    RESULTS: The alkaline 5'-phosphodiesterase has an optimum pH of 8.5. This enzyme is also thermostable, with an optimum temperature of 80°C. The stability in terms of temperature and pH was also determined, and was found to be stable in the pH range of 7.0-8.5. This enzyme was found to retain more than 80% of its activity for 4 days at 60 and 65°C. In addition, the effects of 14 different metal ions, 4 types of detergents and ethylenediaminetetraacetic acid (EDTA) on 5'-PDE were studied. Ca2+, K+, Mg2+ and Li+ activated 5'-PDE while Na+, Zn2+, Ni+, Hg+, Cu2+, Pb2+, Fe2+, Al3+, Ba2+ and Co2+ were inhibitory. EDTA, Triton X-100 and sodium dodecyl sulfate (SDS) were strong inhibitors of 5'-PDE, while Tween 80 and Tween 20 were slightly inhibitory. The effects of cations and EDTA suggest that 5'-PDE from adzuki beans is a metalloenzyme.

    CONCLUSIONS: Although 5'-PDE from adzuki beans has a high temperature optimum of 80°C, the enzyme is more stable at 60°C, and different cations affected the activity of the enzyme differently.

    Matched MeSH terms: Phosphoric Diester Hydrolases/chemistry*
  15. Shavandi A, Hu Z, Teh S, Zhao J, Carne A, Bekhit A, et al.
    Food Chem, 2017 Jul 15;227:194-201.
    PMID: 28274422 DOI: 10.1016/j.foodchem.2017.01.099
    Squid pens were subjected to alkali hydrolysis to extract chitin and chitosan. Proteins present in the alkaline extraction wastewater were recovered at pH 3, 4, 5 and 6, and were subjected to hydrolysis by trypsin, pepsin and a bacterial protease called HT for 1, 2, 4 and 24h. Hydrolysis of the extracted proteins with either trypsin or HT generated more antioxidant activity than hydrolysis with pepsin. Higher ACE-inhibitory activity was generated in the trypsin and pepsin hydrolysates than in the HT hydrolysate. Squid pen protein recovered from chitosan processing waste alkaline solution can be a potential source of bioactive peptides for addition to foods. The antioxidant and ACE-inhibitory activities of the extracted proteins were initially low and increased upon incubation with the proteases. Pepsin generated significantly lower (P<0.05) antioxidant activities compared to trypsin and HT, while trypsin and pepsin hydrolysates exhibited higher ACE-inhibitory activity than HT (P<0.05).
    Matched MeSH terms: Peptide Hydrolases/metabolism
  16. Muthukumaravel K, Priyadharshini M, Kanagavalli V, Vasanthi N, Ahmed MS, Musthafa MS, et al.
    Environ Monit Assess, 2022 Oct 21;195(1):10.
    PMID: 36269455 DOI: 10.1007/s10661-022-10554-2
    Phenol, an aromatic chemical commonly found in domestic and industrial effluents, upon its introduction into aquatic ecosystems adversely affects the indigenous biota, the invertebrates and the vertebrates. With the increased demand for agrochemicals, a large amount of phenol is released directly into the environment as a byproduct. Phenol and its derivatives tend to persist in the environment for longer periods which in turn poses a threat to both humans and the aquatic ecosystem. In our current study, the response of Labeo rohita to sublethal concentrations of phenol was observed and the results did show a regular decrease in biochemical constituents of the targeted organs. Exposure of Labeo rohita to sublethal concentration of phenol (22.32 mg/L) for an epoch of 7, 21 and 28 days shows a decline in lipid, protein, carbohydrate content and phosphatase activity in target organs such as the gills, muscle, intestine, liver and kidney of the fish. The present study also aims to investigate the toxic effects of phenol with special reference to the haematological parameters of Labeo rohita. At the end of the exposure period, the blood of the fish was collected by cutting the caudal peduncle with a surgical scalpel. And it was observed that the red blood corpuscle count (RBC), white blood corpuscle (WBC), haemoglobin count (Hb), packed cell volume (PCV), mean corpuscular volume (MCV), mean corpuscular haemoglobin (MCH) and mean corpuscular haemoglobin concentration (MCHC) values showed a decline after exposure to phenol for 7 days, while white blood corpuscle (WBC) shows an increased count. At 21 days and 28 days, all the haematological parameters showed a significant decrease.
    Matched MeSH terms: Phosphoric Monoester Hydrolases/metabolism
  17. Romano N, Ashikin M, Teh JC, Syukri F, Karami A
    Environ Pollut, 2018 Jun;237:1106-1111.
    PMID: 29157968 DOI: 10.1016/j.envpol.2017.11.040
    Silver barb Barbodes gonionotus fry were exposed to polyvinyl chloride (PVC) fragments at increasing concentrations of 0.2, 0.5 and 1.0 mg/L for 96 h, following which whole body histological evaluation and analysis of the digestive enzymes trypsin and chymotrypsin were performed. Whole body trypsin and chymotrypsin activities increased significantly in fish exposed to 0.5 and 1.0 mg/L PVC as compared those exposed to zero or 0.2 mg/L PVC. In fish exposed to all tested concentrations, PVCs were observed in both the proximal and distal intestine, and fish exposed to 0.5-1.0 and 1.0 mg/L PVC, respectively, and these particles were associated with localized thickening of the mucosal epithelium. No tissue damage was evident in any other internal organs or gills. This lack of damage may be attributed to the absence of contaminants associated with the PVC fragments and their relatively smooth surface. The increased whole body trypsin and chymotrypsin activities may indicate an attempt to enhance digestion to compensate for epithelial thickening of the intestine and/or to digest the plastics.
    Matched MeSH terms: Peptide Hydrolases/metabolism*
  18. Naganthran A, Masomian M, Rahman RNZRA, Ali MSM, Nooh HM
    Molecules, 2017 Sep 19;22(9).
    PMID: 28925972 DOI: 10.3390/molecules22091577
    The use of T1 lipase in automatic dishwashing detergent (ADD) is well established, but efficiency in hard water is very low. A new enzymatic environmentally-friendly dishwashing was formulated to be efficient in both soft and hard water. Thermostable enzymes such as T1 lipase from Geobacillus strain T1, Rand protease from Bacillussubtilis strain Rand, and Maltogenic amylase from Geobacillus sp. SK70 were produced and evaluated for an automatic dishwashing detergent formulation. The components of the new ADD were optimized for compatibility with these three enzymes. In compatibility tests of the enzymes with different components, several criteria were considered. The enzymes were mostly stable in non-ionic surfactants, especially polyhydric alcohols, Glucopon UP 600, and in a mixture of sodium carbonate and glycine (30:70) buffer at a pH of 9.25. Sodium polyacrylate and sodium citrate were used in the ADD formulation as a dispersing agent and a builder, respectively. Dishwashing performance of the formulated ADDs was evaluated in terms of percent of soil removed using the Leenert's Improved Detergency Tester. The results showed that the combination of different hydrolysis enzymes could improve the washing efficiency of formulated ADD compared to the commercial ADD "Finish" at 40 and 50 C.
    Matched MeSH terms: Glycoside Hydrolases; Peptide Hydrolases
  19. Amid M, Manap MY, Zohdi NK
    Biomed Res Int, 2014;2014:259238.
    PMID: 25328883 DOI: 10.1155/2014/259238
    The thermoalkaline protease enzyme from pitaya (Hylocereus polyrhizus) waste was purified by a factor of 221.2 with 71.3% recovery using ammonium sulphate precipitation, gel filtration, and cation exchange chromatography. Gel filtration chromatography together with sodium dodecyl sulphate gel electrophoresis (SDS-PAGE) revealed that the enzyme is monomeric with a molecular weight of 26.7 kDa. The apparent K m and V max of the protease were 2.8 mg/mL and 31.20 u/min, respectively. The optimum pH and temperature were 8.0 and 70°C. The enzyme was highly active and stable over a wide pH range (from pH 3.0 to pH 11.0 with the optimum activity at pH 8.0). The protease has broad specificity toward azocasein, casein, hemoglobin, and gelatine. Activity of the enzyme was inhibited by Fe(2+) and Zn(2+), while protease activity was increased in the presence of Ca(2+) and Mg(2+) and Cu(2+) by factors of 125%, 110%, and 105%, respectively. The alkaline protease showed extreme stability toward surfactants and oxidizing agent. The purified protease exhibited extreme stability in the presence of organic solvents and inhibitors. In addition, the enzyme was relativity stable toward organic solvents and chelating agents, such as ethylenediaminetetraacetic acid (EDTA). The enzyme, derived from pitaya peel, possesses unique characteristics and could be used in various industrial and biotechnological applications.
    Matched MeSH terms: Peptide Hydrolases/classification; Peptide Hydrolases/isolation & purification*; Peptide Hydrolases/chemistry*
  20. Kahar UM, Chan KG, Salleh MM, Hii SM, Goh KM
    Int J Mol Sci, 2013;14(6):11302-18.
    PMID: 23759984 DOI: 10.3390/ijms140611302
    An amylopullulanase of the thermophilic Anoxybacillus sp. SK3-4 (ApuASK) was purified to homogeneity and characterized. Though amylopullulanases larger than 200 kDa are rare, the molecular mass of purified ApuASK appears to be approximately 225 kDa, on both SDS-PAGE analyses and native-PAGE analyses. ApuASK was stable between pH 6.0 and pH 8.0 and exhibited optimal activity at pH 7.5. The optimal temperature for ApuASK enzyme activity was 60 °C, and it retained 54% of its total activity for 240 min at 65 °C. ApuASK reacts with pullulan, starch, glycogen, and dextrin, yielding glucose, maltose, and maltotriose. Interestingly, most of the previously described amylopullulanases are unable to produce glucose and maltose from these substrates. Thus, ApuASK is a novel, high molecular-mass amylopullulanase able to produce glucose, maltose, and maltotriose from pullulan and starch. Based on whole genome sequencing data, ApuASK appeared to be the largest protein present in Anoxybacillus sp. SK3-4. The α-amylase catalytic domain present in all of the amylase superfamily members is present in ApuASK, located between the cyclodextrin (CD)-pullulan-degrading N-terminus and the α-amylase catalytic C-terminus (amyC) domains. In addition, the existence of a S-layer homology (SLH) domain indicates that ApuASK might function as a cell-anchoring enzyme and be important for carbohydrate utilization in a streaming hot spring.
    Matched MeSH terms: Glycoside Hydrolases/isolation & purification; Glycoside Hydrolases/metabolism*; Glycoside Hydrolases/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links