OBJECTIVE: The aim of this study was to assess the diagnostic characteristics of inferior turbinate tissue biopsy sIgE in asymptomatic and rhinitic patients.
METHODS: A diagnostic cross-sectional study was undertaken, involving patients who underwent inferior turbinate surgery with or without other surgical interventions. Inferior turbinate tissue biopsy was performed during surgery and was assessed for allergen sIgE (dust mite, grass [temperate or subtropical], and animal epithelium) using an automated immunoassay. Tissue sIgE was assessed among asymptomatic patients and those with nasal symptoms. Data were presented as median (interquartile range). A receiver operating curve was used to predict the diagnostic utility of turbinate tissue sIgE in determining allergic rhinitis.
RESULTS: A total of 160 patients (41.89 ± 14.65 years, 36.9% females) were included. The median tissue sIgE concentration among the asymptomatic nonatopic group of patients was 0.09 (0.08-0.10) kUA/L and tissue sIgE > 0.10 kUA/L was determined as a positive threshold. Inferior turbinate tissue sIgE was shown to be a predictive test for allergic rhinitis (area under curve: 0.87, 95% confidence interval: 0.84-0.90) with 90% sensitivity and 89% negative predictive value.
CONCLUSION: Inferior turbinate tissue biopsy sIgE is a sensitive tool to predict allergic rhinitis. The threshold value of 0.1 kUA/L corresponded well with the asymptomatic nonatopic group of patients. This method detects sIgE in the nasal mucosa and may be a useful test for allergic rhinitis in future research.
METHODS: Human respiratory epithelial cells were serially passaged using a co-culture system and a conventional dispase-dissociation technique. The growth kinetics and gene expression levels of the cultured respiratory epithelial cells were compared. Four genes were investigated, namely cytokeratin-18, a marker for ciliated and secretory epithelial cells; cytokeratin-14, a marker for basal epithelial cells; MKI67, a proliferation marker; and MUC5B, a marker for mucin secretion. Immunocytochemical analysis was performed using monoclonal antibodies against the high molecular-weight cytokeratin 34 beta E12, cytokeratin 18, and MUC5A to investigate the protein expression from cultured respiratory epithelial cells.
RESULTS: Respiratory epithelial cells cultured using both methods maintained polygonal morphology throughout the passages. At passage 1, co-cultured respiratory epithelial showed a 2.6-times higher growth rate compared to conventional dispase dissociation technique, and 7.8 times higher at passage 2. Better basal gene expression was observed by co-cultured respiratory epithelial cells compared to dispase dissociated cells. Immunocytochemical analyses were positive for the respiratory epithelial cells cultured using both techniques.
CONCLUSION: Co-culture system produced superior quality of cultured human respiratory epithelial cells from the nasal turbinates as compared to dispase dissociation technique.