RESULT: The screening of six physical conditions by Plackett-Burman Design has identified pH, inoculum size and incubation time as exerting significant effects on lipase production. These three conditions were further optimised using, Box-Behnken Design of Response Surface Methodology, which predicted an optimum medium comprising pH 6, 24 h incubation time and 2% inoculum size. T1 lipase activity of 2.0 U/mL was produced with a biomass of OD600 23.0.
CONCLUSION: The process of using RSM for optimisation yielded a 3-fold increase of T1 lipase over medium before optimisation. Therefore, this result has proven that T1 lipase can be produced at a higher yield in P. guilliermondii.
METHODS AND RESULTS: Gene annotation of PbTS revealed that the inferred peptide sequence of PbTS comprises 1,680 bp nucleotides encoding 559 amino acids with an estimated molecular mass of 65.2 kDa and a pI value of 5.4. A similarity search against GenBank showed that PbTS shares similarities with the previously published partial sequence of P. bellina (ABW98504.1) and Phalaenopsis equestris (XP_020597359.1 and ABW98503.1). Intriguingly, the phylogenetic analysis places the PbTS gene within the TPS-a group. In silico analysis of PbTS demonstrated stable interactions with farnesyl pyrophosphate (FPP), geranyl pyrophosphate (GPP), and geranylgeranyl pyrophosphate (GGPP). To verify this activity, an in vitro enzyme assay was performed on the PbTS recombinant protein, which successfully converted FPP, GPP, and GGPP into acyclic sesquiterpene β-farnesene, yielding approximately 0.03 mg/L. Expressional analysis revealed that the PbTS transcript was highly expressed in P. bellina, but its level did not correlate with β-farnesene levels across various flowering time points and stages.
CONCLUSION: The insights gained from this study will enhance the understanding of terpenoid production in P. bellina and aid in the discovery of novel fragrance-related genes in other orchid species.
OBJECTIVE: The aim of the present review is to critically discuss various surgical implications and level of evidence of most commonly employed bone graft substitutes for spinal fusion.
METHOD: Data was collected via electronic search using "PubMed", "SciFinder", "ScienceDirect", "Google Scholar", "Web of Science" and a library search for articles published in peer-reviewed journals, conferences, and e-books.
RESULTS: Despite having exceptional inherent osteogenic, osteoinductive, and osteoconductive features, clinical acceptability of autografts (patient's own bone) is limited due to several perioperative and postoperative complications i.e., donor-site morbidities and limited graft supply. Alternatively, allografts (bone harvested from cadaver) have shown great promise in achieving acceptable bone fusion rate while alleviating the donor-site morbidities associated with implantation of autografts. As an adjuvant to allograft, demineralized bone matrix (DBM) has shown remarkable efficacy of bone fusion, when employed as graft extender or graft enhancer. Recent advances in recombinant technologies have made it possible to implant growth and differentiation factors (bone morphogenetic proteins) for spinal fusion.
CONCLUSION: Selection of a particular bone grafting biotherapy can be rationalized based on the level of spine fusion, clinical experience and preference of orthopaedic surgeon, and prevalence of donor-site morbidities.