Consumers' demand is increasing for safe foods without impairing the phytochemical and sensory quality. In turn, it has increased research interest in the exploration of innovative food processing technologies. Cold plasma technology is getting popularity now days owing to its high efficacy in decontamination of microbes in fruit and fruit-based products. As a on-thermal approach, plasma processing maintains the quality of fruits and minimizes the thermal effects on nutritional properties. Cold plasma is also exploited for inactivating enzymes and degrading pesticides as both are directly related with quality loss and presently are most important concerns in fresh produce industry. The present review covers the influence of cold plasma technology on reducing microbial risks and enhancing the quality attributes in fruits.
Time-varying binary gravitational search algorithm (TVBGSA) is proposed for predicting antidiabetic activity of 134 dipeptidyl peptidase-IV (DPP-IV) inhibitors. To improve the performance of the binary gravitational search algorithm (BGSA) method, we propose a dynamic time-varying transfer function. A new control parameter, μ , is added in the original transfer function as a time-varying variable. The TVBGSA-based model was internally and externally validated based on
Q
int
2
,
Q
L G O
2
,
Q
B o o t
2
,
M S
E
t r a i n
,
Q
e x t
2
,
M S
E
t e s t
, Y-randomization test, and applicability domain evaluation. The validation results indicate that the proposed TVBGSA model is robust and not due to chance correlation. The descriptor selection and prediction performance of TVBGSA outperform BGSA method. TVBGSA shows higher
Q
int
2
of 0.957,
Q
L G O
2
of 0.951,
Q
B o o t
2
of 0.954,
Q
e x t
2
of 0.938, and lower
M S
E
t r a i n
and
M S
E
t e s t
compared to obtained results by BGSA, indicating the best prediction performance of the proposed TVBGSA model. The results clearly reveal that the proposed TVBGSA method is useful for constructing reliable and robust QSARs for predicting antidiabetic activity of DPP-IV inhibitors prior to designing and experimental synthesizing of new DPP-IV inhibitors.
Novel biosensor architecture based on nanocrystalline cellulose (NCC)/CdS quantum dots (QDs) nanocomposite was developed for phenol determination. This nanocomposite was prepared with slight modification of nanocrystalline cellulose (NCC) with cationic surfactant of cetyltriammonium bromide (CTAB) and further decorated with 3-mercaptopropionic acid (3-MPA) capped CdS QDs. The nanocomposite material was then employed as scaffold for immobilization of tyrosinase enzyme (Tyr). The electrocatalytic response of Tyr/CTAB-NCC/QDs nanocomposite towards phenol was evaluated using differential pulse voltammetry (DPV). The current response obtained is proportional to the concentration of phenol which attributed to the reduction of o-quinone produced at the surface of the modified electrode. Under the optimal conditions, the biosensor exhibits good linearity towards phenol in the concentration range of 5-40 μM (R2 = 0.9904) with sensitivity and limit of detection (LOD) of 0.078 μA/μM and 0.082 μM, respectively.
Xanthine oxidase (XO) is the enzyme responsible for the catabolism of purines and their conversion into uric acid. XO is thus the target for the treatment of hyperuricemia and gout. For more than 50 years the only XO inhibitor drug available on the market was the purine analogue allopurinol. In the last decade there has been a resurgence in the search for new inhibitors of XO, as the activity of XO and hyperuricemia have also been associated with a variety of conditions such as diabetes, hypertension, and other cardiovascular diseases. In recent years the non-purine inhibitor febuxostat was approved in Europe and the USA for the treatment of hyperuricemia. This drug was followed by another XO inhibitor called topiroxostat. This review discusses the molecular structures and activities of the multiple classes of inhibitors that have been developed since the discovery of allopurinol, with a brief review of the molecular interactions between inhibitors and XO active site residues for the most important molecules. The challenges ahead for the discovery of new inhibitors of XO with novel chemical structures are discussed.
A biofilm is a community of microorganisms attached to a surface and embedded in a matrix of extracellular polymeric substances. Biofilms confer resistance towards conventional antibiotic treatments; thus, there is an urgent need for newer and more effective antimicrobial agents that can act against these biofilms. Due to this situation, various studies have been done to investigate the anti-biofilm effects of natural products including bioactive compounds extracted from microorganisms such as Actinobacteria. This review provides an insight into the anti-biofilm potential of Actinobacteria against various pathogenic bacteria, which hopefully provides useful information, guidance, and improvements for future antimicrobial studies. Nevertheless, further research on the anti-biofilm mechanisms and compound modifications to produce more potent anti-biofilm effects are required.
The objective of this study was to compare the antioxidant activity and cytotoxicity of Durio zibethinus M. (Durian) leaf extract from two extraction methods. Ultrasound-assisted extraction and Accelerated-solvent extraction were used to produce crude extract. The results revealed that UAE achieved 3× higher in total phenolic content in the leaf extract compared to ASE. DPPH radical scavenging activity was 4.6× higher in leaf extract from ASE. No significant differences reported in ferric reducing power, and total flavonoid content of the leaf extract between the two methods. Cytotoxicity via MTT assay demonstrated no significant differences in cell viability upon exposure to the leaf extract from both methods. This suggested that they were appropriate in producing Durio zibethinus M. leaf extract for end use application in food related product. Both ensured similar level of safety in Durio zibethinus M. leaf extract as a new potential ingredient for the food industry.
Conventional cancer treatment techniques show several limitations including low or no specificity and consequently a low efficacy in discriminating between cancer cells and healthy cells. Recent nanotechnology developments have introduced smart and novel therapeutic nanomaterials that take advantage of various targeting approaches. The use of nanotechnology in medicine and, more specifically, drug delivery is set to spread even more rapidly than it has over the past two decades. Currently, many nanoparticles (NPs) are under investigation for drug delivery including those for cancer therapy. Targeted nanomaterials bind selectively to cancer cells and greatly affect them with only a minor effect on healthy cells. Gold nanoparticles (Au-NPs), specifically, have been identified as significant candidates for new cancer therapeutic modalities because of their biocompatibility, easy functionalization and fabrication, optical tunable characteristics, and chemophysical stability. In the last decade, there has been significant research on Au-NPs and their biomedical applications. Functionalized Au-NPs represent highly attractive and promising candidates for drug delivery, owing to their unique dimensions, tunable surface functionalities, and controllable drug release. Further, iron oxide NPs due to their "superparamagnetic" properties have been studied and have demonstrated successful employment in numerous applications. In targeted drug delivery systems, drug-loaded iron oxide NPs can accumulate at the tumor site with the aid of an external magnetic field. This can lead to incremental effectiveness in drug release to the tumor site and vanquish cancer cells without harming healthy cells. In order for the application of iron oxide NPs in the human body to be realized, they should be biodegradable and biocompatible to minimize toxicity. This review illustrates recent advances in the field drug and small molecule delivery such as fluorouracil, folic acid, doxorubicin, paclitaxel, and daunorubicin, specifically when using gold and iron oxide NPs as carriers of anticancer therapeutic agents.
Matched MeSH terms: Gold/chemistry*; Iron/chemistry*; Metal Nanoparticles/chemistry*
For the past decade, much attention was focused on polysaccharide natural resources for various purposes. Throughout the works, several efforts were reported to prepare new function of chitosan by chemical modifications for renewable energy, such as fuel cell application. This paper focuses on synthesis of the chitosan derivative, namely, O-nitrochitosan which was synthesized at various compositions of sodium hydroxide and reacted with nitric acid fume. Its potential as biopolymer electrolytes was studied. The substitution of nitro group was analyzed by using Attenuated Total Reflectance Fourier Transform Infra-Red (ATR-FTIR) analysis, Nuclear Magnetic Resonance (NMR) and Elemental Analysis (CHNS). The structure was characterized by X-ray Diffraction (XRD) and its thermal properties were examined by using differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). Whereas, the ionic conductivity of the samples was analyzed by electrochemical impedance spectroscopy (EIS). From the IR spectrum results, the nitro group peaks of O-nitrochitosan, positioned at 1646 and 1355 cm-1, were clearly seen for all pH media. At pH 6, O-nitrochitosan exhibited the highest degree of substitution at 0.74 when analyzed by CHNS analysis and NMR further proved that C-6 of glucosamine ring was shifted to the higher field. However, the thermal stability and glass transition temperatures were decreased with acidic condition. The highest ionic conductivity of O-nitrochitosan was obtained at ~10-6 cm-1. Overall, the electrochemical property of new O-nitrochitosan showed a good improvement as compared to chitosan and other chitosan derivatives. Hence, O-nitrochitosan is a promising biopolymer electrolyte and has the potential to be applied in electrochemical devices.
8-OxodGTP is generated by the reaction between dGTP and reactive oxygen species and a considered mutagenic nucleotide. It can be incorporated into the duplex DNA during replication processes by the DNA polymerase, and thus the repair enzyme removes oxodGTP from the nucleotide pools in living cells. On the other hand, the γ-modified triphosphates show interesting properties for use as biological tools. Therefore, the γ-N-pyrenylalkyl-oxodGTP derivatives were synthesized and their effect on the enzymatic reactions were evaluated. The γ-N-pyrenylmethyl-oxodGTP was found to be accepted by the DNA polymerase just like oxodGTP, but showed a competitive inhibition property for the human oxodGTPase.
Matched MeSH terms: Deoxyguanine Nucleotides/chemistry; DNA-Directed DNA Polymerase/chemistry; Pyrenes/chemistry
Bone fracture, being mainly caused by mechanical stress, requires special and quick attention for a rapid healing. The study presented here aims at formulating nanoparticulate system to overcome the solubility issues of lovastatin. The lovastatin nanoparticles were successfully prepared by ionotropic gelation method using chitosan and tri-polyphosphate as polymers. Thus prepared nanoparticles were found to be smooth and spherical with average particle size of 87 nm and encapsulation efficiency of 86.5%. The in-vitro drug release was found to be almost 89.6% in the first 360 minutes. Artificial fracture was produced in female Wistar rats at right leg using fracture apparatus. After administration of lovastatin nanoparticles or saline solution, the respective groups were observed for various parameters. The X-ray imaging showed that lovastatin accelerated bone healing, compared to control. The growth of animals was not hampered by lovastatin by any means. The radiographic examination confirmed a role of lovastatin in increasing bone density. The histological study showed the broken, proliferated and discontinued trabecullae in the control, while at the same time point, the normal, thick, continuous and connected trabecullae were observed in animals administered with lovastatin nanoparticles. The biomechanical studies showed high breaking resilience and minimum bone brittleness in animals injected with lovastatin nanoparticles. Considering these observations we state that lovastatin helps in rapid bone healing after fracture via increasing the bone density.
Two-dimensional (2D) layered nanomaterials have triggered an intensive interest due to the fascinating physiochemical properties with the exceptional physical, optical and electrical characteristics that transpired from the quantum size effect of their ultra-thin structure. Among the family of 2D nanomaterials, molybdenum disulfide (MoS2) features distinct characteristics related to the existence of direct energy bandgap, which significantly lowers the leakage current and surpasses other 2D materials. In this overview, we expatiate the novel strategies to synthesize MoS2 that cover techniques such as liquid exfoliation, chemical vapour deposition, mechanical exfoliation, hydrothermal reaction, and Van Der Waal epitaxial growth on the substrate. We extend the discussion on the recent progress in biosensing applications of the produced MoS2, highlighting the important surface-to-volume of ultrathin MoS2 structure, which enhances the overall performance of the devices. Further, envisioned the missing piece with the current MoS2-based biosensors towards developing the future strategies.
Microwave assisted hydrothermal treatment (MHTC) was compared with torrefaction in terms of carbonization efficiency and physicochemical characteristics of char products. The utilization of produced char was optimized for composite solid biofuel production. The results show that MHTC significantly improved the binding capability of the microwave hydrochar (MHC) particles during co-densification with unprocessed biomass and coal. One possible contributor to the improved binding is the pseudo lignin formed during the MHTC, which led to a better interlocking of the feedstock particles and promoted the solid bridge formation. Composite pellet prepared with 80 wt% of torrefaction char (TC-120), 10 wt% of microwave hydrochar (MHC-30), and 10 wt% of Coal-04 showed a higher heating value of 24.54 MJ/kg and energy density of 26.43 GJ/m3, which is significantly higher than that of the raw cotton stalk pellet (16.77 MJ/kg and 18.76 GJ/m3, respectively), showing great promise as a solid biofuel. The moisture resistance and oxidation reactivity are also significantly improved. The results demonstrate that MHCs provides dual functionalities in acting as binder and fuel promoter in the production of composite biofuel. This study can provide new insight into the unique functions of MHC during fuel application, which demonstrates the great potential of applying MHTC in energy recovery from lignocellulosic biomass.
Plant seed oil is often incorporated into the cream emulsions to provide multifunctional effects on the skin. In the current study, pumpkin seed oil (PSO) was used to develop a stable oil-in-water emulsion. The study aimed to optimise PSO cream formulation and determine the synergistic effect of the PSO with vitamin E oil added. The physical properties, antioxidant activities and storage stability of the formulations were analysed. Besides, the synergistic effect of the best formulation was analysed based on α-tocopherol content using ultra-high performance liquid chromatography (UHPLC). The storage stability test was assessed upon storing at 25 ± 2°C and 40 ± 2°C for 12 weeks. The best formulation (20% PSO, vitamin E oil and beeswax) selected showed physically and microbiologically stable. The incorporation of vitamin E oil into the formulation produced with PSO was found to be compatible, as it showed a synergistic effect in the amount of α-tocopherol content (combination index (CI) = 0.98). Thus, PSO had shown its potency to be incorporated into the topical products with a promising potential in delivering additional properties that can nourish the skin.
Heavy metal contamination in aqueous system has attracted global attention due to the toxicity and carcinogenicity effects towards living bodies. Among available removal techniques, adsorptive removal by nanosized materials such as metal oxide, metal organic frameworks, zeolite and carbon-based materials has attracted much attention due to the large active surface area, large number of functional groups, high chemical and thermal stability which led to outstanding adsorption performance. However, the usage of nanosized materials is restricted by the difficulty in separating the spent adsorbent from aqueous solution. The shift towards the use of adsorptive composite membrane for heavy metal ions removal has attracted much attention due to the synergistic properties of adsorption and filtration approaches in a same chamber. Thus, this review critically discusses the development of nanoadsorbents and adsorptive nanocomposite membranes for heavy metal removal over the last decade. The adsorption mechanism of heavy metal ions by the advanced nanoadsorbents is also discussed using kinetic and isotherm models. The challenges and future prospect of adsorptive membrane technology for heavy metal removal is presented at the end of this review.
Andrographolide (AGP), a naturally occurring bioactive compound, has been investigated as a lead compound in cancer drug development. Its multidimensional therapeutic effects have raised interest among medicinal chemists, which has led to extensive structural modification of the compound, resulting in analogues with improved pharmacological and pharmaceutical properties. Nevertheless, the analogues with the improved properties need to be rigorously studied to identify drug-like lead compounds. We scrutinised articles published from 2012 to 2018, to objectively provide opinions on the mechanisms of action of AGP and its analogues, as well as their potential as viable anticancer drugs. Preclinical and clinical data, along with the extensive medicinal chemistry efforts, indicate the compounds are potential anticancer agents with specific value in treating recalcitrant cancers such as pancreatic and lung cancers.
Chitosan with abundant functional groups is regarded as important ingredients for preparing aerogel materials in life science. The biocompatibility and biodegradability of chitosan aerogels, coupled to the variety of chemical functionalities they include, result in them promising carriers for drug delivery. Moreover, chitosan aerogels as drug delivery vehicles can offer improved drug bioavailability and drug loading capacity due to their highly porous network, considerably large specific surface area and polycationic feature. The major focus of this review lies in preparation methods of chitosan aerogels from acidic aqueous solution and chitosan solution in Ionic Liquids (ILs). In addition, chitosan aerogels as drug delivery carriers are introduced in detail and expected to inspire readers to create new kind of drug delivery system based on chitosan aerogels. Finally, growing points and perspectives of chitosan aerogels in drug delivery system are given.
Chitosan nanoparticles (CNP) were synthesized via ionic gelation and used for the preparation of starch-based nanocomposite films containing different concentration of CNP (0, 5, 10, 15, 20% w/w). Antimicrobial properties of starch/CNP films was evaluated via in vitro (disc diffusion analysis) and in vivo (microbial count in wrapped cherry tomatoes) study. It was found that inhibitory zone of the 15 and 20% of starch/CNP films were clearly observed for all the tested bacteria including Bacillus cereus, Staphylococcus aureus, Escherichia coli and Salmonella typhimurium. In vivo study revealed that the starch/CNP film (15% w/w) was more efficient to inhibit the microbial growth in cherry tomatoes (7 × 102 CFU/g) compared to neat starch film (2.15 × 103 CFU/g) thus confirmed the potential application of the films as antimicrobial food packaging.
Maltooligosaccharides (MOSs) are emerging oligosaccharides in food-based applications and can be synthesized through the enzymatic synthesis of maltogenic amylase from Bacillus lehensis G1 (Mag1). However, the lack of enzyme stability makes this approach unrealistic for industrial applications. The formation of cross-linked enzyme aggregates (CLEAs) is a promising tool for improving enzyme stability, and the substrate accessibility problem of CLEA formation was overcome by the addition of porous agents to generate porous CLEAs (p-CLEAs). However, p-CLEAs exhibited high enzyme leaching and low solvent tolerance. To address these problems, p-CLEAs of Mag1 (Mag1-p-CLEAs) were entrapped in calcium alginate beads (CA). Mag1-p-CLEAs-CA prepared with 2.5% (w/v) sodium alginate and 0.6% (w/v) calcium chloride yielded 53.16% (17.0 U/mg) activity and showed a lower deactivation rate and longer half-life than those of entrapped free Mag1 (Mag1-CA) and entrapped non-porous Mag1-CLEAs (Mag1-CLEAs-CA). Moreover, Mag1-p-CLEAs-CA exhibited low enzyme leaching and high tolerance in various solvents compared to Mag1-p-CLEAs. A kinetic study revealed that Mag1-p-CLEAs-CA exhibited relatively high affinity towards beta-cyclodextrin (β-CD) (Km = 0.62 mM). MOSs (300 mg/g) were synthesized by Mag1-p-CLEAs-CA at 50 °C. Finally, the reusability of Mag1-p-CLEAs-CA makes them as a potential biocatalyst for the continuous synthesis of MOSs.
Freeze-thaw cycles (FTC) pretreatment was employed before the vacuum freeze-drying of garlic slices, aimed at improving the drying process and the quality of the end product. Cell viability, water status, internal structure, flavor, chemical composition and thermogravimetric of garlic samples were evaluated. The results indicated that FTC pretreatment reduced the drying time (22.22%-33.33%) and the energy consumption (14.25%-15.50%), owing to the water loss, the increase in free water, and the formation of porous structures. The FTC pretreatment improved thermal stability, flavor and chemical composition content of dried products. The antioxidant activity of polysaccharides extracted from FTC pretreated dried products was higher than that of the unpretreated dried product due to the reduction in polysaccharide molecular weight. This research could pave a route for future production of dried garlic slices having good quality by using the FTC pretreatment, with lower energy consumption and shorter drying time.
Ectoine production using inexpensive and renewable biomass resources has attracted great interest among the researchers due to the low yields of ectoine in current fermentation approaches that complicate the large-scale production of ectoine. In this study, ectoine was produced from corn steep liquor (CSL) and soybean hydrolysate (SH) in replacement to yeast extract as the nitrogen sources for the fermentation process. To enhance the bacterial growth and ectoine production, biotin was added to the Halomonas salina fermentation media. In addition, the effects addition of surfactants such as Tween 80 and saponin on the ectoine production were also investigated. Results showed that both the CSL and SH can be used as the nitrogen source substitutes in the fermentation media. Higher amount of ectoine (1781.9 mg L-1) was produced in shake flask culture with SH-containing media as compared to CSL-containing media. A total of 2537.0 mg L-1 of ectoine was produced at pH 7 when SH-containing media was applied in the 2 L batch fermentation. Moreover, highest amount of ectoine (1802.0 mg L-1) was recorded in the SH-containing shake flask culture with addition of 0.2 μm mL-1 biotin. This study demonstrated the efficacy of industrial waste as the nutrient supplement for the fermentation of ectoine production.