METHODS: The internalization of type II FIPV WSU 79-1146 in Crandell-Rees Feline Kidney (CrFK) cells was visualized using a fluorescence microscope, and optimization prior to phenotype microarray (PM) study was performed. Then, four types of Biolog Phenotype MicroArray™ plates (PM-M1 to PM-M4) precoated with different carbon and nitrogen sources were used to determine the metabolic profiles in FIPV-infected cells.
RESULTS: The utilization of palatinose was significantly low in FIPV-infected cells; however, there were significant increases in utilizing melibionic acid, L-glutamine, L-glutamic acid and alanyl-glutamine (Ala-Gln) compared to non-infected cells.
CONCLUSION: This study has provided the first insights into the metabolic profiling of a feline coronavirus infection in vitro using PMs and deduced that glutamine metabolism is one of the essential metabolic pathways for FIPV infection and replication. Further studies are necessary to develop strategies to target the glutamine metabolic pathway in FIPV infection.
METHODS: Bone thickness of the IZC region of 50 young adults (25 males and 25 females) aged 18-30 years were evaluated using cone-beam computed tomography images. The infrazygomatic bone thickness along the distobuccal root of the permanent maxillary first molar was assessed at various insertion angles (40° to 75° i.r.t the maxillary occlusal plane) with an increment of 5°. Student's t-test was used to compare the IZC bone thickness and height at the orthodontic miniscrew insertion site for males and females on the right and left sides.
RESULTS: The bone thickness of the IZC region above the distobuccal root of the permanent maxillary first molar was estimated between 4.39±0.25 mm and 9.03±0.45 mm for insertion angles from 40° to 75° to the maxillary occlusal plane. The corresponding OMSI insertion heights were 17.71±0.61 mm to 13.69±0.75 mm, respectively, above the maxillary occlusal plane. There were statistically significant gender and side-wise variations in bone thickness at the IZC area and insertion height.
CONCLUSION: The safe position for OMSI placement at the IZC was 13.69-16 mm from the maxillary occlusal plane with an insertion angle between 55° and 75°. These parameters provide the optimum placement of OMSIs along the distobuccal root of the permanent maxillary first molar.
MATERIALS AND METHODS: This was a pilot prospective, randomized trial of women aged ≥18 years with SUI symptoms who underwent PFMEs at University Malaya Medical Centre from October 2011 to October 2013. The patients were randomly divided into two groups: control (PFMEs alone) and VKD (PFMEs with VKD biofeedback). The patients underwent 16 weeks of pelvic floor training, during which they were assessed using Australian pelvic floor questionnaires and modified Oxford scales for pelvic floor muscle strength at week 0, 4, and 16.
RESULTS: Forty patients were recruited (control 19, VKD 21). Three patients in the control group dropped out during week 16 training, whereas the VKD group had no dropouts. The VKD group reported significantly earlier improvement in SUI scores, as assessed by the Australian pelvic floor questionnaires (P = .035) at week 4. However, there was no significant difference between the groups' SUI scores at week 16. Pelvic floor muscle strength was significantly better in the VKD group at week 4 (P = .025) and week 16 (P = 0.001). The subjective cure rate was similar in both groups at week 16 (62.5% for control and 61.9% for VKD) (P = 0.742).
CONCLUSION: Using the VKD resulted in significant early improvement in SUI scores, and pelvic muscle strength had improved significantly by the end of the study. The VKD proved useful as an adjunct for pelvic floor training.