Displaying publications 401 - 420 of 1808 in total

Abstract:
Sort:
  1. Omar TFT, Aris AZ, Yusoff FM, Mustafa S
    Mar Pollut Bull, 2018 Jun;131(Pt A):284-293.
    PMID: 29886949 DOI: 10.1016/j.marpolbul.2018.04.019
    This baseline assessment reports on the occurrence, distribution, and sources of emerging organic contaminants (EOCs) in tropical coastal sediments of anthropogenically impacted Klang River estuary, Malaysia. Bisphenol A was the highest concentration detected at 16.84 ng g-1 dry weight, followed by diclofenac (13.88 ng g-1 dry weight) and E1 (12.47 ng g-1 dry weight). Five compounds, namely, amoxicillin, progesterone, diazinon, bisphenol A, and E1, were found in all sampling stations assessed, and other compounds such as primidone, diclofenac, testosterone, E2, and EE2 were ubiquitously present in sediment samples, with percentage of detection range from 89.04% to 98.38%. Organic carbon content and pH were the important factors controlling the fate of targeted compounds in the tropical estuarine sediment. On the basis of the literature from other studies, the sources of EOCs are thought to be from wastewater treatment plants, domestic/medical waste discharge, livestock activities, industrial waste discharge, and agricultural activities.
  2. Hamid HA, Ramli ANM, Zamri N, Yusoff MM
    Food Chem, 2018 Nov 01;265:253-259.
    PMID: 29884381 DOI: 10.1016/j.foodchem.2018.05.033
    Eleven compounds were identified during profiling of polyphenols by UPLC-QTOF/MS. In abundance was quercetin-3-O-α-l-arabinofuranoside in M. malabathricum ethanolic leaves extract while 6-hydroxykaempferol-3-O-glucoside was present in the leaves extract of M. decenfidum (its rare variety). TPC and TFC were significantly higher in M. decemfidum extract than M. malabathricum extract. During DPPH, FRAF and β-carotene bleaching assays, M. decemfidum extract exhibited greater antioxidant activity compared to M. malabathricum extract. Effect of M. malabathricum and M. decemfidum extracts on viability of MDA-MB-231 cell at concentrations 6.25-100 μg/mL were evaluated for 24, 48 and 72 h. After 48 and 72 h treatment, M. malabathricum and M. decemfidum leaves extracts exhibited significant activity in inhibiting MDA-MB-231 cancer cell line with M. malabathricum extract being more cytotoxic. M. malabathricum and M. imbricatum serves as potential daily dietary source of natural phenolics and to improve chemotherapeutic effectiveness.
  3. Low CF, Md Yusoff MR, Kuppusamy G, Ahmad Nadzri NF
    J Fish Dis, 2018 Dec;41(12):1771-1781.
    PMID: 30270534 DOI: 10.1111/jfd.12895
    Macrobrachium rosenbergii nodavirus (MrNV) has been threatening the giant freshwater prawn aquaculture since 1997, causing white tail disease in the prawn species that leads to 100% lethality of the infected postlarvae. Comprehension of the viral infectivity and pathogenesis at molecular biology level has recently resolved the viral capsid protein and evidenced the significant difference in the viral structural protein compared to other nodaviruses that infect fish and insect. Cumulative researches have remarked the proposal to assert MrNV as a member of new genus, gammanodavirus to the Nodaviridae family. The significance of molecular biology in MrNV infection is being highlighted in this current review, revolving the viral life cycle from virus binding and entry into host, virus replication in host cell, to virus assembly and release. The current review also highlights the emerging aptamers technology that is also known as synthetic antibody, its application in disease diagnosis, and its prophylactic and therapeutic properties. The future perspective of synthetic virology technology in understanding viral pathogenesis, as well as its potential in viral vaccine development, is also discussed.
  4. Zulkifli FH, Hussain FSJ, Harun WSW, Yusoff MM
    Int J Biol Macromol, 2019 Feb 01;122:562-571.
    PMID: 30365990 DOI: 10.1016/j.ijbiomac.2018.10.156
    This study is focusing to develop a porous biocompatible scaffold using hydroxyethyl cellulose (HEC) and poly (vinyl alcohol) (PVA) with improved cellular adhesion profiles and stability. The combination of HEC and PVA were synthesized using freeze-drying technique and characterized using SEM, ATR-FTIR, TGA, DSC, and UTM. Pore size of HEC/PVA (2-40 μm) scaffolds showed diameter in a range of both pure HEC (2-20 μm) and PVA (14-70 μm). All scaffolds revealed high porosity above 85%. The water uptake of HEC was controlled by PVA cooperation in the polymer matrix. After 7 days, all blended scaffolds showed low degradation rate with the increased of PVA composition. The FTIR and TGA results explicit possible chemical interactions and mass loss of blended scaffolds, respectively. The Tg values of DSC curved in range of HEC and PVA represented the miscibility of HEC/PVA blend polymers. Higher Young's modulus was obtained with the increasing of HEC value. Cell-scaffolds interaction demonstrated that human fibroblast (hFB) cells adhered to polymer matrices with better cell proliferation observed after 7 days of cultivation. These results suggested that biocompatible of HEC/PVA scaffolds fabricated by freeze-drying method might be suitable for skin tissue engineering applications.
  5. Alim S, Vejayan J, Yusoff MM, Kafi AKM
    Biosens Bioelectron, 2018 Dec 15;121:125-136.
    PMID: 30205246 DOI: 10.1016/j.bios.2018.08.051
    The innovation of nanoparticles assumes a critical part of encouraging and giving open doors and conceivable outcomes to the headway of new era devices utilized as a part of biosensing. The focused on the quick and legitimate detecting of specific biomolecules using functionalized gold nanoparticles (Au NPs), and carbon nanotubes (CNTs) has turned into a noteworthy research enthusiasm for the most recent decade. Sensors created with gold nanoparticles or carbon nanotubes or in some cases by utilizing both are relied upon to change the very establishments of detecting and distinguishing various analytes. In this review, we will examine the current utilization of functionalized AuNPs and CNTs with other synthetic mixes for the creation of biosensor prompting to the location of particular analytes with low discovery cutoff and quick reaction.
  6. Leong SW, Chia SL, Abas F, Yusoff K
    Eur J Med Chem, 2018 Sep 05;157:716-728.
    PMID: 30138803 DOI: 10.1016/j.ejmech.2018.08.039
    In the present study, a series of forty-five asymmetrical meta-methoxylated diarylpentanoids have been synthesized, characterized and evaluated for their in-vitro anti-cancer potential. Among the forty-five analogs, three compounds (20, 33 and 42) have been identified as lead compounds due to their excellent inhibition against five human cancer cell lines including SW620, A549, EJ28, HT1080 and MCF-7. Structure-activity relationship study on cytotoxicity of tested compounds suggested that the presence of meta-oxygenated phenyl ring played a critical role in enhancing their cytotoxic effects. Compounds 33 and 42 in particular, exhibited strongest cytotoxicity against tested cell lines with the IC50 values ranging from 1.1 to 4.3 μM. Subsequent colony formation assay on SW620 cell line showed that both compounds 33 and 42 possessed strong anti-proliferative activity. In addition, flow cytometry based experiments revealed that these compounds could trigger intracellular ROS production thus inducing G2/M-phase cell arrest and apoptosis. All these results suggested that poly meta-oxygenated diarylpentnoid is a promising scaffold which deserved further modification and investigation in the development of natural product-based anti-cancer drug.
  7. Jahan S, Alias YB, Bakar AFBA, Yusoff IB
    J Environ Sci (China), 2018 Oct;72:140-152.
    PMID: 30244741 DOI: 10.1016/j.jes.2017.12.022
    The toxicity and kinetic uptake potential of zinc oxide (ZnO) and titanium dioxide (TiO2) nanomaterials into the red bean (Vigna angularis) plant were investigated. The results obtained revealed that ZnO, due to its high dissolution and strong binding capacity, readily accumulated in the root tissues and significantly inhibited the physiological activity of the plant. However, TiO2 had a positive effect on plant physiology, resulting in promoted growth. The results of biochemical experiments implied that ZnO, through the generation of oxidative stress, significantly reduced the chlorophyll content, carotenoids and activity of stress-controlling enzymes. On the contrary, no negative biochemical impact was observed in plants treated with TiO2. For the kinetic uptake and transport study, we designed two exposure systems in which ZnO and TiO2 were exposed to red bean seedlings individually or in a mixture approach. The results showed that in single metal oxide treatments, the uptake and transport increased with increasing exposure period from one week to three weeks. However, in the metal oxide co-exposure treatment, due to complexation and competition among the particles, the uptake and transport were remarkably decreased. This suggested that the kinetic transport pattern of the metal oxide mixtures varied compared to those of its individual constituents.
  8. Jahan S, Alias YB, Bakar AFBA, Yusoff IB
    Chemosphere, 2019 Feb;217:213-222.
    PMID: 30415119 DOI: 10.1016/j.chemosphere.2018.11.015
    Carbon based materials are emerging as a sustainable alternative to their metal-oxide counterparts. However, their transport behavior under natural aqueous environment is poorly understood. This study investigated the transport and retention profiles of carbon nanoparticles (CNPs) and graphene oxide quantum dots (GOQDs) through column experiments in saturated porous media. CNPs and GOQDs (30 mg/L) were dispersed in natural river water (RW) and passed through the column at a flow rate of 1 mL/min, which mimicking the natural water flow rate. After every 10 min, the column effluents were collected and the mass recovery and retention profiles were monitored. Results indicated that the transport of both carbonaceous colloids was predominantly controlled by surface potential and ionic composition of natural water. The CNPs with its high surface potential (-40 mV) exhibited more column transport and was less susceptible to solution pH (5.6-6.8) variation as compared to GOQDs (-24 mV). The results showed that, monovalent salt (NaCl) was one of the dominating factors for the retention and transport of carbonaceous colloids compared to divalent salt (CaCl2). Furthermore, the presence of natural organic matter (NOM) increased the transport of both carbonaceous colloids and thereby decreases the tendency for column retention.
  9. Alim S, Kafi AKM, Rajan J, Yusoff MM
    Int J Biol Macromol, 2019 Feb 15;123:1028-1034.
    PMID: 30465828 DOI: 10.1016/j.ijbiomac.2018.11.171
    This work reports on a novel glucose biosensor based on co-immobilization of glucose oxidase (GOx) and horseradish peroxidase with polymerized multiporous nanofiber (MPNFs) of SnO2 onto glassy carbon electrode with chitosan. Multiporous nanofibers of SnO2 were synthesized by electrospinning method from the tin precursor which possesses high surface area good electrical conductivity, and the nanofibers were polymerized with polyaniline (PANI). GOx and HRP were then co-immobilized with the nanofibers on the surface of the glassy carbon electrode by using chitosan. The polymerized nanofibers play a significant role in facilitating the direct electron transfer between the electroactive center of the immobilized enzyme and the electrode surface. The morphology of the nanofiber and polymerized nanofiber has been evaluated by field emission scanning electron microscopy (FESEM). Cyclic Voltammetry and amperometry were employed to study and optimize the performance of the fabricated biosensor. The PANI/SnO2-NF/GOx-HRP/Ch/GC biosensor displayed a linear amperometric response towards the glucose concentration range from 5 to 100 μM with a detection limit of 1.8 μM (S/N = 3). Also, the anti-interference study and real sample analysis was investigated. Furthermore, the biosensor reported in this work exhibited excellent stability, reproducibility, and repeatability.
  10. Kwan PP, Banerjee S, Shariff M, Yusoff FM
    Vet World, 2019 Sep;12(9):1416-1421.
    PMID: 31749575 DOI: 10.14202/vetworld.2019.1416-1421
    Background and Aim: Malachite green (MG) is an effective antiparasitic and antifungal chemical for treatment of fish. However, MG is reported to be a potential carcinogen. Yet, it is widely used in aquaculture despite its prohibition for use in food-producing animals by the EU and USFDA. The present study quantified MG residues and evaluated the oxidative stress in red tilapia when exposed to subacute and sublethal concentrations of MG.

    Materials and Methods: Red tilapia exposed to subacute (0.105 mg/L for 20 days) and sublethal (0.053 mg/L for 60 days) concentrations were evaluated for total plasma protein, total immunoglobulin, nitroblue tetrazolium activity, malondialdehyde, reduced glutathione (GSH), and catalase (CAT) activity levels. The residues of MG and leuco-MG (LMG) were also quantified in the fish muscles using liquid chromatography-tandem mass spectrometry.

    Results: Fish exposed to subacute concentration showed higher CAT on day 10 in the liver and days 5 and 15 in the spleen, whereas in fish exposed to the sublethal concentration, higher levels of GSH were observed on day 1 in the kidney and day 50 in the spleen. Fish muscle was able to accumulate the sum of MG and LMG of 108.04 µg/kg for subacute (day 20) and 82.68 µg/kg for sublethal (day 60).

    Conclusion: This study showed that red tilapia was able to adapt to the stress caused by exposure to MG at sublethal concentration.

  11. Muhammad Yusoff F, Wong KK, Mohd Redzwan N
    Autoimmunity, 2020 02;53(1):8-20.
    PMID: 31771364 DOI: 10.1080/08916934.2019.1693545
    Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by the breakdown of immune tolerance leading to excessive inflammation and tissue damage. Imbalance in the levels of cytokines represents one of the multifactorial causes of SLE pathogenesis and it contributes to disease severity. Deregulated levels of T helper type 1 (Th1), type 2 (Th2), and type 17 (Th17) cytokines have been associated with autoimmune inflammation. Growing evidence has shown deregulated levels of Th1, Th2, and Th17 cytokines in SLE patients compared to healthy controls associated with disease activity and severity. In this review, we describe and discuss the levels of Th1, Th2, and Th17 cytokines in SLE patients, and clinical trials involving Th1, Th2, and Th17 cytokines in SLE patients. In particular, with the exception of IL-2, IL-4, and TGF-β1, the levels of Th1, Th2, and Th17 cytokines are increased in SLE patients associated with disease severity. Current phase II or III studies involve therapeutic antibodies targeting IFN-α and type I IFN receptor, while low-dose IL-2 therapy is assessed in phase II clinical trials.
  12. Mat Yusoff M, Niranjan K, Mason OA, Gordon MH
    J Sci Food Agric, 2020 Mar 15;100(4):1588-1597.
    PMID: 31773733 DOI: 10.1002/jsfa.10167
    BACKGROUND: Moringa oleifera (MO) kernel oil is categorized as a high-oleic oil that resembles olive oil. However, unlike olive trees, MO trees are largely present in most subtropical and tropical countries. In these countries, therefore, the benefits of oleic acid can be obtained at a cheaper price through the consumption of MO kernel oil. This study reports on the effect of different extraction methods on oxidative properties of MO kernel oil during storage for 140 days at 13, 25, and 37 °C.

    RESULTS: All aqueous enzymatic extraction (AEE)-based methods generally resulted in oil with better oxidative properties and higher tocopherol retention than the use of solvent. Prior to AEE, boiling pre-treatment deactivated the hydrolytic enzymes and preserved the oil's quality. In contrast, high-pressure processing (HPP) pre-treatment accelerated hydrolytic reaction and resulted in an increase in free fatty acids after 140 days at all temperatures. No significant changes were detected in the oils' iodine values and fatty acid composition. The tocopherol content decreased significantly at both 13 and 25 °C after 60 days in the oil from SE method, and after 120 days in oils from AEE-based methods.

    CONCLUSION: These findings are significant in highlighting the extraction methods resulting in crude MO kernel oil with greatest oxidative stability in the storage conditions tested. Subsequently, the suitable storage condition of the oil prior to refining can be determined. Further studies are recommended in determining the suitable refining processes and parameters for the MO kernel oil prior to application in variety food products. © 2019 Society of Chemical Industry.

  13. Damulira E, Yusoff MNS, Omar AF, Mohd Taib NH
    Sensors (Basel), 2019 May 14;19(10).
    PMID: 31091779 DOI: 10.3390/s19102226
    Numerous instruments such as ionization chambers, hand-held and pocket dosimeters of various types, film badges, thermoluminescent dosimeters (TLDs) and optically stimulated luminescence dosimeters (OSLDs) are used to measure and monitor radiation in medical applications. Of recent, photonic devices have also been adopted. This article evaluates recent research and advancements in the applications of photonic devices in medical radiation detection primarily focusing on four types; photodiodes - including light-emitting diodes (LEDs), phototransistors-including metal oxide semiconductor field effect transistors (MOSFETs), photovoltaic sensors/solar cells, and charge coupled devices/charge metal oxide semiconductors (CCD/CMOS) cameras. A comprehensive analysis of the operating principles and recent technologies of these devices is performed. Further, critical evaluation and comparison of their benefits and limitations as dosimeters is done based on the available studies. Common factors barring photonic devices from being used as radiation detectors are also discussed; with suggestions on possible solutions to overcome these barriers. Finally, the potentials of these devices and the challenges of realizing their applications as quintessential dosimeters are highlighted for future research and improvements.
  14. Usman UA, Yusoff I, Raoov M, Hodgkinson J
    Environ Geochem Health, 2020 Oct;42(10):3079-3099.
    PMID: 32180058 DOI: 10.1007/s10653-020-00543-0
    The research study was carried out to evaluate trace metals (Pb, Cd, Se, Al, Mn, Cu, Zn, Fe, As, Ni, Cr, and Ag) concentrations in groundwater of Lorong Serai 4, Hulu Langat, Selangor, Malaysia. Additionally, the research study focused on determining non-carcinogenic and carcinogenic health risks, sources of the contaminants, and effective remediation methods. The results show that the concentration levels of Pb, Cd, Se, Al, Cu, Zn, Ni, Cr, and Ag are lower than their corresponding permissible limits, while Fe, Mn, and As concentrations exceed their acceptable limit. The hazard index of the groundwater in the area exceeded the acceptable limit, showing the rate of carcinogenic and non-carcinogenic health effects associated with the water. The findings also indicate that the lifetime cancer risk is high compared to the maximum limits of lifetime cancer risk from the drinking water (10-6 to 10-4). The groundwater geochemical data of the area are used in establishing the source of Fe, Mn, and As metal ions. Evaluation of Fe2+/Fe3+ and S2-/SO42- redox couples and thermodynamic modelling indicates that the groundwater of the area is in redox disequilibrium. The groundwater samples contain aqueous iron sulphate, which is supersaturated, ferrous carbonate and aluminium sulphate that are saturated. The main state of redox disequilibrium is governed by mineral precipitation and dissolution. Aqueous arsenic and manganese are possibly derived from the dissolution of pyrite (arsenopyrite) and amorphous oxide-hydroxides, respectively. The high concentration of iron in the shallow groundwater in the area is primarily the result of silicate rock weathering of ferroan igneous and metamorphic minerals with a minor contribution from the oxidation of iron sulphides. Magnetite coated with graphene oxide (Fe3O4-GO) nanoparticles (NPs) was synthesized and characterized, and the adsorption preliminary experiments were carried out; and the Fe3O4-GO NPs show enhanced removal (Fe > As > Mn) capacity over graphene oxide (GO).
  15. Hilaluddin F, Yusoff FM, Natrah FMI, Lim PT
    Mar Environ Res, 2020 Jun;158:104935.
    PMID: 32217292 DOI: 10.1016/j.marenvres.2020.104935
    To assess the effects of environmental changes on phytoplankton community structure in a mangrove ecosystem, phytoplankton distribution in Matang mangrove, Malaysia was examined. Phytoplankton and water samples, and in situ environmental parameters from three estuaries with differing levels of disturbance were examined monthly for one year. Two species, Cyclotella choctawhatcheeana and Skeletonema costatum, were dominant in the least disturbed and moderately disturbed areas, respectively. Skeletonema costatum was also the most dominant in the most disturbed area. Significant differences in phytoplankton density and biodiversity between the least and most disturbed areas were also observed. Principle component 1 (salinity, conductivity, total solids/water transparency and nitrogenous compounds) and PC2 (dissolved oxygen, pH and temperature) explained 60.4% of the total variance. This study illustrated that changes in phytoplankton community structure in Matang mangrove estuaries were significantly correlated with environmental parameters which were in turn influenced by ecosystem disturbance levels as well as seasonal changes.
  16. Muhd Yusoff NH, Zainol Rashid Z, Sulong A, Shafiee MN, Ismail Z
    Malays J Pathol, 2019 Dec;41(3):351-354.
    PMID: 31901921
    INTRODUCTION: Neisseria meningitidis infections often cause severe meningitis as well as bacteraemia. However, cellulitis in meningococcal diseases have rarely been described. Here, we report a case of right lower limb cellulitis caused by N. meningitidis.

    CASE REPORT: A 69-year-old woman presented with fever and lower limb swelling. She had diabetes mellitus, hypertension, dyslipidaemia and a history of surgical resection of vulvar carcinoma. N. meningitidis was isolated from her blood culture.

    DISCUSSION: This report provides additional evidence in support of N. meningitidis as a cause of cellulitis.

  17. Shirajum Monir M, Yusoff SM, Mohamad A, Ina-Salwany MY
    J Aquat Anim Health, 2020 06;32(2):65-76.
    PMID: 32331001 DOI: 10.1002/aah.10099
    The production of tilapia Oreochromis spp. is rapidly growing throughout the world, but atypical motile aeromonad septicemia (MAS) is a current threat to the tilapia farming industry. The etiological agent of this disease is usually Aeromonas hydrophila. Mortality rates due to MAS are frequently high, resulting in a devastating negative impact on this industry worldwide; therefore, proper control measures regarding both prevention and treatment are necessary. Although vaccines against MAS for tilapia are available, their effectiveness is entirely dependent on the specific strain of problematic bacteria. Until now, whole-cell inactivated A. hydrophila vaccines for tilapia have exhibited the highest level of protection over live attenuated and recombinant vaccines. Among the various vaccine administration systems, only intraperitoneal (i.p.) injections of the A. hydrophila vaccine into tilapia were found to provide prominent immune protection. Vaccine efficacy was primarily measured by using the i.p. injection challenge model and estimating the relative percent survival of the immunized tilapia. Freund's incomplete adjuvant showed to be the most effective for tilapia MAS vaccines. In this review, multiple factors that directly or indirectly influence the efficacy of MAS vaccines for tilapia (adjuvants, challenge models, immunization doses and duration, and size of vaccinated fish) are discussed.
  18. Zhang Y, Liu X, Yusoff M, Razali MH
    Scanning, 2021;2021:3839235.
    PMID: 34630820 DOI: 10.1155/2021/3839235
    Flower-like titanium dioxide (TiO2) nanostructures are successfully synthesized using a hybrid sol-gel and a simple hydrothermal method. The sample was characterized using various techniques to study their physicochemical properties and was tested as a photocatalyst for methyl orange degradation and as an antibacterial material. Raman spectrum and X-ray diffraction (XRD) pattern show that the phase structure of the synthesized TiO2 is anatase with 80-100 nm in diameter and 150-200 nm in length of flower-like nanostructures as proved by field emission scanning electron microscope (FESEM). The energy-dispersive X-ray spectroscopy (EDS) analysis of flower-like anatase TiO2 nanostructure found that only titanium and oxygen elements are present in the sample. The anatase phase was confirmed further by a high-resolution transmission electron microscope (HRTEM) and selected area electron diffraction (SAED) pattern analysis. The Brunauer-Emmett-Teller (BET) result shows that the sample had a large surface area (108.24 m2/g) and large band gap energy (3.26 eV) due to their nanosize. X-ray photoelectron spectroscopy (XPS) analysis revealed the formation of Ti4+ and Ti3+ species which could prevent the recombination of the photogenerated electron, thus increased the electron transportation and photocatalytic activity of flower-like anatase TiO2 nanostructure to degrade the methyl orange (83.03%) in a short time (60 minutes). These properties also support the good performance of flower-like titanium dioxide (TiO2) nanostructure as an antibacterial material which is comparable with penicillin which is 13.00 ± 0.02 mm inhibition zone against Staphylococcus aureus.
  19. Ahmed Z, Yusoff MS, Kamal NHM, Aziz HA
    Waste Manag Res, 2021 Nov;39(11):1396-1405.
    PMID: 33928820 DOI: 10.1177/0734242X211012775
    The removal of concentrated colour (around 5039 Pt-Co) and chemical oxygen demand (COD; around 4142 mg L-1) from matured landfill leachate through a novel combination of humic acid extraction and coagulation with natural oil palm trunk starch (OPTS) was investigated in this study. Central composite design from response surface methodology of Design Expert-10 software executed the experimental design to correlate experimental factors with desired responses. Analysis of variance developed the quadratic model for four factors (e.g. coagulant dosage, slow mixing speed and time and centrifugation duration) and two responses (% removal of colour, COD). The model confirmed the highest colour (84.96%) and COD (48.84%) removal with a desirability function of 0.836 at the optimum condition of 1.68 g L-1 coagulant dose, 19.11 rpm slow mixing speed, 16.43 minutes for mixing time and 35.75 minutes for centrifugation duration. Better results of correlation coefficient (R2 = 0.98 and 0.96) and predicted R2 (0.94 and 0.84) indicates the model significance. Electron microscopic images display the amalgamation of flocs through bridging. Fourier transforms infrared spectra confirmed the existence of selected organic groups in OPTS, which eventually signifies the applied method.
  20. Kuppusamy P, Yusoff MM, Maniam GP, Govindan N
    Saudi Pharm J, 2016 Jul;24(4):473-84.
    PMID: 27330378 DOI: 10.1016/j.jsps.2014.11.013
    The field of nanotechnology mainly encompasses with biology, physics, chemistry and material sciences and it develops novel therapeutic nanosized materials for biomedical and pharmaceutical applications. The biological syntheses of nanoparticles are being carried out by different macro-microscopic organisms such as plant, bacteria, fungi, seaweeds and microalgae. The biosynthesized nanomaterials have been effectively controlling the various endemic diseases with less adverse effect. Plant contains abundant natural compounds such as alkaloids, flavonoids, saponins, steroids, tannins and other nutritional compounds. These natural products are derived from various parts of plant such as leaves, stems, roots shoots, flowers, barks, and seeds. Recently, many studies have proved that the plant extracts act as a potential precursor for the synthesis of nanomaterial in non-hazardous ways. Since the plant extract contains various secondary metabolites, it acts as reducing and stabilizing agents for the bioreduction reaction to synthesized novel metallic nanoparticles. The non-biological methods (chemical and physical) are used in the synthesis of nanoparticles, which has a serious hazardous and high toxicity for living organisms. In addition, the biological synthesis of metallic nanoparticles is inexpensive, single step and eco-friendly methods. The plants are used successfully in the synthesis of various greener nanoparticles such as cobalt, copper, silver, gold, palladium, platinum, zinc oxide and magnetite. Also, the plant mediated nanoparticles are potential remedy for various diseases such as malaria, cancer, HIV, hepatitis and other acute diseases.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links