Displaying publications 421 - 440 of 857 in total

Abstract:
Sort:
  1. Ismail, I., Anuar, M.S., Shamsudin, R.
    MyJurnal
    Green coffee beans are stored for a certain period and under certain conditions until they are finally utilized. The storage period may depend on customer demand while the storage conditions depend on where the coffee beans are stored. Thus, this research emphasizes the physicochemical changes that occur in Liberica coffee beans during storage under the Malaysian
    climate (average temperature and relative humidity of 29.33ºC and 71.75% respectively). The changes in the physico-chemical (coffee size, mass, densities, colour, proximate analysis, sucrose, chlorogenic acid content) and microbiological (yeast and mould count) properties were evaluated during eight months of storage. After the storage, the physical properties of the coffee changed as the coffee beans expanded in size, reduced in mass and density and became brighter in colour. Changes in the chemical properties were also detected where the moisture decreased and the ash content increased. In addition, the sucrose level was found to decrease with a corresponding increase in chlorogenic acid. During storage, the counts of yeast and mould were reduced. Model equations describing the changes in the properties were developed. The overall conclusion was that the coffee beans reduced in quality during storage.
    Matched MeSH terms: Climate
  2. Pau, J.S., Pao, William K.S., Shaharin A. Sulaiman, Halawa, E.
    MyJurnal
    Unnecessary air conditioning for thermal comfort causeds energy over consumption. As air conditioning has become irreversible, one of the solutions is to run air conditioners at minimal energy without sacrificing the comfort of occupants in air conditioned space. The approach to thermal comfort is the key to successful thermal comfort research. Fanger's model has been adopted by ASHRAE and ISO standards but its universal applications have been debated. In recent decades, adaptive model that regards humans as adaptive beings has been accepted. The static and deterministic nature of Fanger's model has limited its application in hot, humid countries, such as Malaysia. This research aims to integrate the theories of Fanger and adaptive model into a new model which is applicable in Malaysia by taking the case in lecture halls. The new Fanger's Adaptive Model is established through normalization of the thermal sensation distribution obtained in thermal chamber by Fanger. The PMV range of 80% satisfaction has been widened to -1.3 to +1.3 which adopted the theories of adaptive model, where humans have the ability to adapt to environment. The research also includes field observations on Malaysian students clothing and activity levels in lecture halls. Previous field study results which proposed 25.3°C comfort temperature for lecture halls in Malaysia together with the field observation results were used to verify the new model. About 95% of PMV falls within the new range at this comfort temperature. It is proven that Fanger's model is semi-adaptive and probabilistic and the integration of Fanger's Adaptive Model is more accurate in predicting thermal comfort in hot and humid climate.
    Matched MeSH terms: Climate
  3. Mohd Armi, A.S., Afiza, A.S., Mohd Ramzi, A.
    ASM Science Journal, 2012;6(2):149-151.
    MyJurnal
    Over the last century, the earth’s climate has changed. It is a serious global, long-term problem which involves complex interactions. A lot of evidence suggests that most of the observed factors contributing to the crisis over the last 50 years can be attributed to human activities. Malaysia has always been vulnerable to extreme climatic events such as typhoons, floods and drought. We expect climate change to exacerbate these vulnerabilities. To ensure, that our water resources will always be secure and ready for use. We need to create awareness in the public and the policy makers so that they will acknowledge that the climate change issue is real. They also need to accept that actions to adapt with our vulnerabilities should be immediately put in place. We can do this by integrating the various sector policies and securing the participation of all stakeholders in Malaysia and other countries.
    Matched MeSH terms: Climate Change
  4. Anisa Ahmad, Nurhanis Syazni Roslan, Jamilah Al-Muhammady Mohammad, Muhamad Saiful Bahri Yusoff
    MyJurnal
    Introduction: Clinical educators around the globe agreed that an optimal educational climate is a vital aspect for effective learning to take place. This study was conducted to evaluate the perceptions of graduates toward the quality of clinical education climate in USM medical school. Methods: A cross-sectional study was conducted on a cohort of USM medical graduates. Questionnaires were administered to the graduates to measure their perception on four aspects of clinical education climate that include structure of clinical rotation, clinical teaching and learning activities, quality of lecturers and end clinical rotation assessment across 13 clinical rotations. The graduates were requested to respond to seven-Likert scale ranging from 1(poor) to 7(excellent). Scores of equal to or more than 5 was considered as positive areas, scores of between 4 and 5 were considered as areas for improvement, and scores less than 4 were considered as areas of concern. Data analysis was performed using SPSS version 20. Results: A total of 105 (96.3%) graduates responded to the questionnaire. Results showed only the paediatric rotation obtained positive ratings on all areas of the clinical rotation structure. With regards to teaching and learning activities, the graduates scored most of the clinical rotations between 4 and 5. With regards to the quality of lecturers, most of the clinical rotations obtained score more than 5. Most of the areas related to the end-of-assessment of clinical rotation obtained score more than 5 except for the feedback adequacy, indicating inadequacy of feedback they received. Conclusion: USM medical graduates positively perceived the quality of lecturers during clinical training, however several areas of clinical education related to clinical rotation structure, clinical teaching and learning activities, and feedback practice were perceived by them as areas for improvement. Medical schools should introduce strategic measures to address the concerns raised by the graduates to ensure the best clinical learning experience are provided to the current and future medical students.
    Matched MeSH terms: Climate
  5. Ghazally Ismail
    ASM Science Journal, 2011;5(1):73-74.
    MyJurnal
    Human activity has ‘very likely’ been the primary cause of global warming since the start of the Industrial Revolution (18th–19th century). As a new player in industrial transformation, Malaysia can choose to ignore the warnings of global warming. blame. This may not augur well. Release of greenhouse gases have been categorically linked to climate change and global warming. In her march towards industrialization, Malaysia too has contributed to the release of greenhouse gases. Apart from those arising from natural sources, the industrial sector in Malaysia also releases other types of gases such as the fluorocarbons. This is evident from the worsening air quality in some of our cities. (Copied from article).
    Matched MeSH terms: Climate Change
  6. Loganathan, P.
    ASM Science Journal, 2011;5(1):75-76.
    MyJurnal
    In December 2009, at the UN Climate Change Conference COP 15 in Copenhagen, the Prime Minister of Malaysia, the Rt. Hon. Mohd Najib Abdul Razak, had announced that “Malaysia is adopting an indicator of a voluntary reduction of up to 40% in terms of emissions intensity of GDP by the year 2020 compared to 2005 levels. This indicator is conditional on receiving the transfer of technology and finance of adequate and effective levels from Annex 1 partners, that correspond to what is required in order to achieve this indicator”. Malaysia also needs to decouple its GDP from its current relatively high carbon-based energy demand. In trying to meet both these targets, we need to intensify our research efforts in energy-based areas. As government funding in R&D is limited as the aim is for research to be private-sector driven, and with the grim global economic scenario today, it is most unlikely that Malaysia will get any assistance financially or technologically from Annex 1 nations. It is therefore proposed that Malaysia considers implementing a dedicated carbon cess on petroleum products to fund R&D in the country. (Copied from article).
    Matched MeSH terms: Climate Change
  7. How SW, Lim SY, Lim PB, Aris AM, Ngoh GC, Curtis TP, et al.
    Water Sci Technol, 2018 May;77(9-10):2274-2283.
    PMID: 29757179 DOI: 10.2166/wst.2018.143
    Intensive aeration for nitrification is a major energy consumer in sewage treatment plants (STPs). Low-dissolved-oxygen (low-DO) nitrification has the potential to lower the aeration demand. However, the applicability of low-DO nitrification in the tropical climate is not well-understood. In this study, the potential of low-DO nitrification in tropical setting was first examined using batch kinetic experiments. Subsequently, the performance of low-DO nitrification was investigated in a laboratory-scale sequential batch reactor (SBR) for 42 days using real tropical sewage. The batch kinetic experiments showed that the seed sludge has a relatively high oxygen affinity. Thus, the rate of nitrification was not significantly reduced at low DO concentrations (0.5 mg/L). During the operation of the low-DO nitrification SBR, 90% of NH4-N was removed. The active low-DO nitrification was mainly attributed to the limited biodegradable organics in the sewage. Fluorescence in-situ hybridisation and 16S rRNA amplicon sequencing revealed the nitrifiers were related to Nitrospira genus and Nitrosomonadaceae family. Phylogenetic analysis suggests 47% of the operational taxonomic units in Nitrospira genus are closely related to a comammox bacteria. This study has demonstrated active low-DO nitrification in tropical setting, which is a more sustainable process that could significantly reduce the energy footprint of STPs.
    Matched MeSH terms: Tropical Climate
  8. Norzaida Abas, Zalina Mohd Daud, Norazizi Mohamed, Syafrina Abdul Halim
    MyJurnal
    Climate change is undeniably the greatest issue facing our society. Around the globe,
    increasingly unpredictable weather patterns and extreme weather events are
    observed, causing considerable risks to human lives, properties and health safety and
    also on the natural ecosystem. The magnitude and impacts of climate change are
    growing, and particularly in Malaysia, studies show increases in temperature and
    changes in rainfall regimes. Such changes have profound implications, especially for
    coastal communities. Since knowledge and perceptions of the public on climate change
    could affect the success of implemented adaptation and mitigation options, it is
    essential to conduct assessments to gather such information. A public awareness and
    perception study was conducted at Sabak and Tanjung Karang, two coastal
    communities which were affected by changes in sea level and flooding incidences. The
    knowledge level and perceptions of climate change among respondents were assessed
    covering areas such as level of awareness of the respondents, their perceptions of
    climate change issues, their sentiments on climate change and adaptation measures,
    their socio-economic activity and the effect on their lives. Results show that majority
    of respondents were aware of climate change issues and challenges. High levels of
    concern about climate change were expressed with the majority were worried and
    uncertain about the climate change impact and hoped for government measures.
    Almost half of respondents cited significant damage to their properties and reduction
    in income generation. Overall, the results of the present study gave insights of the
    affected parties on perceptions and awareness pertaining to climate change, which
    could potentially be used to promote greater awareness of climate change matters and
    to gauge the public response to related policies and strategies.
    Matched MeSH terms: Climate Change
  9. Sabarinah Sh Ahmad, Noraini Ahmad, Anuar Talib
    MyJurnal
    Safe level of daylighting for artefact conservation in historic buildings is a difficult task to achieve. Previous studies indicated that lighting problems in historic museum galleries were mainly due to unshaded walls that allowed direct sun penetration over the display areas. Ceiling geometry can also affect the daylighting performance significantly, particularly on the interior distribution of light. Malaysia, with hot and humid climate, and tropical sky conditions receives plenty of natural light all year around. The fluxes in natural lighting exposures confirm the need for strategic daylight control programme in the exhibition gallery. The study aims to assess the ceiling geometry contribution for four orientations; North, East, South and West through computer simulations. The research approach was based on comparisons between pitched and flat ceiling simulation output data. Further comparisons were performed with the recommended lighting limits for conservation of artefacts. The comparisons allowed better understanding of light damage issues and highlight the control of daylighting distributions through realistic predictive images and ceiling geometry designs. The results showed that the types of exhibits materials and its placement are affected by the ceiling geometry and constant changes in natural lighting exposure. The study confirms that ceiling geometry can act as a control mechanism with the environment physical features as part of preventive conservation criteria in the exhibition gallery. Thus, a systematic light-monitoring programme in the exhibition gallery is necessary to control illuminance level and cumulative exposure limits, for artefact preservation.
    Matched MeSH terms: Climate
  10. Boakes EH, Isaac NJB, Fuller RA, Mace GM, McGowan PJK
    Conserv Biol, 2018 02;32(1):229-239.
    PMID: 28678438 DOI: 10.1111/cobi.12979
    Over half of globally threatened animal species have experienced rapid geographic range loss. Identifying the parts of species' distributions most vulnerable to local extinction would benefit conservation planning. However, previous studies give little consensus on whether ranges decline to the core or edge. We built on previous work by using empirical data to examine the position of recent local extinctions within species' geographic ranges, address range position as a continuum, and explore the influence of environmental factors. We aggregated point-locality data for 125 Galliform species from across the Palearctic and Indo-Malaya into equal-area half-degree grid cells and used a multispecies dynamic Bayesian occupancy model to estimate rates of local extinctions. Our model provides a novel approach to identify loss of populations from within species ranges. We investigated the relationship between extinction rates and distance from range edge by examining whether patterns were consistent across biogeographic realm and different categories of land use. In the Palearctic, local extinctions occurred closer to the range edge than range core in both unconverted and human-dominated landscapes. In Indo-Malaya, no pattern was found for unconverted landscapes, but in human-dominated landscapes extinctions tended to occur closer to the core than the edge. Our results suggest that local and regional factors override general spatial patterns of recent local extinction within species' ranges and highlight the difficulty of predicting the parts of a species' distribution most vulnerable to threat.
    Matched MeSH terms: Climate Change
  11. Malek, M. A., Heyrani, M., Juneng, Liew
    ASM Science Journal, 2015;9(1):8-19.
    MyJurnal
    In this study, the implementation of the Regional Climate Model into the hydrodynamic model has been applied for streamflow projection on a river located at the south of Peninsular Malaysia within the years 2070 till 2099. The data has been obtained from a Regional Climate Model (RCM), named Précis, on a daily basis. It begins by comparing historical rainfall data generated from Précis versus the actual gauged recorded rainfall data from Department of Irrigation and Drainage Malaysia (DID). The bias of the generated rainfall data has been reduced by statistical techniques. The same has been applied to the future generated rainfall data from 2070 to 2099. Using the generated precipitation data as input to the hydrological model, results in the daily output of river discharge identified as the main contributor of flood occurrences. Based on the results of the hydrological model utilised, e.g. HEC-HMS, comparison was made between the future and historical generated discharge data using Précis between the years 1960 till 1998. Dividing a year into three segments, e.g. January-April, May-August, SeptemberDecember, the results show that there would be a significant drop of peak discharge in the third segment and an increase in discharge during the second segment. The first part remains almost with no changes. As an addition, the drop of the peak shows reduction in the probability of flood occurrences. It also indicates the reduction in water storage capacity which coherently affects the water supply scheme
    Matched MeSH terms: Climate
  12. Yusup Y, Kayode JS, Alkarkhi AFM
    Data Brief, 2018 Aug;19:1477-1481.
    PMID: 30229020 DOI: 10.1016/j.dib.2018.06.020
    Air-sea flux exchanges influence the climate condition and the global carbon-moisture cycle. It is imperative to understand the fundamentals of the natural systems at the tropical coastal ocean and how the transformation takes place over the time. Hence, latent and sensible heat fluxes, microclimate variables, and surface water temperature data were collected using eddy covariance instruments mounted on a platform at a tropical coastal ocean station from November 2015 to October 2017. The research data is to gain the needful knowledge of the energy exchanges in the tropical climatic environment to further improve predictive algorithms or models. Therefore, it is intended that this data report will offer appropriate information for the Monsoonal, and diurnal patterns of latent (LE) and sensible (H) heats and hence, establish the relationship between microclimate variables on the energy fluxes at the peninsular Malaysian tropical coastal ocean.
    Matched MeSH terms: Tropical Climate
  13. Tang KHD
    Sci Total Environ, 2019 Feb 10;650(Pt 2):1858-1871.
    PMID: 30290336 DOI: 10.1016/j.scitotenv.2018.09.316
    PURPOSE: This paper reviews the past and future trends of climate change in Malaysia, the major contributors of greenhouse gases and the impacts of climate change to Malaysia. It also reviews the mitigation and adaptations undertaken, and future strategies to manage the impacts of regional climate change.

    METHODOLOGY: The review encompasses historical climate data comprising mean daily temperature, precipitation, mean sea level and occurrences of extreme weather events. Future climate projections have also been reviewed in addition to scholarly papers and news articles related to impacts, contributors, mitigation and adaptations in relation to climate change.

    FINDINGS: The review shows that annual mean temperature, occurrences of extreme weather events and mean sea level are rising while rainfall shows variability. Future projections point to continuous rise of temperature and mean sea level till the end of the 21st century, highly variable rainfall and increased frequency of extreme weather events. Climate change impacts particularly on agriculture, forestry, biodiversity, water resources, coastal and marine resources, public health and energy. The energy and waste management sectors are the major contributors to climate change. Mitigation of and adaptations to climate change in Malaysia revolve around policy setting, enactment of laws, formulation and implementation of plans and programmes, as well as global and regional collaborations, particularly for energy, water resources, agriculture and biodiversity. There are apparent shortcomings in continuous improvement and monitoring of the programmes as well as enforcement of the relevant laws.

    ORIGINALITY/VALUE: This paper presents a comprehensive review of the major themes of climate change in Malaysia and recommends pertinent ways forward to fill the gaps of mitigation and adaptations already implemented.

    Matched MeSH terms: Climate Change
  14. Yusup Y, Kayode JS, Alkarkhi AFM
    Data Brief, 2018 Dec;21:13-17.
    PMID: 30310834 DOI: 10.1016/j.dib.2018.09.108
    Data on the micrometeorological parameters and Energy Fluxes at an intertidal zone of a Tropical Coastal Ocean was carried out on an installed eddy covariance instruments at a Muka head station in the north-western end of the Pinang Island (5°28'06''N, 100°12'01''E), Peninsula Malaysia. The vast source of the supply of energy and heat to the hydrologic and earth׳s energy cycles principally come from the oceans. The exchange of energies via air-sea interactions is crucial to the understanding of climate variability, energy, and water budget. The turbulent energy fluxes are primary mechanisms through which the ocean releases the heat absorbed from the solar radiations to the environment. The eddy covariance (EC) system is the direct technique of measuring the micrometeorological parameters which allow the measurement of these turbulent fluxes in the time scale of half-hourly basis at 20 Hz over a long period. The data being presented is the comparison of the two-year seasonality patterns of monsoons variability on the measured microclimate variables in the southern South China Sea coastal area.
    Matched MeSH terms: Climate; Microclimate
  15. Oladosu Y, Rafii MY, Magaji U, Abdullah N, Miah G, Chukwu SC, et al.
    Biomed Res Int, 2018;2018:8936767.
    PMID: 30105259 DOI: 10.1155/2018/8936767
    The associations among yield-related traits and the pattern of influence on rice grain yield were investigated. This evaluation is important to determine the direct and indirect effects of various traits on yield to determine selection criteria for higher grain yield. Fifteen rice genotypes were evaluated under tropical condition at five locations in two planting seasons. The experiment was laid out in a randomized complete block design with three replications across the locations. Data were collected on vegetative and yield components traits. The pooled data based on the analysis of variance revealed that there were significant differences (p < 0.001) among the fifteen genotypes for all the characters studied except for panicle length and 100-grain weight. Highly significant and positive correlations at phenotypic level were observed in grain weight per hill (0.796), filled grains per panicle (0.702), panicles per hill (0.632), and tillers per hill (0.712) with yield per hectare, while moderate positive correlations were observed in flag leaf length to width ratio (0.348), days to flowering (0.412), and days to maturity (0.544). By contrast, unfilled grains per panicle (-0.225) and plant height (-0.342) had a negative significant association with yield per hectare. Filled grains per panicle (0.491) exhibited the maximum positive direct effect on yield followed by grain weight per hill (0.449), while unfilled grain per panicle (-0.144) had a negative direct effect. The maximum indirect effect on yield per hectare was recorded by the tillers per hill through the panicles per hill. Therefore, tillers per hill, filled grains per panicle, and grain weight per hill could be used as selection criteria for improving grain yield in rice.
    Matched MeSH terms: Tropical Climate
  16. Meijaard E, Sherman J, Ancrenaz M, Wich SA, Santika T, Voigt M
    Curr Biol, 2018 11 05;28(21):R1241-R1242.
    PMID: 30399343 DOI: 10.1016/j.cub.2018.09.052
    A recent report, published by the Government of Indonesia with support from the Food and Agricultural Organization and Norway's International Climate and Forest Initiative, states that orangutan populations (Pongo spp.) have increased by more than 10% in Indonesia from 2015 to 2017, exceeding the government target of an annual 2% population increase [1]. This assessment is in strong contrast with recent publications that showed that the Bornean orangutan (P. pygmaeus) lost more than 100,000 individuals in the past 16 years [2] and declined by at least 25% over the past 10 years [3]. Furthermore, recent work has also demonstrated that both Sumatran orangutans (P. abelii) and the recently described Tapanuli orangutan (P. tapanuliensis) lost more than 60% of their key habitats between 1985 and 2007, and ongoing land use changes are expected to result in an 11-27% decline in their populations by 2020 [4,5]. Most scientific data indicate that the survival of these species continues to be seriously threatened by deforestation and killing [4,6,7] and thus all three are Critically Endangered under the International Union for Conservation of Nature's Red List.
    Matched MeSH terms: Climate
  17. Tukimat NNA, Ahmad Syukri NA, Malek MA
    Heliyon, 2019 Sep;5(9):e02456.
    PMID: 31687558 DOI: 10.1016/j.heliyon.2019.e02456
    An accuracy in the hydrological modelling will be affected when having limited data sources especially at ungauged areas. Due to this matter, it will not receiving any significant attention especially on the potential hydrologic extremes. Thus, the objective was to analyse the accuracy of the long-term projected rainfall at ungauged rainfall station using integrated Statistical Downscaling Model and Geographic Information System (SDSM-GIS) model. The SDSM was used as a climate agent to predict the changes of the climate trend in Δ2030s by gauged and ungauged stations. There were five predictors set have been selected to form the local climate at the region which provided by NCEP (validated) and CanESM2-RCP4.5 (projected). According to the statistical analyses, the SDSM was controlled to produce reliable validated results with lesser %MAE (<23%) and higher R. The projected rainfall was suspected to decrease 14% in Δ2030s. All the RCPs agreed the long term rainfall pattern was consistent to the historical with lower annual rainfall intensity. The RCP8.5 shows the least rainfall changes. These findings then used to compare the accuracy of monthly rainfall at control station (Stn 2). The GIS-Kriging method being as an interpolation agent was successfully to produce similar rainfall trend with the control station. The accuracy was estimated to reach 84%. Comparing between ungauged and gauged stations, the small %MAE in the projected monthly results between gauged and ungauged stations as a proved the integrated SDSM-GIS model can producing a reliable long-term rainfall generation at ungauged station.
    Matched MeSH terms: Climate
  18. Yang SR, Yeh YL
    Sains Malaysiana, 2015;44:1677-1683.
    Countering the dangers associated the present extreme climate not only requires continuous improvement of local disaster
    prevention engineering infrastructure but also needs an enhanced understanding of the causes of the disasters. This study
    investigates the geologic hazard risk of 53 slopeland villages in Pingtung county of southern Taiwan. First, remote sensing
    (RS) techniques were utilized to interpret environmental geology and geologic hazard zonation, including dip slope, fault,
    landslide and debris flow. GIS map overlay analysis was used to further identify the extent of the geologic hazard zonation.
    As a final step, field investigation is used to comprehend geologic, topographic conditions and the geologic hazard risk
    specific to each locality. Based on data analysis and field investigation results, this study successfully integrates RS, GIS
    and GPS techniques to construct a geologic hazard risk assessment method of slopeland village. The results of this study
    can be used to promote support for future disaster prevention and disaster mitigation efforts.
    Matched MeSH terms: Climate
  19. Tangang FT, Liew Juneng, Ester Salimun, Kwan MS, Loh JL, Halimatun Muhamad
    Sains Malaysiana, 2012;41:1355-1366.
    This paper provides an overview of the current available scientific knowledge pertaining to climate change and climate variability over Malaysia. Malaysia is situated in the western part of the Maritime Continent of the Southeast Asian region. Hence, regional climate change and climate variability over this region are of central importance to the understanding of climate change in Malaysia. The latest regional climate downscaling study indicates that, depending on the emission scenario, the mean surface temperature over Malaysia would increase by 3-5oC by the end of the 21st century. The mean precipitation is projected to decrease (increase) during Northern Hemisphere winter (summer). However, future variabilities associated with regional phenomena such as the monsoon, El Nino-Southern Oscillation (ENSO), Indian Ocean Dipole (IOD) and Madden-Julian Oscillation (MJO) are largely unknown. Current knowledge on the intensity and frequency of future extreme events (drought and flood) is limited. This is also the case for regional sea level rise and long-term changes in regional seas, especially in the southern region of the South China Sea. We conclude that knowledge gap in the science of climate change over Malaysia and the surrounding region remains wide.
    Matched MeSH terms: Climate Change
  20. Meng Sei Kwan, Fredolin T. Tangang, Liew Juneng
    Sains Malaysiana, 2013;42:1051-1059.
    Mitigating and adapting to the impacts of climate change at regional level require downscaled projection of future climate states. This paper examined the possible changes of future climate extremes over Malaysia based on the IPCC SRES A1B emission scenario. The projected changes at 17 stations were produced by bias correcting the UKMO PRECIS downscaling simulation output. The simulation expected higher probability of rainfall extreme occurrences over the west coast of Peninsular Malaysia during the autumn transitional monsoon period. In addition, possible early monsoon rainfall was projected for certain stations located over East Malaysia. The simulation also projected larger increase of warm temperature extremes but smaller decrease of cold extremes, suggesting asymmetric expansion of the temperature distribution. The impact of the elevated green house gases (GHG) is higher in the night time temperature extremes as compared to the day time temperature extremes. The larger increment of warm night frequencies as compared to the warm day suggests smaller diurnal temperature ranges under the influence of higher greenhouse gases. Stations located in East Malaysia were projected to experience the largest increase of warm night occurrence.
    Matched MeSH terms: Climate Change
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links