Displaying publications 441 - 460 of 556 in total

Abstract:
Sort:
  1. Khan MUA, Al-Thebaiti MA, Hashmi MU, Aftab S, Abd Razak SI, Abu Hassan S, et al.
    Materials (Basel), 2020 Feb 21;13(4).
    PMID: 32098139 DOI: 10.3390/ma13040971
    Advancement and development in bone tissue engineering, particularly that of composite scaffolds, are of great importance for bone tissue engineering. We have synthesized polymeric matrix using biopolymer (β-glucan), acrylic acid, and nano-hydroxyapatite through free radical polymerization method. Bioactive nanocomposite scaffolds (BNSs) were fabricated using the freeze-drying method and Ag was coated by the dip-coating method. The scaffolds have been characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray diffraction analysis (XRD) to investigate their functional groups, surface morphology, and phase analysis, respectively. The pore size and porosity of all BNS samples were found to be dependent on silver concentration. Mechanical testing of all BNS samples have substantial compressive strength in dry form that is closer to cancellous bone. The samples of BNS showed substantial antibacterial effect against DH5 alpha E. coli. The biological studies conducted using the MC3T3-E1 cell line via neutral red dye assay on the scaffolds have found to be biocompatible and non-cytotoxic. These bioactive scaffolds can bring numerous applications for bone tissue repairs and regenerations.
  2. Faizal AM, Elias MH, Jin NM, Abu MA, Syafruddin SE, Zainuddin AA, et al.
    Front Endocrinol (Lausanne), 2024;15:1274376.
    PMID: 38524634 DOI: 10.3389/fendo.2024.1274376
    The leading indicator for successful outcomes in in-vitro fertilization (IVF) is the quality of gametes in oocytes and sperm. Thus, advanced research aims to highlight the parameter in assessing these qualities - DNA fragmentation in sperm and oocyte development capacity (ODC) via evaluation of microenvironments involving its maturation process. Regarding oocytes, most evidence reveals the role of cumulus cells as non-invasive methods in assessing their development competency, mainly via gene expression evaluation. Our review aims to consolidate the evidence of GDF-9 derivatives, the HAS2, GREM1, and PTGS2 gene expression in cumulus cells used as ODC markers in relevant publications and tailored to current IVF outcomes. In addition to that, we also added the bioinformatic analysis in our review to strengthen the evidence aiming for a better understanding of the pathways and cluster of the genes of interest - HAS2, GREM1, and PTGS2 in cumulus cell level. Otherwise, the current non-invasive method can be used in exploring various causes of infertility that may affect these gene expressions at the cumulus cell level. Nevertheless, this method can also be used in assessing the ODC in various cohorts of women or as an improvement of markers following targeted tools or procedures by evaluating the advancement of these gene expressions following the targeted intervention.
  3. Aslam Khan MU, Al-Arjan WS, Binkadem MS, Mehboob H, Haider A, Raza MA, et al.
    Nanomaterials (Basel), 2021 May 17;11(5).
    PMID: 34067844 DOI: 10.3390/nano11051319
    Bone tissue engineering is an advanced field for treatment of fractured bones to restore/regulate biological functions. Biopolymeric/bioceramic-based hybrid nanocomposite scaffolds are potential biomaterials for bone tissue because of biodegradable and biocompatible characteristics. We report synthesis of nanocomposite based on acrylic acid (AAc)/guar gum (GG), nano-hydroxyapatite (HAp NPs), titanium nanoparticles (TiO2 NPs), and optimum graphene oxide (GO) amount via free radical polymerization method. Porous scaffolds were fabricated through freeze-drying technique and coated with silver sulphadiazine. Different techniques were used to investigate functional group, crystal structural properties, morphology/elemental properties, porosity, and mechanical properties of fabricated scaffolds. Results show that increasing amount of TiO2 in combination with optimized GO has improved physicochemical and microstructural properties, mechanical properties (compressive strength (2.96 to 13.31 MPa) and Young's modulus (39.56 to 300.81 MPa)), and porous properties (pore size (256.11 to 107.42 μm) and porosity (79.97 to 44.32%)). After 150 min, silver sulfadiazine release was found to be ~94.1%. In vitro assay of scaffolds also exhibited promising results against mouse pre-osteoblast (MC3T3-E1) cell lines. Hence, these fabricated scaffolds would be potential biomaterials for bone tissue engineering in biomedical engineering.
  4. Aziz SAA, Mazlan SA, Ubaidillah U, Mohamad N, Choi SB, Che Aziz MA, et al.
    Int J Mol Sci, 2020 Nov 27;21(23).
    PMID: 33260840 DOI: 10.3390/ijms21239007
    Engineering rubber composites have been widely used as main components in many fields including vehicle engineering and biomedical applications. However, when a rubber composite surface area is exposed to heat or sunlight and over a long-term accelerated exposure and lifecycle of test, the rubber becomes hard, thus influencing the mechanical and rheological behavior of the materials. Therefore, in this study, the deterioration of rheological characteristics particularly the phase shift angle (δ) of silicone rubber (SR) based magnetorheological elastomer (MRE) is investigated under the effect of thermal aging. SR-MRE with 60 wt% of CIPs is fabricated and subjected to a continuous temperature of 100 °C for 72 h. The characterization of SR-MRE before and after thermal aging related to hardness, micrograph, and rheological properties are characterized using low vacuum scanning electron microscopy (LV-SEM) and a rheometer, respectively. The results demonstrated that the morphological analysis has a rough surface and more voids occurred after the thermal aging. The hardness and the weight of the SR-MRE before and after thermal aging were slightly different. Nonetheless, the thermo-rheological results showed that the stress-strain behavior have changed the phase-shift angle (δ) of SR-MRE particularly at a high strain. Moreover, the complex mechanism of SR-MRE before and after thermal aging can be observed through the changes of the 'in-rubber structure' under rheological properties. Finally, the relationship between the phase-shift angle (δ) and the in-rubber structure due to thermal aging are discussed thoroughly which led to a better understanding of the thermo-rheological behavior of SR-MRE.
  5. Hussin MSF, Mohd Serah A, Azlan KA, Abdullah HZ, Idris MI, Ghazali I, et al.
    Polymers (Basel), 2021 Feb 22;13(4).
    PMID: 33671617 DOI: 10.3390/polym13040647
    Collecting information from previous investigations and expressing it in a scientometrics study can be a priceless guide to getting a complete overview of a specific research area. The aim of this study is to explore the interrelated connection between alginate, gelatine, and hydroxyapatite within the scope of bone tissue and scaffold. A review of traditional literature with data mining procedures using bibliometric analyses was considered to identify the evolution of the selected research area between 2009 and 2019. Bibliometric methods and knowledge visualization technologies were implemented to investigate diverse publications based on the following indicators: year of publication, document type, language, country, institution, author, journal, keyword, and number of citations. An analysis using a bibliometric study found that 7446 papers were located with the keywords "bone tissue" and "scaffold", and 1767 (alginate), 185 (gelatine), 5658 (hydroxyapatite) papers with those specific sub keywords. The number of publications that relate to "tissue engineering" and bone more than doubled between 2009 (1352) and 2019 (2839). China, the United States and India are the most productive countries, while Sichuan University and the Chinese Academy of Science from China are the most important institutions related to bone tissue scaffold. Materials Science and Engineering C is the most productive journal, followed by the Journal of Biomedical Materials Research Part A. This paper is a starting point, providing the first bibliometric analysis study of bone tissue and scaffold considering alginate, gelatine and hydroxyapatite. A bibliometric analysis would greatly assist in giving a scientific insight to support desired future research work, not only associated with bone tissue engineering applications. It is expected that the analysis of alginate, gelatine and hydroxyapatite in terms of 3D bioprinting, clinical outcomes, scaffold architecture, and the regenerative medicine approach will enhance the research into bone tissue engineering in the near future. Continued studies into these research fields are highly recommended.
  6. Latifah SY, Armania N, Tze TH, Azhar Y, Nordiana AH, Norazalina S, et al.
    Nutr J, 2010 Mar 26;9:16.
    PMID: 20346115 DOI: 10.1186/1475-2891-9-16
    Chemoprevention has become an important area in cancer research due to the failure of current therapeutic modalities. Epidemiological and preclinical studies have demonstrated that nutrition plays a vital role in the etiology of cancer. This study was conducted to determine the chemopreventive effects of germinated brown rice (GBR) in rats induced with colon cancer. GBR is brown rice that has been claimed to be richer in nutrients compared to the common white rice. The male Sprague Dawley rats (6 weeks of age) were randomly divided into 5 groups: (G1) positive control (with colon cancer, unfed with GBR), (G2) fed with 2.5 g/kg of GBR (GBR (g)/weight of rat (kg)), (G3) fed with 5 g/kg of GBR, (G4) fed with 10 g/kg of GBR and (G5) negative control (without colon cancer, unfed with GBR). GBR was administered orally once daily via gavage after injection of 15 mg/kg of body weight of azoxymethane (AOM) once a week for two weeks, intraperitonially. After 8 weeks of treatment, animals were sacrificed and colons were removed. Colonic aberrant crypt foci (ACF) were evaluated histopathologically. Total number of ACF and AC, and multicrypt of ACF, and the expression of beta-catenin and COX-2 reduced significantly (p < 0.05) in all the groups treated with GBR (G2, G3 and G4) compared to the control group (G1). Spearman rank correlation test showed significant positive linear relationship between total beta-catenin and COX-2 score (Spearman's rho = 0.616, p = 0.0001). It is demonstrated that GBR inhibits the development of total number of ACF and AC, and multicrypt of ACF, reduces the expression of beta-catenin and COX-2, and thus can be a promising dietary supplement in prevention of colon cancer.
  7. Othman NS, Aminuddin A, Zainal Abidin S, Syafruddin SE, Ahmad MF, Mohd Mokhtar N, et al.
    Life (Basel), 2023 May 31;13(6).
    PMID: 37374078 DOI: 10.3390/life13061296
    Hyperglycemia is the hallmark of diabetes mellitus that results in oxidative stress, apoptosis, and diabetic vascular endothelial dysfunction. An increasing number of microRNAs (miRNAs) have been found to be involved in the pathogenesis of diabetic vascular complications. However, there is a limited number of studies that characterize the miRNA profile of endothelial cells exposed to hyperglycemia. Therefore, this study aims to analyze the miRNA profile of human umbilical-vein endothelial cells (HUVECs) exposed to hyperglycemia. HUVECs were divided into two groups: the control (treated with 5.5 mM glucose) and hyperglycemia (treated with 33.3 mM glucose) groups. RNA sequencing identified 17 differentially expressed miRNAs between the groups (p < 0.05). Of these, 4 miRNAs were upregulated, and 13 miRNAs were downregulated. Two of the most differentially expressed miRNAs (novel miR-1133 and miR-1225) were successfully validated with stem-loop qPCR. Collectively, the findings show that there is a differential expression pattern of miRNAs in HUVEC following exposure to hyperglycemia. These 17 differentially expressed miRNAs are involved in regulating cellular functions and pathways related to oxidative stress and apoptosis that may contribute to diabetic vascular endothelial dysfunction. The findings provide new clues on the role of miRNAs in the development of diabetic vascular endothelial dysfunction, which could be useful in future targeted therapy.
  8. Ahmad MF, Elias MH, Mat Jin N, Abu MA, Syafruddin SE, Zainuddin AA, et al.
    Front Endocrinol (Lausanne), 2023;14:1192180.
    PMID: 37455921 DOI: 10.3389/fendo.2023.1192180
    In vitro oocyte maturation (IVM) has been used worldwide. Despite the long-term implementation, the uptake of this procedure to complement current in vitro fertilization (IVF) remains low. The main reason is likely due to the non-synchronization of protocol and definition criteria, leading to difficulty in collective proper outcome data worldwide and, thus, lack of understanding of the exact IVM procedure. The review aims to consolidate the current clinical practice of IVM by dissecting relevant publications to be tailored for a current spectrum of clinical practice. Nevertheless, the background theories of oocyte maturation were also explored to provide a comprehensive understanding of the basis of IVM theories. Additional discussion of other potential uses of IVM in the future, such as in ovarian tissue cryopreservation known as OTO-IVM for fertility preservation and among women with diminished ovarian reserve, was also explored. Otherwise, future collaboration among all IVM centers is paramount for better collection of clinical data to provide valid recommendations for IVM in clinical practice, especially in molecular integrity and possible DNA alteration if present for IVM offspring outcome safety purposes.
  9. Guraya SS, Guraya SY, Rashid-Doubell F, Fredericks S, Harkin DW, Bin Mat Nor MZ, et al.
    Ann Med, 2024 Dec;56(1):2398202.
    PMID: 39263743 DOI: 10.1080/07853890.2024.2398202
    BACKGROUND: There has been an alarming surge in the usage of social networking sites (SNSs) by healthcare professionals (HCPs) without adherence to the principles of professionalism. The widespread use of SNSs in medical practices has been coupled with reports of breaches of professional behaviors. Despite the benefits of SNSs, skepticism prevails about a clearly defined role for SNSs within medicine based upon the core principles of professionalism. Thus, there is a need to understand the manifestations of professionalism in the digital context, classically known as e-professionalism. This study systematically examines HCPs' perceptions of e-professionalism to advance a thorough understanding of e-professionalism.

    METHODS: This concept analysis was performed using the principle-based approach of Penrod and Hupcey. In January 2023, we searched the databases of PubMed and ISI Web of Science for English-language articles specific to 'e-professionalism' in the medical field. The final selected research corpus of 63 articles was analyzed in this study.

    RESULTS: A comprehensive analysis of the selected articles highlighted that e-professionalism is an epistemologically mature and distinct concept by a standard definition. However, inconsistencies in conceptual meanings were reported due to varied interpretations despite digital literacy. The pragmatic utility showed a lack of sound methodological and philosophical paradigms. Perhaps the rapid technological advancements and manifestations have hampered linguistic maturity. However, logically, e-professionalism is perceived as an extension of conventional professionalism but with a focus on a distinct framework with a set of attributes to be digitally relevant.

    CONCLUSION: This study identifies a scarcity of research about the collective perspective of essential stakeholders, underpinning the need to further explore e-professionalism due to its emerging complex nature within the digital context. There is also a recognition that a framework is essential to guide future HCPs to yield a profound understanding and to provide remediation strategies in the rapidly advancing medical field in digital realm.

  10. Ghosh A, Karmaker KD, Hasan M, Rahman M, Shimu NJ, Islam MS, et al.
    Mar Pollut Bull, 2024 Sep 04;207:116897.
    PMID: 39236491 DOI: 10.1016/j.marpolbul.2024.116897
    The research, focusing on the analysis of nine trace elements, namely As, Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn, completely analyzed their quantities in both water and sediment inside the Rabnabad Channel. Samples were collected during the post-monsoon and analyzed by ICP-OES following acid digestion. The mean concentrations of elements in water and sediments are as follows: Fe > Mn > Pb > Cu > Ni > Zn > Cr > As>Cd, and Zn > Fe > Pb > Mn > As>Cu > Cr > Ni > Cd. To understand the state of ecological and human health risk, several indices were incorporated. Health risk assessment revealed that children posed higher risk than adults. PERI, TRI, and Igeo indices for water sediment indicate a significant ecological risk. Moreover, Mn and Pb exhibit elevated HPI values and contribute substantially to contamination factors. Correlation and PCA implicate both anthropogenic and geogenic sources, such as agricultural practices, coal-based power plants, and the Payra seaport, in the elevated concentrations of Cd, Cr, Mn, and Fe in both water and sediment samples.
  11. Algin S, Banik D, Rahman SA, Mahmud Tusher S, Tuj Johora F, Akter A, et al.
    Cureus, 2024 Apr;16(4):e57877.
    PMID: 38596207 DOI: 10.7759/cureus.57877
    Treatment of resistant obsessive-compulsive disorder (OCD) typically results in insufficient symptom alleviation, and even long-term medication often fails to have the intended effect. Ketamine is a potent non-competitive antagonist of the N-methyl-D-aspartate (NMDA) receptor. Studies have shown that low-dose ketamine infusion results in a considerable reduction in obsessive-compulsive symptoms and a rapid resolution of suicidal ideation. This is a case report on the effect of intravenous ketamine infusion on a patient with resistant OCD and severe suicidal ideation. Intravenous (IV) ketamine was given once a week over consecutive three weeks with necessary precautions. Psychometric tools such as the Yale-Brown Obsessive Compulsive Scale (Y-BOCS), the Clinical Global Impressions Scale (CGI-S), the Beck Scale for Suicidal Ideations (BSSI), and Depression Anxiety and Stress Scale 21 (DASS-21) were applied before and after infusions. Obsessive-compulsive symptoms and suicidal severity started to decrease rapidly after the first infusion. However, after a transient improvement, these symptoms again began to increase after a stressful incident on the second day of the first infusion. All the symptoms measured by validated rating scales showed continued improvement after the following two infusions. The improvement was sustained until discharge (one week after the last infusion) and subsequent follow-up in the sixth and 12th weeks. The role of ketamine in reducing suicidal thoughts and behavior is already established. Very few studies emphasized its effectiveness in improving severe/resistant obsessive-compulsive symptoms. This pioneering work may offer scope for similar research in the relevant field.
  12. Alathari MJA, Al Mashhadany Y, Mokhtar MHH, Burham N, Bin Zan MSD, A Bakar AA, et al.
    Sensors (Basel), 2021 Dec 15;21(24).
    PMID: 34960456 DOI: 10.3390/s21248362
    Life was once normal before the first announcement of COVID-19's first case in Wuhan, China, and what was slowly spreading became an overnight worldwide pandemic. Ever since the virus spread at the end of 2019, it has been morphing and rapidly adapting to human nature changes which cause difficult conundrums in the efforts of fighting it. Thus, researchers were steered to investigate the virus in order to contain the outbreak considering its novelty and there being no known cure. In contribution to that, this paper extensively reviewed, compared, and analyzed two main points; SARS-CoV-2 virus transmission in humans and detection methods of COVID-19 in the human body. SARS-CoV-2 human exchange transmission methods reviewed four modes of transmission which are Respiratory Transmission, Fecal-Oral Transmission, Ocular transmission, and Vertical Transmission. The latter point particularly sheds light on the latest discoveries and advancements in the aim of COVID-19 diagnosis and detection of SARS-CoV-2 virus associated with this disease in the human body. The methods in this review paper were classified into two categories which are RNA-based detection including RT-PCR, LAMP, CRISPR, and NGS and secondly, biosensors detection including, electrochemical biosensors, electronic biosensors, piezoelectric biosensors, and optical biosensors.
  13. Taha BA, Al Mashhadany Y, Bachok NN, Ashrif A Bakar A, Hafiz Mokhtar MH, Dzulkefly Bin Zan MS, et al.
    Diagnostics (Basel), 2021 Jun 19;11(6).
    PMID: 34205401 DOI: 10.3390/diagnostics11061119
    The propagation of viruses has become a global threat as proven through the coronavirus disease (COVID-19) pandemic. Therefore, the quick detection of viral diseases and infections could be necessary. This study aims to develop a framework for virus diagnoses based on integrating photonics technology with artificial intelligence to enhance healthcare in public areas, marketplaces, hospitals, and airfields due to the distinct spectral signatures from lasers' effectiveness in the classification and monitoring of viruses. However, providing insights into the technical aspect also helps researchers identify the possibilities and difficulties in this field. The contents of this study were collected from six authoritative databases: Web of Science, IEEE Xplore, Science Direct, Scopus, PubMed Central, and Google Scholar. This review includes an analysis and summary of laser techniques to diagnose COVID-19 such as fluorescence methods, surface-enhanced Raman scattering, surface plasmon resonance, and integration of Raman scattering with SPR techniques. Finally, we select the best strategies that could potentially be the most effective methods of reducing epidemic spreading and improving healthcare in the environment.
  14. Islam MS, Al Bakky A, Saikat MSM, Antu UB, Akter R, Roy TK, et al.
    Environ Geochem Health, 2024 Sep 24;46(11):437.
    PMID: 39316128 DOI: 10.1007/s10653-024-02213-x
    The contribution of heavy metals in surface soils by the influences of agro-machinery factories is a significant growing concern. Heavy metals were analyzed by inductively coupled plasma mass spectrometry technique to assess human and ecological risks. The concentrations of Fe, Cd, Cr, Cu, As, Pb, Mn, Ni, and Zn in soil ranged from 18,274-22,652, 2.06-4.92, 24.8-41.9, 126.8-137.5, 9.20-25.2, 17.8-46.1, 114.4-183.1, 86.9-118.1, and 101.6-159.6 mg/kg, respectively. The enrichment factor values of heavy metals were greater than 1.5, suggesting severe anthropogenic activities such as untreated waste discharging, burning of metallic wastes, wear, and tear, and dismantling of old batteries for heavy metals enrichment in studied soil. The contamination factor indicates considerable to very high contamination of heavy metals in soil. Moderate to high ecological risk was observed for analyzed metals which mainly originated from the maintenance and repairing of various engines in the workshop and welding and soldering of metallic substances. The target hazard quotient (THQ) was ranged from 6.99E-04 to 2.21E-01 for adults and 5.59E-03 to 1.82E + 00 for children, respectively; indicating children were more sensitive to heavy metals exposure from soil dust. The carcinogenic risk of As (1.72E-05) exceeded the USEPA acceptable limits indicating cancer risk to the residence. The current emphasized the significance of intensive heavy metals monitoring in surface soils around the agro-machinery areas due to their potential health risks associated with children.
  15. Bakar AJA, Azam NSM, Sevakumaran V, Ismail WIW, Razali MH, Razak SIA, et al.
    Int J Biol Macromol, 2023 Aug 01;245:125494.
    PMID: 37348586 DOI: 10.1016/j.ijbiomac.2023.125494
    The demand for advanced wound care products is rapidly increasing nowadays. In this study, gellan gum/collagen (GG/C) hydrogel films containing gatifloxacin (GAT) were developed to investigate their properties as wound dressing materials. ATR-FTIR, swelling, water content, water vapor transmission rate (WVTR), and thermal properties were investigated. The mechanical properties of the materials were tested in dry and wet conditions to understand the performance of the materials after exposure to wound exudate. Drug release by Franz diffusion was measured with all samples showing 100 % cumulative drug release after 40 min. Strong antibacterial activities against Staphylococcus aureus and Staphylococcus epidermis were observed for Gram-positive bacteria, while Escherichia coli and Pseudomonas aeruginosa were observed for Gram-negative bacteria. The in-vivo cytotoxicity of GG/C-GAT was assessed by wound contraction in rats, which was 95 % for GG/C-GAT01. Hematoxylin and eosin and Masson's trichrome staining revealed the appearance of fresh full epidermis and granulation tissue, indicating that all wounds had passed through the proliferation phase. The results demonstrate the promising properties of the materials to be used as dressing materials.
  16. Roney M, Dubey A, Nasir MH, Huq AM, Tufail A, Tajuddin SN, et al.
    J Biomol Struct Dyn, 2023 Aug 26.
    PMID: 37632317 DOI: 10.1080/07391102.2023.2248262
    Aedes aegypti is the primary vector for the transmission of the dengue virus, which causes dengue fever, dengue hemorrhagic illness and dengue shock syndrome. There is now no antiviral medication available to treat DENV, which kills thousands of people each year and infects millions of individuals. A possible target for the creation of fresh and efficient dengue treatments is the DENV-3 NS5 MTase. So, Nigella sativa quinones were examined using in silico methods to find natural anti-DENV compounds. The in silico docking was conducted utilising the Discovery Studio software on the quinones of N. sativa and the active site of the target protein DENV-3 NS5 MTase. In addition, the druggability and pharmacokinetics of the lead compound were assessed. Dithymoquinone was comparable to the reference compound in terms of its ability to bind to the active site of target protein. Dithymoquinone met the requirements for drug likeness and Lipinski's principles, as demonstrated by the ADMET analysis and drug likeness results. The current study indicated that the dithymoquinone from N. sativa had anti-DENV activity, suggesting further drug development and dengue treatment optimisation.Communicated by Ramaswamy H. Sarma.
  17. Tan XH, Chong WL, Lee VS, Abdullah S, Jasni K, Suarni SQ, et al.
    Vaccines (Basel), 2023 Aug 14;11(8).
    PMID: 37631931 DOI: 10.3390/vaccines11081363
    Hand, foot and mouth disease (HFMD) is a childhood disease caused by enterovirus A71 (EV-A71) and coxsackievirus A16 (CV-A16). Capsid loops are important epitopes for EV-A71 and CV-A16. Seven chimeric EV-A71 (ChiE71) involving VP1 BC (45.5% similarity), DE, EF, GH and HI loops, VP2 EF loop and VP3 GH loop (91.3% similarity) were substituted with corresponding CV-A16 loops. Only ChiE71-1-BC, ChiE71-1-EF, ChiE71-1-GH and ChiE71-3-GH were viable. EV-A71 and CV-A16 antiserum neutralized ChiE71-1-BC and ChiE71-1-EF. Mice immunized with inactivated ChiE71 elicited high IgG, IFN-γ, IL-2, IL-4 and IL-10. Neonatal mice receiving passive transfer of WT EV-A71, ChiE71-1-EF and ChiE71-1-BC immune sera had 100%, 80.0% and no survival, respectively, against lethal challenges with EV-A71, suggesting that the substituted CV-A16 loops disrupted EV-A71 immunogenicity. Passive transfer of CV-A16, ChiE71-1-EF and ChiE71-1-BC immune sera provided 40.0%, 20.0% and 42.9% survival, respectively, against CV-A16. One-day-old neonatal mice immunized with WT EV-A71, ChiE71-1-BC, ChiE71-1-EF and CV-A16 achieved 62.5%, 60.0%, 57.1%, and no survival, respectively, after the EV-A71 challenge. Active immunization using CV-A16 provided full protection while WT EV-A71, ChiE71-1-BC and ChiE71-1-EF immunization showed partial cross-protection in CV-A16 lethal challenge with survival rates of 50.0%, 20.0% and 40%, respectively. Disruption of a capsid loop could affect virus immunogenicity, and future vaccine design should include conservation of the enterovirus capsid loops.
  18. Lazim N, Elias MH, Sutaji Z, Abdul Karim AK, Abu MA, Ugusman A, et al.
    Int J Mol Sci, 2023 Aug 17;24(16).
    PMID: 37629050 DOI: 10.3390/ijms241612869
    The homeobox A10 (HOXA10) gene is known to be related to endometriosis; however, due to a lack of knowledge/evidence in the pathogenesis of endometriosis, the mechanisms that link HOXA10 to endometriosis still need to be clarified. This review addresses the difference in the expression of the HOXA10 gene in endometriotic women versus non-endometriotic women across populations by country and discusses its influences on women's fertility. An organized search of electronic databases was conducted in Scopus, ScienceDirect, PubMed, and Web of Science. The keywords used were (HOXA10 OR "homeobox A10" OR PL OR HOX1 OR HOX1H OR HOX1.8) AND ("gene expression") AND (endometriosis). The initial search resulted in 623 articles, 10 of which were included in this review. All ten papers included in this study were rated fair in terms of the quality of the studies conducted. The expression of the HOXA10 gene was found to be downregulated in most studies. However, one study provided evidence of the downregulation and upregulation of HOXA10 gene expression due to the localization of endometriotic lesions. Measuring the expression of the HOXA10 gene in women is clinically essential to predicting endometriosis, endometrial receptivity, and the development of pinopodes in the endometrium during the luteal phase.
  19. Rashid RZA, Yunus NA, Mazlan SA, Johari N, Aziz SAA, Nordin NA, et al.
    Materials (Basel), 2022 Mar 31;15(7).
    PMID: 35407889 DOI: 10.3390/ma15072556
    Temperature is one of the most influential factors affecting the performance of elastomer matrix in magnetorheological elastomer (MRE). Previous studies have utilized silica as a reinforcing filler in polymer composite and as a coating material in MRE to improve the thermal stability of the base material. However, the usage of silica as an additive in the thermal stability of MRE has not been explored. Thus, in this study, the effect of silica as an additive on the temperature-dependent mechanical and rheological properties of ethylene propylene diene monomer (EPDM)-based MREs was investigated by using 30 wt.% carbonyl iron particles (CIPs) as the main filler, with different contents of silica nanoparticles (0 to 11 wt.%). The microstructure analysis was examined by using field-emission scanning electron microscopy (FESEM), while the thermal characterizations were studied by using a thermogravimetric analyzer and differential scanning calorimetry. The tensile properties were conducted by using Instron Universal Testing Machine in the absence of magnetic field at various temperatures. Meanwhile, the rheological properties were analyzed under oscillatory loadings in the influence of magnetic field, using a rotational rheometer at 25 to 65 °C. The results revealed that the temperature has diminished the interfacial interactions between filler and matrix, thus affecting the properties of MRE, where the tensile properties and MR effect decrease with increasing temperature. However, the presence of silica capable improved the thermal stability of EPDM-based MRE by enhancing the interactions between filler and matrix, thus reducing the interfacial defects when under the influence of temperature. Consequently, the incorporation of silica nanoparticles as an additive in EPDM-based MRE requires more exploration, since it has the potential to sustain the properties of MRE devices in a variety of temperature conditions. Thus, the study on the temperature-dependent mechanical and rheological properties of MRE is necessary, particularly regarding its practical applications.
  20. Huq AKMM, Roney M, Issahaku AR, Sapari S, Ilyana Abdul Razak F, Soliman MES, et al.
    J Biomol Struct Dyn, 2023 Sep 07.
    PMID: 37676311 DOI: 10.1080/07391102.2023.2251069
    Dengue fever is now one of the major global health concerns particularly for tropical and sub-tropical countries. However, there has been no FDA approved medication to treat dengue fever. Researchers are looking into DENV NS5 RdRp protease as a potential therapeutic target for discovering effective anti-dengue agents. The aim of this study to discover dengue virus inhibitor from a set of five compounds from Momordica charantia L. using a series of in-silico approaches. The compounds were docked into the active area of the DENV-2 NS5 RdRp protease to obtain the hit compounds. The successful compounds underwent additional testing for a study on drug-likeness similarity. Our study obtained Momordicoside-I as a lead compound which was further exposed to the Cytochrome P450 (CYP450) toxicity analysis to determine the toxicity based on docking scores and drug-likeness studies. Moreover, DFT studies were carried out to calculate the thermodynamic, molecular orbital and electrostatic potential properties for the lead compound. Moreover, the lead compound was next subjected to molecular dynamic simulation for 200 ns in order to confirm the stability of the docked complex and the binding posture discovered during docking experiment. Overall, the lead compound has demonstrated good medication like qualities, non-toxicity, and significant binding affinity towards the DENV-2 RdRp enzyme.Communicated by Ramaswamy H. Sarma.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links