Displaying publications 441 - 460 of 9211 in total

Abstract:
Sort:
  1. Chin VK, Yong VC, Chong PP, Amin Nordin S, Basir R, Abdullah M
    Mediators Inflamm, 2020;2020:9560684.
    PMID: 32322167 DOI: 10.1155/2020/9560684
    Human gut is home to a diverse and complex microbial ecosystem encompassing bacteria, viruses, parasites, fungi, and other microorganisms that have an undisputable role in maintaining good health for the host. Studies on the interplay between microbiota in the gut and various human diseases remain the key focus among many researchers. Nevertheless, advances in sequencing technologies and computational biology have helped us to identify a diversity of fungal community that reside in the gut known as the mycobiome. Although studies on gut mycobiome are still in its infancy, numerous sources have reported its potential role in host homeostasis and disease development. Nonetheless, the actual mechanism of its involvement remains largely unknown and underexplored. Thus, in this review, we attempt to discuss the recent advances in gut mycobiome research from multiple perspectives. This includes understanding the composition of fungal communities in the gut and the involvement of gut mycobiome in host immunity and gut-brain axis. Further, we also discuss on multibiome interactions in the gut with emphasis on fungi-bacteria interaction and the influence of diet in shaping gut mycobiome composition. This review also highlights the relation between fungal metabolites and gut mycobiota in human homeostasis and the role of gut mycobiome in various human diseases. This multiperspective review on gut mycobiome could perhaps shed new light for future studies in the mycobiome research area.
    Matched MeSH terms: Bacteria/metabolism; Fungi/metabolism
  2. Gantait S, Sinniah UR, Ali MN, Sahu NC
    Curr Protein Pept Sci, 2015;16(5):406-12.
    PMID: 25824386
    Plants tend to acclimatize to unfavourable environs by integrating growth and development to environmentally activated signals. Phytohormones strongly regulate convergent developmental and stress adaptive procedures and synchronize cellular reaction to the exogenous and endogenous conditions within the adaptive signaling networks. Gibberellins (GA), a group of tetracyclic diterpenoids, being vital regulators of plant growth, are accountable for regulating several aspects of growth and development of higher plants. If the element of reproduction is considered as an absolute requisite then for a majority of the higher plants GA signaling is simply indispensable. Latest reports have revealed unique conflicting roles of GA and other phytohormones in amalgamating growth and development in plants through environmental signaling. Numerous physiological researches have detailed substantial crosstalk between GA and other hormones like abscisic acid, auxin, cytokinin, and jasmonic acid. In this review, a number of explanations and clarifications for this discrepancy are explored based on the crosstalk among GA and other phytohormones.
    Matched MeSH terms: Gibberellins/metabolism*; Plant Growth Regulators/metabolism*
  3. Ho YK, Doshi P, Yeoh HK, Ngoh GC
    Biotechnol Bioeng, 2015 Oct;112(10):2084-105.
    PMID: 25899009 DOI: 10.1002/bit.25616
    Simultaneous Saccharification and Fermentation (SSF) is a process where microbes have to first excrete extracellular enzymes to break polymeric substrates such as starch or cellulose into edible nutrients, followed by in situ conversion of those nutrients into more valuable metabolites via fermentation. As such, SSF is very attractive as a one-pot synthesis method of biological products. However, due to the co-existence of multiple biochemical steps, modeling SSF faces two major challenges. The first is to capture the successive chain-end and/or random scission of the polymeric substrates over time, which determines the rate of generation of various fermentable substrates. The second is to incorporate the response of microbes, including their preferential substrate utilization, to such a complex broth. Each of the above-mentioned challenges has manifested itself in many related areas, and has been competently but separately attacked with two diametrically different tools, i.e., the Population Balance Modeling (PBM) and the Cybernetic Modeling (CM), respectively. To date, they have yet to be applied in unison on SSF resulting in a general inadequacy or haphazard approaches to examine the dynamics and interactions of depolymerization and fermentation. To overcome this unsatisfactory state of affairs, here, the general linkage between PBM and CM is established to model SSF. A notable feature is the flexible linkage, which allows the individual PBM and CM models to be independently modified to the desired levels of detail. A more general treatment of the secretion of extracellular enzyme is also proposed in the CM model. Through a case study on the growth of a recombinant Saccharomyces cerevisiae capable of excreting a chain-end scission enzyme (glucoamylase) on starch, the interlinked model calibrated using data from the literature (Nakamura et al., Biotechnol. Bioeng. 53:21-25, 1997), captured features not attainable by existing approaches. In particular, the effect of various enzymatic actions on the temporal evolution of the polymer distribution and how the microbes respond to the diverse polymeric environment can be studied through this framework.
    Matched MeSH terms: Biopolymers/metabolism*; Saccharomyces cerevisiae/metabolism*
  4. ul Hassan MN, Zainal Z, Ismail I
    Plant Biotechnol J, 2015 Aug;13(6):727-39.
    PMID: 25865366 DOI: 10.1111/pbi.12368
    Plants have evolved numerous constitutive and inducible defence mechanisms to cope with biotic and abiotic stresses. These stresses induce the expression of various genes to activate defence-related pathways that result in the release of defence chemicals. One of these defence mechanisms is the oxylipin pathway, which produces jasmonates, divinylethers and green leaf volatiles (GLVs) through the peroxidation of polyunsaturated fatty acids (PUFAs). GLVs have recently emerged as key players in plant defence, plant-plant interactions and plant-insect interactions. Some GLVs inhibit the growth and propagation of plant pathogens, including bacteria, viruses and fungi. In certain cases, GLVs released from plants under herbivore attack can serve as aerial messengers to neighbouring plants and to attract parasitic or parasitoid enemies of the herbivores. The plants that perceive these volatile signals are primed and can then adapt in preparation for the upcoming challenges. Due to their 'green note' odour, GLVs impart aromas and flavours to many natural foods, such as vegetables and fruits, and therefore, they can be exploited in industrial biotechnology. The aim of this study was to review the progress and recent developments in research on the oxylipin pathway, with a specific focus on the biosynthesis and biological functions of GLVs and their applications in industrial biotechnology.
    Matched MeSH terms: Plant Leaves/metabolism*; Volatile Organic Compounds/metabolism*
  5. Farook MS, Mahmoud O, Ibrahim MA, Berkathullah M
    Biomed Res Int, 2021;2021:6652250.
    PMID: 33628801 DOI: 10.1155/2021/6652250
    Objectives: To evaluate the in vitro effectiveness of desensitizing agents in reducing dentine permeability.

    Methods: The efficacy of desensitizing agents in reducing dentine permeability by occluding dentine tubules was evaluated using a fluid filtration device that conducts at 100 cmH2O (1.4 psi) pressure, and SEM/EDX analyses were evaluated and compared. Forty-two dentine discs (n = 42) of 1 ± 0.2 mm width were obtained from caries-free permanent human molars. Thirty dentine discs (n = 30) were randomly divided into 3 groups (n = 10): Group 1: 2.7% wt. monopotassium-monohydrogen oxalate (Mp-Mh oxalate), Group 2: RMGI XT VAR, and Group 3: LIQ SiO2. Dentine permeability was measured following treatment application after 10 minutes, storage in artificial saliva after 10 minutes and 7 days, and citric acid challenge for 3 minutes. Data were analysed with a repeated measures ANOVA test. Dentine discs (n = 12) were used for SEM/EDX analyses to acquire data on morphological changes on dentine surface and its mineral content after different stages of treatment.

    Results: Desensitizing agents' application on the demineralized dentine discs exhibited significant reduction of permeability compared to its maximum acid permeability values. Mp-Mh oxalate showed a significant reduction in dentine permeability (p < 0.05) when compared to RMGI XT VAR and LIQ SiO2. On SEM/EDX analysis, all the agents formed mineral precipitates that occluded the dentine tubules.

    Conclusions: 2.7% wt. monopotassium-monohydrogen oxalate was significantly effective in reducing dentine permeability compared to RMGI XT VAR and LIQ SiO2.

    Matched MeSH terms: Dentin/metabolism*; Molar/metabolism*
  6. Azlan A, Halim MA, Mohamad F, Azzam G
    Insect Sci, 2021 Aug;28(4):917-928.
    PMID: 32621332 DOI: 10.1111/1744-7917.12847
    The Southern house mosquito, Culex quinquefasciatus (Cx. quinquefasciatus) is an important vector that transmit multiple diseases including West Nile encephalitis, Japanese encephalitis, St. Louis encephalitis and lymphatic filariasis. Long noncoding RNAs (lncRNAs) involve in many biological processes such as development, infection, and virus-host interaction. However, there is no systematic identification and characterization of lncRNAs in Cx. quinquefasciatus. Here, we report the first lncRNA identification in Cx. quinquefasciatus. By using 31 public RNA-seq datasets, a total of 4763 novel lncRNA transcripts were identified, of which 3591, 569, and 603 were intergenic, intronic, and antisense respectively. Examination of genomic features revealed that Cx. quinquefasciatus shared similar characteristics with other species such as short in length, low GC content, low sequence conservation, and low coding potential. Furthermore, compared to protein-coding genes, Cx. quinquefasciatus lncRNAs had lower expression values, and tended to be expressed in temporally specific fashion. In addition, weighted correlation network and functional annotation analyses showed that lncRNAs may have roles in blood meal acquisition of adult female Cx. quinquefasciatus mosquitoes. This study presents the first systematic identification and analysis of Cx. quinquefasciatus lncRNAs and their association with blood feeding. Results generated from this study will facilitate future investigation on the function of Cx. quinquefasciatus lncRNAs.
    Matched MeSH terms: Culex/metabolism; Mosquito Vectors/metabolism
  7. Dugina VB, Shagieva GS, Shakhov AS, Alieva IB
    Int J Mol Sci, 2021 Jul 22;22(15).
    PMID: 34360602 DOI: 10.3390/ijms22157836
    The primary function of the endothelial cells (EC) lining the inner surface of all vessels is to regulate permeability of vascular walls and to control exchange between circulating blood and tissue fluids of organs. The EC actin cytoskeleton plays a crucial role in maintaining endothelial barrier function. Actin cytoskeleton reorganization result in EC contraction and provides a structural basis for the increase in vascular permeability, which is typical for many diseases. Actin cytoskeleton in non-muscle cells presented two actin isoforms: non-muscle β-cytoplasmic and γ-cytoplasmic actins (β-actins and γ-actins), which are encoded by ACTB and ACTG1 genes, respectively. They are ubiquitously expressed in the different cells in vivo and in vitro and the β/γ-actin ratio depends on the cell type. Both cytoplasmic actins are essential for cell survival, but they perform various functions in the interphase and cell division and play different roles in neoplastic transformation. In this review, we briefly summarize the research results of recent years and consider the features of the cytoplasmic actins: The spatial organization in close connection with their functional activity in different cell types by focusing on endothelial cells.
    Matched MeSH terms: Actins/metabolism*; Cytoplasm/metabolism*
  8. Khairuddin S, Aquili L, Heng BC, Hoo TLC, Wong KH, Lim LW
    Neurosci Biobehav Rev, 2020 11;118:384-396.
    PMID: 32768489 DOI: 10.1016/j.neubiorev.2020.07.040
    Orexins are highly involved in regulating the circadian rhythm, the brain's reward mechanism, and the neuroendocrine response to stress. The disruption of orexin regulation is known to be associated with depression. Preclinical studies in rodents have identified the dorsomedial/perifornical and lateral areas of the hypothalamus as the population of orexinergic neurons that are primarily responsible for mediating depression-induced neuroanatomical changes in the brain. There is still no consensus regarding whether hyperactivity or hypoactivity of orexin signaling is responsible for producing depressive-like behaviour. Likewise, clinical studies indicated a general disruption in orexin signaling in depressive patients, but did not report definitive evidence of either hyperactivity or hypoactivity. Nevertheless, given the various reciprocal connections between orexin neurons and multiple brain regions, it is plausible that this involves a differential signaling network with orexin neurons as the coordination center. Here, an overview of preclinical and clinical evidence is provided as a basis for understanding the consequences of altered orexin signaling on neural circuitries modulating different aspects of the physiopathology of depression.
    Matched MeSH terms: Neurons/metabolism; Orexin Receptors/metabolism
  9. Ait Abderrahim L, Taibi K, Boussaid M, Al-Shara B, Ait Abderrahim N, Ait Abderrahim S
    Toxicon, 2021 Sep;200:30-37.
    PMID: 34217748 DOI: 10.1016/j.toxicon.2021.06.018
    Microcystins (MCs) are hepatotoxic cyanotoxins implicated in several incidents of human and animal toxicity. Microcystin-(Lysine, Arginine) or MC-LR is the most toxic and encountered variant of MCs where oxidative stress plays a key role in its toxicity. This study investigated the oxidative damages induced in the liver and heart of Balb/C mice by an intraperitoneal injected acute dose of MC-LR. Thereafter, the potential protective effect of garlic (Allium sativum) extract supplementation against such damages was assessed through the evaluation of oxidative stress and cytotoxicity markers. Lipid peroxidation (LPO), carbonyl content (CC), glutathione content (GSH), alkaline phosphatase activity (ALP), lactate dehydrogenase (LDH) and sorbitol dehydrogenase (SDH) activities were measured. Results showed important oxidative damages in hepatic and cardiac cells of mice injected with the toxin. However, these damages have been significantly reduced in mice supplemented with garlic extract. Thus, this study demonstrated for the first time the effective use of garlic as an antioxidant agent against oxidative damages induced by MC-LR. As well, this study supports the use of garlic as a potential remedy against pathologies related to toxic agents.
    Matched MeSH terms: Antioxidants/metabolism; Liver/metabolism
  10. Rezania S, Taib SM, Md Din MF, Dahalan FA, Kamyab H
    J Hazard Mater, 2016 Nov 15;318:587-599.
    PMID: 27474848 DOI: 10.1016/j.jhazmat.2016.07.053
    Environmental pollution specifically water pollution is alarming both in the developed and developing countries. Heavy metal contamination of water resources is a critical issue which adversely affects humans, plants and animals. Phytoremediation is a cost-effective remediation technology which able to treat heavy metal polluted sites. This environmental friendly method has been successfully implemented in constructed wetland (CWs) which is able to restore the aquatic biosystem naturally. Nowadays, many aquatic plant species are being investigated to determine their potential and effectiveness for phytoremediation application, especially high growth rate plants i.e. macrophytes. Based on the findings, phytofiltration (rhizofiltration) is the sole method which defined as heavy metals removal from water by aquatic plants. Due to specific morphology and higher growth rate, free-floating plants were more efficient to uptake heavy metals in comparison with submerged and emergent plants. In this review, the potential of wide range of aquatic plant species with main focus on four well known species (hyper-accumulators): Pistia stratiotes, Eicchornia spp., Lemna spp. and Salvinia spp. was investigated. Moreover, we discussed about the history, methods and future prospects in phytoremediation of heavy metals by aquatic plants comprehensively.
    Matched MeSH terms: Plants/metabolism*; Metals, Heavy/metabolism*
  11. Goli A, Shamiri A, Talaiekhozani A, Eshtiaghi N, Aghamohammadi N, Aroua MK
    J Environ Manage, 2016 Dec 01;183:41-58.
    PMID: 27576148 DOI: 10.1016/j.jenvman.2016.08.054
    The extensive amount of available information on global warming suggests that this issue has become prevalent worldwide. Majority of countries have issued laws and policies in response to this concern by requiring their industrial sectors to reduce greenhouse gas emissions, such as CO2. Thus, introducing new and more effective treatment methods, such as biological techniques, is crucial to control the emission of greenhouse gases. Many studies have demonstrated CO2 fixation using photo-bioreactors and raceway ponds, but a comprehensive review is yet to be published on biological CO2 fixation. A comprehensive review of CO2 fixation through biological process is presented in this paper as biological processes are ideal to control both organic and inorganic pollutants. This process can also cover the classification of methods, functional mechanisms, designs, and their operational parameters, which are crucial for efficient CO2 fixation. This review also suggests the bio-trickling filter process as an appropriate approach in CO2 fixation to assist in creating a pollution-free environment. Finally, this paper introduces optimum designs, growth rate models, and CO2 fixation of microalgae, functions, and operations in biological CO2 fixation.
    Matched MeSH terms: Carbon Dioxide/metabolism; Microalgae/metabolism
  12. Barber-Riley G
    Med J Malaya, 1965 Jun;19(4):267-72.
    PMID: 4220851
    Matched MeSH terms: Liver/metabolism*; Sulfobromophthalein/metabolism*
  13. Nguyen TDP, Le TVA, Show PL, Nguyen TT, Tran MH, Tran TNT, et al.
    Bioresour Technol, 2019 Jan;272:34-39.
    PMID: 30308405 DOI: 10.1016/j.biortech.2018.09.146
    Microalgal bacterial flocs can be a promising approach for microalgae harvesting and wastewater treatment. The present study provides an insight on the bioflocs formation to enhance harvesting of Chlorella vulgaris and the removal of nutrients from seafood wastewater effluent. The results showed that the untreated seafood wastewater was the optimal culture medium for the cultivation and bioflocculation of C. vulgaris, with the flocculating activity of 92.0 ± 6.0%, total suspended solids removal of 93.0 ± 5.5%, and nutrient removal of 88.0 ± 2.2%. The bioflocs collected under this optimal condition contained dry matter of 107.2 ± 5.6 g·L-1 and chlorophyll content of 25.5 ± 0.2 mg·L-1. The results were promising when compared to those obtained from the auto-flocculation process that induced by the addition of calcium chloride and pH adjustment. Additionally, bacteria present in the wastewater aided to promote the formation of bioflocculation process.
    Matched MeSH terms: Chlorella vulgaris/metabolism; Microalgae/metabolism*
  14. Yusoff N, Ong SA, Ho LN, Wong YS, Saad FNM, Khalik W, et al.
    J Environ Sci (China), 2019 Jan;75:64-72.
    PMID: 30473308 DOI: 10.1016/j.jes.2018.03.001
    Hybrid growth microorganisms in sequencing batch reactors have proven effective for treating the toxic compound phenol, but the toxicity effect under different toxicity conditions has rarely been discussed. Therefore, the performance of the HG-SBR under toxic, acute and chronic organic loading can provide the overall operating conditions of the system. Toxic organic loading (TOL) was monitored during the first 7hr while introducing 50mg/L phenol to the system. The system was adversely affected with the sudden introduction of phenol to the virgin activated sludge, which caused a low degradation rate and high dissolved oxygen consumption during TOL. Acute organic loading (AOL) had significant effects at high phenol concentrations (600, 800 1000mg/L). The specific oxygen uptake rate (SOUR) gradually decreased to 4.9mg O2/(g MLVSS·hr) at 1000mg/L of phenol compared to 12.74mg O2/(g MLVSS·hr) for 200mg/L of phenol. The HG-SBR was further monitored during chronic organic loading (COL) over 67days. The effects of organic loading were more apparent at 800mg/L and 1000mg/L phenol concentrations, as the removal range was between 22%-30% and 18%-46% respectively, which indicated the severe effects of COL.
    Matched MeSH terms: Water Pollutants, Chemical/metabolism*; Phenol/metabolism*
  15. Briggs MT, Condina MR, Klingler-Hoffmann M, Arentz G, Everest-Dass AV, Kaur G, et al.
    Proteomics Clin Appl, 2019 05;13(3):e1800099.
    PMID: 30367710 DOI: 10.1002/prca.201800099
    Protein glycosylation, particularly N-linked glycosylation, is a complex posttranslational modification (PTM), which plays an important role in protein folding and conformation, regulating protein stability and activity, cell-cell interaction, and cell signaling pathways. This review focuses on analytical techniques, primarily MS-based techniques, to qualitatively and quantitatively assess N-glycosylation while successfully characterizing compositional, structural, and linkage features with high specificity and sensitivity. The analytical techniques explored in this review include LC-ESI-MS/MS and MALDI time-of-flight MS (MALDI-TOF-MS), which have been used to analyze clinical samples, such as serum, plasma, ascites, and tissue. Targeting the aberrant N-glycosylation patterns observed in MALDI-MS imaging (MSI) offers a platform to visualize N-glycans in tissue-specific regions. The studies on the intra-patient (i.e., a comparison of tissue-specific regions from the same patient) and inter-patient (i.e., a comparison of tissue-specific regions between different patients) variation of early- and late-stage ovarian cancer (OC) patients identify specific N-glycan differences that improve understanding of the tumor microenvironment and potentially improve therapeutic strategies for the clinic.
    Matched MeSH terms: Ovarian Neoplasms/metabolism*; Polysaccharides/metabolism*
  16. Altamish M, Samuel VP, Dahiya R, Singh Y, Deb PK, Bakshi HA, et al.
    Drug Dev Res, 2020 02;81(1):23-31.
    PMID: 31785110 DOI: 10.1002/ddr.21627
    The well-known condition of heart failure is a clinical syndrome that results when the myocardium's ability to pump enough blood to meet the body's metabolic needs is impaired. Most of the cardiac activity is maintained by adrenoceptors, are categorized into two main α and β and three distinct subtypes of β receptor: β1-, β2-, and β3-adrenoceptors. The β adrenoreceptor is the main regulatory macro proteins, predominantly available on heart and responsible for down regulatory cardiac signaling. Moreover, the pathological involvement of Angiotensin-converting enzyme 1 (ACE1)/angiotensin II (Ang II)/angiotensin II type 1 (AT1) axis and beneficial ACE2/Ang (1-7)/Mas receptor axis also shows protective role via Gi βγ, during heart failure these receptors get desensitized or internalized due to increase in the activity of G-protein-coupled receptor kinase 2 (GRK2) and GRK5, responsible for phosphorylation of G-protein-mediated down regulatory signaling. Here, we investigate the various clinical and preclinical data that exhibit the molecular mechanism of upset level of GRK change the cardiac activity during failing heart.
    Matched MeSH terms: Heart Failure/metabolism*; Receptors, G-Protein-Coupled/metabolism*
  17. Monowar T, Rahman MS, Bhore SJ, Raju G, Sathasivam KV
    Biomed Res Int, 2019;2019:6951927.
    PMID: 30868071 DOI: 10.1155/2019/6951927
    Secondary bioactive compounds of endophytes are inevitable biomolecules of therapeutical importance. In the present study, secondary metabolites profiling of an endophytic bacterial strain, Acinetobacter baumannii, were explored using GC-MS study. Presence of antioxidant substances and antioxidant properties in chloroform (CHL), diethyl ether (DEE), and ethyl acetate (EA) crude extracts of the endophytic bacteria were studied. Total phenolic content (TPC), total flavonoid content (TFC), total antioxidant capacity (TAC), 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, and ferrous ion chelating assay were evaluated. A total of 74 compounds were identified from the GC-MS analysis of the EA extract representing mostly alkane compounds followed by phenols, carboxylic acids, aromatic heterocyclic compounds, ketones, aromatic esters, aromatic benzenes, and alkenes. Among the two phenolic compounds, namely, phenol, 2,4-bis(1,1-dimethylethyl)- and phenol, 3,5-bis(1,1-dimethylethyl)-, the former was found in abundance (11.56%) while the latter was found in smaller quantity (0.14%). Moreover, the endophytic bacteria was found to possess a number of metal ions including Fe(II) and Cu(II) as 1307.13 ± 2.35 ppb and 42.38 ± 0.352 ppb, respectively. The extracts exhibited concentration dependent antioxidant and prooxidant properties at high and low concentrations, respectively. The presence of phenolic compounds and metal ions was believed to play an important role in the antioxidant and prooxidant potentials of the extracts. Further studies are suggested for exploring the untapped resource of endophytic bacteria for the development of novel therapeutic agents.
    Matched MeSH terms: Antioxidants/metabolism*; Capsicum/metabolism*; Flavonoids/metabolism; Phenols/metabolism; Plant Extracts/metabolism; Free Radical Scavengers/metabolism; Reactive Oxygen Species/metabolism; Plant Leaves/metabolism*; Acinetobacter baumannii/metabolism*; Secondary Metabolism/genetics
  18. Forouzanfar F, Shojapour M, Asgharzade S, Amini E
    CNS Neurol Disord Drug Targets, 2019;18(3):212-221.
    PMID: 30714533 DOI: 10.2174/1871527318666190204104629
    Stroke continues to be a major cause of death and disability worldwide. In this respect, the most important mechanisms underlying stroke pathophysiology are inflammatory pathways, oxidative stress, as well as apoptosis. Accordingly, miRNAs are considered as non-coding endogenous RNA molecules interacting with their target mRNAs to inhibit mRNA translation or reduce its transcription. Studies in this domain have similarly shown that miRNAs are strongly associated with coronary artery disease and correspondingly contributed to the brain ischemia molecular processes. To retrieve articles related to the study subject, i.e. the role of miRNAs involved in inflammatory pathways, oxidative stress, and apoptosis in stroke from the databases of Web of Science, PubMed (NLM), Open Access Journals, LISTA (EBSCO), and Google Scholar; keywords including cerebral ischemia, microRNA (miRNA), inflammatory pathway, oxidative stress, along with apoptosis were used. It was consequently inferred that, miRNAs could be employed as potential biomarkers for diagnosis and prognosis, as well as therapeutic goals of cerebral ischemia.
    Matched MeSH terms: Reperfusion Injury/metabolism*; MicroRNAs/metabolism*
  19. Lee LK, Foo KY
    Clin Biochem, 2014 Jul;47(10-11):973-82.
    PMID: 24875852 DOI: 10.1016/j.clinbiochem.2014.05.053
    Infertility is a worldwide reproductive health problem which affects approximately 15% of couples, with male factor infertility dominating nearly 50% of the affected population. The nature of the phenomenon is underscored by a complex array of transcriptomic, proteomic and metabolic differences which interact in unknown ways. Many causes of male factor infertility are still defined as idiopathic, and most diagnosis tends to be more descriptive rather than specific. As such, the emergence of novel transcriptomic and metabolomic studies may hold the key to more accurately diagnose and treat male factor infertility. This paper provides the most recent evidence underlying the role of transcriptomic and metabolomic analysis in the management of male infertility. A summary of the current knowledge and new discovery of noninvasive, highly sensitive and specific biomarkers which allow the expansion of this area is outlined.
    Matched MeSH terms: Infertility, Male/metabolism*; Biomarkers/metabolism
  20. Mashlawi AM, Jordan HR, Crippen LT, Tomberlin JK
    Trop Biomed, 2020 Dec 01;37(4):973-985.
    PMID: 33612750 DOI: 10.47665/tb.37.4.973
    Buruli ulcer (BU) is a globally recognized, yet largely neglected tropical disease whose etiologic agent is Mycobacterium ulcerans. Although the exact mode of transmission is unclear, epidemiological evidence links BU incidence with slow-moving or stagnant, aquatic habitats, and laboratory-based experiments have shown disease manifestation in animals with dermal punctures. Therefore, hypotheses for transmission include contact with slowmoving aquatic habitats and associated biting aquatic insects, such as mosquitoes. Recent research demonstrated the toxin produced by M. ulcerans, mycolactone, is an attractant for adult mosquitoes seeking a blood-meal as well as oviposition sites. In the study presented here, we examined the impact of mycolactone at different concentrations on immature lifehistory traits of Aedes aegypti, which commonly occurs in the same environment as M. ulcerans. We determined percent egg hatch was not significantly different across treatments. However, concentration impacted the survivorship of larval mosquitoes to the adult stage (p < 0.001). Resulting adults also showed a slight preference, but not significant (p > 0.05), for oviposition in habitats contaminated with mycolactone suggesting a legacy effect.
    Matched MeSH terms: Macrolides/metabolism*; Mycobacterium ulcerans/metabolism*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links