METHODS: Snake (Reticulatus malayanus), rats (Rattus rattus), water monitor lizard (Varanus salvator), frog (Lithobates catesbeianus), fish (Oreochromis mossambicus), chicken (Gallus gallus domesticus), and pigeon (Columba livia) were dissected and their organ lysates/sera were collected. Crude extracts were tested for bactericidal effects against neuropathogenic E. coli K1, methicillin-resistant Staphylococcus aureus (MRSA), Streptococcus pyogenes, Pseudomonas aeruginosa, Bacillus cereus and Klebsiella pneumoniae. To determine whether lysates/sera protect human cells against bacterialmediated damage, cytotoxicity assays were performed by measuring lactate dehydrogenase release as an indicator of cell death. Lysates/sera were partially characterized using heat-treatment and pronasetreatment and peptide sequences were determined using the Liquid Chromatography Mass Spectrometry (LC-MS).
RESULTS: Snake and water monitor lizard sera exhibited potent broad-spectrum bactericidal effects against all bacteria tested. Heat inactivation and pronase-treatment inhibited bactericidal effects indicating that activity is heat-labile and pronase-sensitive suggesting that active molecules are proteinaceous in nature. LCMS analyses revealed the molecular identities of peptides.
CONCLUSION: The results revealed that python that feeds on germ-infested rodents and water monitor lizards that feed on rotten organic waste possess antibacterial activity in a heat-sensitive manner and several peptides were identified. We hope that the discovery of antibacterial activity in the sera of animals living in polluted environments will stimulate research in finding antibacterial agents from unusual sources as this has the potential for the development of novel strategies in the control of infectious diseases.
AIM OF THE STUDY: However, there are no scientific reports documented on the wound healing activities of this plant against Staphylococcus aureus infections in the Sprague Dawley male rat model. Thus, the present study was conducted to evaluate the wound healing potential of E. guineensis extract leaves.
MATERIALS AND METHODS: The crude extract was prepared in 10% (w/w) ointment and evaluated for wound healing activity using excision and infected wound models in Sprague Dawley rats. The wound healing activity was evaluated from wound closure rate, CFU reduction, histological analysis of granulation tissue and matrix metalloprotease expression.
RESULTS: The results show that the E. guineensis extract has potent wound healing ability, as manifest from improved wound closure and tissue regeneration supported by histopathological parameters. Assessment of granulation tissue every fourth day showed a significant reduction in the microbial count. The expression of matrix metalloproteinases was well correlated with the other results, hence confirming E. guineensis wound healing activity's effectiveness.
CONCLUSIONS: E. guineensis enhanced infected wound healing in rats, thus supporting its traditional use.
METHODS: Two hundred and nine MRSA strains from year 2011 to 2012 were collected from a tertiary teaching hospital in Malaysia. The strains were characterized by antimicrobial susceptibility testing, staphylococcal cassette chromosome mec (SCCmec) typing, detection of Panton-Valentine leukocidin (PVL) gene, multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE). Patient's demographic and clinical data were collected and correlated with molecular data by statistical analysis.
RESULTS: Male gender and patient >50 years of age (p
Objectives: The aim of this study was to prepare magnetic/bacterial nanocellulose (Fe3O4/BNC) nanocomposite films as ecofriendly wound dressing in order to evaluate their physical, cytotoxicity and antimicrobial properties. The molecular study was carried out to evaluate expression of genes involved in healing of wounds after treatment with BNC/Fe3O4 films.
Study design materials and methods: Magnetic nanoparticles were biosynthesized by using Aloe vera extract in new isolated bacterial nanocellulose (BNC) RM1. The nanocomposites were characterized using X-ray diffraction, Fourier transform infrared, and field emission scanning electron microscopy. Moreover, swelling property and metal ions release profile of the nanocomposites were investigated. The ability of nanocomposites to promote wound healing of human dermal fibroblast cells in vitro was examined. Bioinformatics databases were used to identify genes with important healing effect. Key genes which interfered with healing were studied by quantitative real time PCR.
Results: Spherical magnetic nanoparticles (15-30 nm) were formed and immobilized within the structure of BNC. The BNC/Fe3O4 was nontoxic (IC50>500 μg/mL) with excellent wound healing efficiency after 48 hours. The nanocomposites showed good antibacterial activity ranging from 6±0.2 to 13.40±0.10 mm against Staphylococcus aureus, Staphylococcus epidermidis and Pseudomonas aeruginosa. The effective genes for the wound healing process were TGF-B1, MMP2, MMP9, Wnt4, CTNNB1, hsa-miR-29b, and hsa-miR-29c with time dependent manner. BNC/Fe3O4 has an effect on microRNA by reducing its expression and therefore causing an increase in the gene expression of other genes, which consequently resulted in wound healing.
Conclusion: This eco-friendly nanocomposite with excellent healing properties can be used as an effective wound dressing for treatment of cutaneous wounds.
METHOD: We created an iontophoresis cell; 3% CF was inserted within medullary segment of goat bone and sealed from external saline solution. The cell operated at the following voltages 30, 60 and 90 V and at the following durations 5, 10, 15, 20, 25 and 30 min. Information regarding optimal conditions for its application was then obtained. After which, correlation between voltages and time with CF concentration in the bone was analysed. A bioavailability test was also conducted to observe the optimal rate of CF elution from the graft.
RESULT: The optimal condition for the impregnation process is 3% CF at 90 V for 10 min. Bone graft impregnated with CF at optimal conditions can elute above minimum inhibitory concentration of the CF against MRSA for 21 days.
CONCLUSION: CF iontophoresis was found feasible for allograft impregnation. The technique is simple, inexpensive and reproducible clinically. Iontophoresis offers a novel solution to reduce the rate of perioperative infection in reconstructive surgery involving use of bone graft.
METHODS: PMMA pellets were prepared with three separate concentrations of each of the two antibiotics tested. They were tested to determine the effect of increasing concentration of antibiotics on the biomechanical properties of PMMA and antibiotic activity by measuring the zone of inhibition and broth elution assay.
RESULTS: Ceftaroline PMMA at 3 wt%, three-point bending was 37.17 ± 0.51 N ( p < 0.001) and axial loading was 41.95 N ± 0.51 ( p < 0.001). At 5-wt% vancomycin-PMMA, three-point bending was 41.65 ± 0.79 N ( p = 0.02) and axial loading was 49.49 ± 2.21 N ( p = 0.01). Stiffness of ceftroline-loaded PMMA in low and medium concentration was significantly higher than the vancomycin. The zone of inhibition for ceftaroline was higher than vancomycin. Ceftaroline at 3 wt% eluted up to 6 weeks (0.3 ± 0.1 μg/ml) above the minimum inhibitory concentration (MIC) and vancomycin at 2.5 wt% eluted up to 3 weeks, same as MIC, that is, 0.5 ± 0.0 μg/ml.
CONCLUSIONS: Ceftaroline, loaded at similar concentrations as vancomycin into PMMA, is a more potent alternative based on its more favourable bioactivity and elution properties, while having a lesser effect on the mechanical properties of the cement. The use of 3-wt% ceftaroline as antibiotic laden PMMA against MRSA is recommended. It should be noted that this was an in vitro study and to determine the clinical efficacy would need prospective, controlled and randomized studies.