Acid sulfate, peat, sandy podzolic, and saline soils are widely distributed in the lowlands of Thailand and Malaysia. The nutrient concentrations in the leaves of plants grown in these type of soils were studied with the aim of developing a nutritional strategy for adapting to such problem soils. In sago and oil palms that were well-adapted to peat soil, the N, P, and K concentrations were the same in the mature leaves, while the Ca, Mg, Na, and Fe concentrations were higher in the mature leaves of the oil palm than of the sago palm. Melastoma malabathricum and Melaleuca cajuputi plants that were well-adapted to low pH soils, peat. and acid sulfate soils were also studied. It was observed that a high amount of Al accumulated in the M. marabathricum leaves, while Al did not accumulate in M. cajuputi leaves. M. cajuputi plants accumulated large amounts of Na in their leaves or stems regardless of the exchangeable Na concentration in the soil, while M. malabathricum that was growing in saline-affected soils excluded Na. Positive relationships between macronutrients were recognized between P and N, between K and N, and between P and K. Al showed antagonistic relationships with P, K, Ca, Mg, Fe, Zn, Cu, and Na. Na also showed antagonistic relationships with P, K, Zn, Mn, Cu, and Al. Fe showed weak antagonistic relationships with Zn, Mn, Cu, and Al.
P(3HB-co-4HB) with a high 4HB monomer composition was previously successfully produced using the transformant Cupriavidus malaysiensis USMAA1020 containing an additional copy of the PHA synthase gene. In this study, high PHA density fed-batch cultivation strategies were developed for such 4HB-rich P(3HB-co-4HB). The pulse, constant and mixed feeding strategies resulted in high PHA accumulation, with a PHA content of 74-92 wt% and 4HB monomer composition of 92-99 mol%. The pulse-feed of carbon and nitrogen resulted in higher PHA concentration (30.7 g/L) than carbon alone (22.3 g/L), suggesting that a trace amount of nitrogen is essential to support cell density for PHA accumulation. Constant feeding was found to be a more feasible strategy than mixed feeding, since the latter caused a drastic fluctuation in the C/N ratio, as evidenced by higher biomass formation indicating more carbon flux towards the competitive TCA pathway. A two-times carbon and nitrogen pulse feeding was the most optimal strategy achieving 92 wt% accommodation of the total biomass, with the highest PHA concentration (46 g/L) and yield (Yp/x) of 11.5 g/g. The strategy has kept the C/N at optimal ratio during the active PHA-producing phase. This is the first report of the production of high PHA density for 4HB-rich P(3HB-co-4HB).
In this work, we report on the isolation of a phenol-degrading Rhodococcus sp. with a high tolerance towards phenol. The isolate was identified as Rhodococcus sp. strain AQ5NOL 2, based on 16S rDNA analysis. The strain degraded phenol using the meta pathway, a trait shared by many phenol-degraders. In addition to phenol biodegradation, the strain was also capable of degrading diesel. Strain AQ5NOL 2 exhibited a broad optimum temperature for growth on phenol at between 20 °C and 35 °C. The best nitrogen sources were ammonium sulphate, glycine or phenylalanine, followed by proline, nitrate, leucine, and alanine (in decreasing efficiency). Strain AQ5NOL 2 showed a high tolerance and degradation capacity of phenol, for it was able to register growth in the presence of 2000 mg l(-1) phenol. The growth of this strain on phenol as sole carbon and energy source were modeled using Haldane kinetics with a maximal specific growth rate (μ(max)) of 0.1102 hr(-1), a half-saturation constant (K(s) ) of 99.03 mg l(-1) or 1.05 mmol l(-1), and a substrate inhibition constant (K(i)) of 354 mg l(-1) or 3.76 mmol l(-1). Aside from phenol, the strain could utilize diesel, 2,4-dinitrophenol and ρ-cresol as carbon sources for growth. Strain AQ5NOL 2 exhibited inhibition of phenol degradation by Zn(2+), Cu(2+), Cr(6+), Ag(+) and Hg(2+) at 1 mg l(-1).
In the current study, the effect on packaged beef fillets (1 × 5 × 8 cm) of using active chitosan film (1%) was investigated. The fillets were stored at 4 °C for 12 days, and the film contained ɛ-polylysine (ɛ-PL) (0.3, 0.6, and 0.9% w/w). Chemical, microbiological, sensory properties, and quality indices of the fillets were investigated. Added to these factors was an assessment of the influence of ɛ-polylysine incorporation on the optical, structural, barrier, and mechanical specifications (elongation at break and tensile strength) of chitosan films. Based on the findings, a significant difference among the corresponding values to thickness, color, water vapor permeability (WVP), and mechanical specifications between the treated films by ɛ-PL and untreated films were noted. In addition, higher values of thickness and tensile strength were correlated with ɛ-PL added active chitosan films while compared with control samples. Additionally, no significant differences regarding the proximate composition (including protein, moisture, and fat) among beef fillet samples were observed. In this regard, due to significantly lower levels of pH, TVB-N, and TBARS ɛ-PL in enriched films, this technique demonstrated some protective effects on beef fillets. Another observation was that lower levels of the total viable count, coliform, mold, yeasts, and higher sensory properties were significantly associated with samples with added ɛ-PL (0.9%). Therefore, adding ɛ-PL into chitosan films could be introduced as an effective technique to extend the shelf life of beef fillets and maintain their quality indices during refrigerated storage.
This study investigated the effect of different levels of corn supplementation as energy source into palm kernel cake-urea-treated rice straw basal diet on urinary excretion of purine derivatives, nitrogen utilization, rumen fermentation, and rumen microorganism populations. Twenty-seven Dorper lambs were randomly assigned to three treatment groups and kept in individual pens for a 120-day period. The animals were subjected to the dietary treatments as follows: T1: 75.3% PKC + 0% corn, T2: 70.3% PKC + 5% corn, and T3: 65.3% PKC + 10% corn. Hypoxanthine and uric acid excretion level were recorded similarly in lambs supplemented with corn. The microbial N yield and butyrate level was higher in corn-supplemented group, but fecal N excretion, T3 has the lowest level than other groups. Lambs fed T3 had a greater rumen protozoa population while the number of R. flavefaciens was recorded highest in T2. No significant differences were observed for total bacteria, F. succinogenes, R. albus, and methanogen population among all treatment. Based on these results, T3 could be fed to lambs without deleterious effect on the VFA and N balance.
Bera Lake is the largest natural fresh water reservoir in Malaysia. It has vital environmental and ecological importance for human and wild life. Nevertheless, water quality of this lake has been degraded during the last few decades due to land development projects at catchment area. Therefore, a comprehensive water quality assessment of Bera Lake was implemented in order to compare current water quality with the implementation of land development projects. In situ water quality surveying was implemented using calibrated full option Hydrolab DS 5. Eleven parameters viz., temperature, depth of sampling, salinity, Turbidity, total dried solid, pH, NH4(+), N03(-), Cl(-), saturation percentage of dissolved oxygen, specific conductivity were recorded in fifty one stations at 0.2h, 0.5h, and 0.8h depth. National Water Quality Standards for Malaysia (NWQS) and Water Quality were used to evaluate Bera Lake quality based on previous and resultant data. Vertical water quality analysis revealed a clear stratification in Bera Lake water profile in terms of temperature, dissolved oxygen, chloride (Cl(-)), nitrate (NO(3)), pH and specific conductivity (EC) parameters. Results clearly demonstrate the important role of land use changes since 1972 in the physico-chemical condition of water quality at Bera Lake. Classifications of water quality before and after land development project were calculated as class II and class V, respectively. A long-term and comprehensive monitoring of water quality assessment is recommended in order to reach plan of sustainable water resources use with conservation approach.
Nowadays, the pretreatment of wastewater prior to discharge is very important in various industries as the wastewater without any treatment contains high organic pollution loads that would pollute the receiving waterbody and potentially cause eutrophication and oxygen depletion to aquatic life. The reuse of seafood wastewater discharge in microalgae cultivation offers beneficial purposes such as reduced processing cost for wastewater treatment, replenishing ground water basin as well as financial savings for microalgae cultivation. In this paper, the cultivation of Chlorella vulgaris with an initial concentration of 0.01 ± 0.001 g⋅L-1 using seafood sewage discharge under sunlight and fluorescent illumination was investigated in laboratory-scale without adjusting mineral nutrients and pH. The ability of nutrient removal under different lighting conditions, the metabolism of C. vulgaris and new medium as well as the occurrence of auto-flocculation of microalgae biomass were evaluated for 14 days. The results showed that different illumination sources did not influence the microalgae growth, chemical oxygen demand (COD) and biochemical oxygen demand (BOD) significantly. However, the total nitrogen (total-N) and total phosphorus (total-P) contents of microalgae were sensitive to the illumination mode. The amount of COD, BOD, total-N and total-P were decreased by 88%, 81%, 95%, and 83% under sunlight mode and 81%, 74%, 79%, and 72% under fluorescent illumination, respectively. Furthermore, microalgae were auto-flocculated at the final days of cultivation with maximum biomass concentration of 0.49 ± 0.01 g⋅L-1, and the pH value had increased to pH 9.8 ± 0.1 under sunlight illumination.
In this study, the effects of limited and excess nitrate on biomass, lipid production, and fatty acid profile in Messastrum gracile SE-MC4 were determined. The expression of fatty acid desaturase genes, namely stearoyl-ACP desaturase (SAD), omega-6 fatty acid desaturase (ω-6 FAD), omega-3 fatty acid desaturase isoform 1 (ω-3 FADi1), and omega-3 fatty acid desaturase isoform 2 (ω-3 FADi2) was also assessed. It was found that nitrate limitation generally increased the total oil, α-linolenic acid (C18:3n3) and total polyunsaturated fatty acid (PUFA) contents in M. gracile. The reduction of nitrate concentration from 1.76 to 0.11 mM increased the total oil content significantly from 32.5 to 41.85% (dry weight). Palmitic (C16:0) and oleic (C18:1) acids as the predominant fatty acids in this microalgae constituted between 82 and 87% of the total oil content and were relatively consistent throughout all nitrate concentrations tested. The expression of SAD, ω-6 FAD, and ω-3 FADi2 genes increased under nitrate limitation, especially at 0.11 mM nitrate. The ω-3 FADi1 demonstrated a binary up-regulation pattern of expression under both nitrate-deficient (0.11 mM) and -excess (3.55 mM) conditions. Thus, findings from this study suggested that limited or excess nitrate could be used as part of a cultivation strategy to increase oil and PUFA content following media optimisation and more efficient culture methodology. Data obtained from the expression of desaturase genes would provide valuable insights into their roles under excess and limited nitrate conditions in M. gracile, potentially paving the way for future genetic modifications.
High surface area mesoporous activated carbon-alginate (AC-alginate) beads were successfully synthesized by entrapping activated carbon powder derived from Mangosteen fruit peel into calcium-alginate beads for methylene blue (MB) removal from aqueous solution. The structure and surface characteristics of AC-alginate beads were analyzed using Fourier transform infra-red (FTIR) spectroscopy, scanning electron microscopy (SEM) and surface area analysis (SBET), while thermal properties were tested using thermogravimetric analysis (TGA). The effect of AC-alginate dose, pH of solution, contact time, initial concentration of MB solution and temperature on MB removal was elucidated. The results showed that the maximum adsorption capacity of 230mg/g was achieved for 100mg/L of MB solution at pH 9.5 and temperature 25°C. Furthermore, the adsorption of MB on AC-alginate beads followed well pseudo-second order equation and equilibrium adsorption data were better fitted by the Freundlich isotherm model. The findings reveal the feasibility of AC-alginate beads composite to be used as a potential and low cost adsorbent for removal of cationic dyes.
The growth and lectin production of Ganoderma applanatum, a white rot fungus, was optimized in broth cultures. The fungus was found to have a higher growth rate and higher lectin activity when grown in a medium adjusted to pH 6.5 at 26°C under stationary conditions. Expression of lectin activity started in 5-day-old mycelial culture; maximum activity was expressed after the 15th day of incubation. Among the various carbon and nitrogen sources tested, the carbon source sucrose and the nitrogen source yeast extract support maximum growth and lectin production. Lectin from G. applanatum was purified by ammonium sulfate precipitation and ion exchange chromatography. The purified fraction revealed a single band with a molecular weight of 35.0 kDa. Moreover, carbohydrates such as mannitol, glucose, sucrose, maltose, mannose, galactose, sorbose, and fructose were found to inhibit the hemagglutinating activity of the lectin. The purified lectins from G. applanatum contain cytotoxic and proapoptotic activities against HT-29 colon adenocarcinoma cells.
This study was carried out to investigate the physicochemical properties of compost from oil palm empty fruit bunches (EFB) inoculated with effective microorganisms (EM∙1™). The duration of microbial-assisted composting was shorter (∼7 days) than control samples (2 months) in a laboratory scale (2 kg) experiment. The temperature profile of EFB compost fluctuated between 26 and 52 °C without the presence of consistent thermophilic phase. The pH of compost changed from weak acidic (pH ∼5) to mild alkaline (pH ∼8) because of the formation of nitrogenous ions such as ammonium (NH4 (+)), nitrite (NO2 (-)), and nitrate (NO3 (-)) from organic substances during mineralization. The pH of the microbial-treated compost was less than 8.5 which is important to prevent the loss of nitrogen as ammonia gas in a strong alkaline condition. Similarly, carbon mineralization could be determined by measuring CO2 emission. The microbial-treated compost could maintain longer period (∼13 days) of high CO2 emission resulted from high microbial activity and reached the threshold value (120 mg CO2-C kg(-1) day(-1)) for compost maturity earlier (7 days). Microbial-treated compost slightly improved the content of minerals such as Mg, K, Ca, and B, as well as key metabolite, 5-aminolevulinic acid for plant growth at the maturity stage of compost. Graphical Abstract Microbial-assisted composting on empty fruit bunches.
Soil salinity exert negative impacts on agricultural production and regarded as a crucial issue in global wetland rice production (Oryza sativa L.). Indigenous salt-tolerant plant growth-promoting rhizobacteria (Bacillus sp.) could be used for improving rice productivity under salinity stress. This study screened potential salt-tolerant plant growth-promoting rhizobacteria (PGPR) collected from coastal salt-affected rice cultivation areas under laboratory and glasshouse conditions. Furthermore, the impacts of these PGPRs were tested on biochemical attributes and nutrient contents in various rice varieties under salt stress. The two most promising PGPR strains, i.e., 'UPMRB9' (Bacillus tequilensis 10b) and 'UPMRE6' (Bacillus aryabhattai B8W22) were selected for glasshouse trial. Results indicated that 'UPMRB9' improved osmoprotectant properties, i.e., proline and total soluble sugar (TSS), antioxidant enzymes like superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT). Moreover, 'UPMRB9' inoculated rice plants accumulated higher amount of nitrogen and calcium in tissues. Therefore, the indigenous salt-tolerant PGPR strain 'UPMRB9' could be used as a potential bio-augmentor for improving biochemical attributes and nutrient uptake in rice plants under salinity stress. This study could serve as a preliminary basis for future large-scale trials under glasshouse and field conditions.
As a remedy for environmental pollution, a versatile synthetic approach has been developed to prepare polyvinyl alcohol (PVA)/nitrogen-doped carbon dots (CDs) composite film (PVA-CDs) for removal of toxic cadmium ions. The CDs were first synthesized using carboxymethylcellulose (CMC) of oil palms empty fruit bunch wastes with the addition of polyethyleneimine (PEI) and then the CDs were embedded with PVA. The PVA-CDs film possess synergistic functionalities through increasing the content of hydrogen bonds for chemisorption compared to the pure CDs. Optical analysis of PVA-CDs film was performed by ultraviolet-visible and fluorescence spectroscopy. Compared to the pure CDs, the solid-state PVA-CDs displayed a bright blue color with a quantum yield (QY) of 47%; they possess excitation-independent emission and a higher Cd2+ removal efficiency of 91.1%. The equilibrium state was achieved within 10 min. It was found that adsorption data fit well with the pseudo-second-order kinetic and Langmuir isotherm models. The maximum adsorption uptake was 113.6 mg g-1 at an optimal pH of 7. Desorption experiments showhe that adsorbent can be reused fruitfully for five adsorption-desorption cycles using 0.1 HCl elution. The film was successfully applied to real water samples with a removal efficiency of 95.34% and 90.9% for tap and drinking water, respectively. The fabricated membrane is biodegradable and its preparation follows an ecofriendly green route.
This review discusses how climate undergo changes and the effect of climate change on air quality as well as public health. It also covers the inter relationship between climate and air quality. The air quality discussed here are in relation to the 5 criteria pollutants; ozone (O3), carbon dioxide (CO2), nitrogen dioxide (NO2), sulfur dioxide (SO2), and particulate matter (PM). Urban air pollution is the main concern due to higher anthropogenic activities in urban areas. The implications on health are also discussed. Mitigating measures are presented with the final conclusion.
Rapid urbanisation in Malaysian cities poses risks to the health of residents. This study aims to estimate the relative risk (RR) of major air pollutants on cardiovascular and respiratory hospitalisations in Kuala Lumpur. Daily hospitalisations due to cardiovascular and respiratory diseases from 2010 to 2014 were obtained from the Hospital Canselor Tuanku Muhriz (HCTM). The trace gases, PM10 and weather variables were obtained from the Department of Environment (DOE) Malaysia in consistent with the hospitalisation data. The RR was estimated using a Generalised Additive Model (GAM) based on Poisson regression. A "lag" concept was used where the analysis was segregated into risks of immediate exposure (lag 0) until exposure after 5 days (lag 5). The results showed that the gases could pose significant risks towards cardiovascular and respiratory hospitalisations. However, the RR value of PM10 was not significant in this study. Immediate effects on cardiovascular hospitalisations were observed for NO2 and O3 but no immediate effect was found on respiratory hospitalisations. Delayed effects on cardiovascular and respiratory hospitalisations were found with SO2 and NO2. The highest RR value was observed at lag 4 for respiratory admissions with SO2 (RR = 1.123, 95% CI = 1.045-1.207), followed by NO2 at lag 5 for cardiovascular admissions (RR = 1.025, 95% CI = 1.005-1.046). For the multi-pollutant model, NO2 at lag 5 showed the highest risks towards cardiovascular hospitalisations after controlling for O3 8 h mean lag 1 (RR = 1.026, 95% CI = 1.006-1.047), while SO2 at lag 4 showed highest risks towards respiratory hospitalisations after controlling for NO2 lag 3 (RR = 1.132, 95% CI = 1.053-1.216). This study indicated that exposure to trace gases in Kuala Lumpur could lead to both immediate and delayed effects on cardiovascular and respiratory hospitalisations.
The feasibility of preparing activated carbon (JPAC) from jackfruit peel, an industrial residue abundantly available from food manufacturing plants via microwave-assisted NaOH activation was explored. The influences of chemical impregnation ratio, microwave power and radiation time on the properties of activated carbon were investigated. JPAC was examined by pore structural analysis, scanning electron microscopy, Fourier transform infrared spectroscopy, nitrogen adsorption isotherm, elemental analysis, surface acidity/basicity and zeta potential measurements. The adsorptive behavior of JPAC was quantified using methylene blue as model dye compound. The best conditions resulted in JPAC with a monolayer adsorption capacity of 400.06 mg/g and carbon yield of 80.82%. The adsorption data was best fitted to the pseudo-second-order equation, while the adsorption mechanism was well described by the intraparticle diffusion model. The findings revealed the versatility of jackfruit peels as good precursor for preparation of high quality activated carbon.
A split plot 3 by 4 experiment was designed to characterize the relationship between production of gluthatione (GSH), oxidized gluthatione (GSSG), total flavonoid, anthocyanin, ascorbic acid and antioxidant activities (FRAP and DPPH) in three varieties of Labisia pumila Blume, namely the varieties alata, pumila and lanceolata, under four levels of nitrogen fertilization (0, 90, 180 and 270 kg N/ha) for 15 weeks. The treatment effects were solely contributed by nitrogen application; there was neither varietal nor interaction effects observed. As the nitrogen levels decreased from 270 to 0 kg N/ha, the production of GSH and GSSG, anthocyanin, total flavonoid and ascorbic acid increased steadily. At the highest nitrogen treatment level, L. pumila exhibited significantly lower antioxidant activities (DPPH and FRAP) than those exposed to limited nitrogen growing conditions. Significant positive correlation was obtained between antioxidant activities (DPPH and FRAP), total flavonoid, GSH, GSSG, anthocyanin and ascorbic acid suggesting that an increase in the antioxidative activities in L. pumila under low nitrogen fertilization could be attributed to higher contents of these compounds. From this observation, it could be concluded that in order to avoid negative effects on the quality of L. pumila, it is advisable to avoid excessive application of nitrogen fertilizer when cultivating the herb for its medicinal use.
We present results from the OP3 campaign in Sabah during 2008 that allow us to study the impact of local emission changes over Borneo on atmospheric composition at the regional and wider scale. OP3 constituent data provide an important constraint on model performance. Treatment of boundary layer processes is highlighted as an important area of model uncertainty. Model studies of land-use change confirm earlier work, indicating that further changes to intensive oil palm agriculture in South East Asia, and the tropics in general, could have important impacts on air quality, with the biggest factor being the concomitant changes in NO(x) emissions. With the model scenarios used here, local increases in ozone of around 50 per cent could occur. We also report measurements of short-lived brominated compounds around Sabah suggesting that oceanic (and, especially, coastal) emission sources dominate locally. The concentration of bromine in short-lived halocarbons measured at the surface during OP3 amounted to about 7 ppt, setting an upper limit on the amount of these species that can reach the lower stratosphere.
This paper reports measurements of land-atmosphere fluxes of sensible and latent heat, momentum, CO(2), volatile organic compounds (VOCs), NO, NO(2), N(2)O and O(3) over a 30 m high rainforest canopy and a 12 m high oil palm plantation in the same region of Sabah in Borneo between April and July 2008. The daytime maximum CO(2) flux to the two canopies differs by approximately a factor of 2, 1200 mg C m(-2) h(-1) for the oil palm and 700 mg C m(-2) h(-1) for the rainforest, with the oil palm plantation showing a substantially greater quantum efficiency. Total VOC emissions are also larger over the oil palm than over the rainforest by a factor of 3. Emissions of isoprene from the oil palm canopy represented 80 per cent of the VOC emissions and exceeded those over the rainforest in similar light and temperature conditions by on average a factor of 5. Substantial emissions of estragole (1-allyl-4-methoxybenzene) from the oil palm plantation were detected and no trace of this VOC was detected in or above the rainforest. Deposition velocities for O(3) to the rainforest were a factor of 2 larger than over oil palm. Emissions of nitrous oxide were larger from the soils of the oil palm plantation than from the soils of the rainforest by approximately 25 per cent. It is clear from the measurements that the large change in the species composition generated by replacing rainforest with oil palm leads to profound changes in the net exchange of most of the trace gases measured, and thus on the chemical composition of the boundary layer over these surfaces.