METHODS: Retrospective data from 210 patients were obtained from a general hospital in Malaysia from May 2014 until June 2015, where 123 patients were having comorbid diabetes mellitus. The comparison of blood glucose control protocol performance between both protocol simulations was conducted through blood glucose fitted with physiological modelling on top of virtual trial simulations, mean calculation of simulation error and several graphical comparisons using stochastic modelling.
RESULTS: Stochastic Targeted Blood Glucose Control Protocol reduces hyperglycaemia by 16% in diabetic and 9% in nondiabetic cohorts. The protocol helps to control blood glucose level in the targeted range of 4.0-10.0 mmol/L for 71.8% in diabetic and 82.7% in nondiabetic cohorts, besides minimising the treatment hour up to 71 h for 123 diabetic patients and 39 h for 87 nondiabetic patients.
CONCLUSION: It is concluded that Stochastic Targeted Blood Glucose Control Protocol is good in reducing hyperglycaemia as compared to the current blood glucose management protocol in the Malaysian intensive care unit. Hence, the current Malaysian intensive care unit protocols need to be modified to enhance their performance, especially in the integration of insulin and nutrition intervention in decreasing the hyperglycaemia incidences. Improvement in Stochastic Targeted Blood Glucose Control Protocol in terms of uen model is also a must to adapt with the diabetic cohort.
PURPOSE: To develop 3D personalized left ventricular (LV) models and thickening assessment framework for assessing regional wall thickening dysfunction and dyssynchrony in AMI patients.
STUDY TYPE: Retrospective study, diagnostic accuracy.
SUBJECTS: Forty-four subjects consisting of 15 healthy subjects and 29 AMI patients.
FIELD STRENGTH/SEQUENCE: 1.5T/steady-state free precession cine MRI scans; LGE MRI scans.
ASSESSMENT: Quantitative thickening measurements across all cardiac phases were correlated and validated against clinical evaluation of infarct transmurality by an experienced cardiac radiologist based on the American Heart Association (AHA) 17-segment model.
STATISTICAL TEST: Nonparametric 2-k related sample-based Kruskal-Wallis test; Mann-Whitney U-test; Pearson's correlation coefficient.
RESULTS: Healthy LV wall segments undergo significant wall thickening (P 50% transmurality) underwent remarkable wall thinning during contraction (thickening index [TI] = 1.46 ± 0.26 mm) as opposed to healthy myocardium (TI = 4.01 ± 1.04 mm). For AMI patients, LV that showed signs of thinning were found to be associated with a significantly higher percentage of dyssynchrony as compared with healthy subjects (dyssynchrony index [DI] = 15.0 ± 5.0% vs. 7.5 ± 2.0%, P
METHODS: We developed a hybrid algorithm that combines features of empirical mode decomposition (EMD) with principal component analysis (PCA) to reduce the BCG artefact. The algorithm does not require extra electrocardiogram (ECG) or electrooculogram (EOG) recordings to extract the BCG artefact.
RESULTS: The method was tested with both simulated and real EEG data of 11 participants. From the simulated data, the similarity index between the extracted BCG and the simulated BCG showed the effectiveness of the proposed method in BCG removal. On the other hand, real data were recorded with two conditions, i.e. resting state (eyes closed dataset) and task influenced (event-related potentials (ERPs) dataset). Using qualitative (visual inspection) and quantitative (similarity index, improved normalized power spectrum (INPS) ratio, power spectrum, sample entropy (SE)) evaluation parameters, the assessment results showed that the proposed method can efficiently reduce the BCG artefact while preserving the neuronal signals.
COMPARISON WITH EXISTING METHODS: Compared with conventional methods, namely, average artefact subtraction (AAS), optimal basis set (OBS) and combined independent component analysis and principal component analysis (ICA-PCA), the statistical analyses of the results showed that the proposed method has better performance, and the differences were significant for all quantitative parameters except for the power and sample entropy.
CONCLUSIONS: The proposed method does not require any reference signal, prior information or assumption to extract the BCG artefact. It will be very useful in circumstances where the reference signal is not available.
METHODS: From bioinformatics data, mismatched mouse amino acids in variable light and heavy chain amphipathic regions were identified and substituted with those common to human antibody framework. Appropriate synthetic DNA sequences inserted into vectors were transfected into HEK293 cells to produce the humanized antibody.
RESULTS: Humanized antibodies showed specific binding to CD20 and greater cytotoxicity to cancer WIL2-NS cell proliferation than rituximab in vitro.
CONCLUSION: A humanized version of rituximab with potential to be developed into a biobetter for treatment of B-cell disorders has been successfully generated using a logical and bioinformatics approach.
RESULTS: We developed a fast Bayesian method which uses the sequencing coverage information determined from the concentration of an RNA sample to estimate the posterior distribution of a true gene count. Our method has better or comparable performance compared to NOISeq and GFOLD, according to the results from simulations and experiments with real unreplicated data. We incorporated a previously unused sequencing coverage parameter into a procedure for differential gene expression analysis with RNA-Seq data.
CONCLUSIONS: Our results suggest that our method can be used to overcome analytical bottlenecks in experiments with limited number of replicates and low sequencing coverage. The method is implemented in CORNAS (Coverage-dependent RNA-Seq), and is available at https://github.com/joel-lzb/CORNAS .